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Abstract

In an open channel, a hydraulic jump is an abrupt transition between a torrential (super-
critical) flow and a fluvial (subcritical) flow. In this article hydraulic jumps are represented by
discontinuous shock solutions of hyperbolic Saint-Venant equations. Using a Lyapunov approach,
we prove that we can stabilize the state of the system in H2-norm as well as the hydraulic jump
location, with simple feedback boundary controls and an arbitrary decay rate, by appropriately
choosing the gains of the feedback boundary controls.
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1 Introduction and main result

Nonlinear hyperbolic equations are well-known to give rise to discontinuities in finite time that are
physically meaningful. Hydraulic jump is one of the most known example. A hydraulic jump is a
phenomenon that frequently occurs in open channel flow, such as rivers and spillways. It describes
a transition between a torrential (or supercritical) regime and a fluvial (or subcritical) regime, i.e.,
an abrupt transition between a fast flow and a slow flow with a higher height. As a consequence, a
part of the initial kinetic energy of the flow is converted into an increase in potential energy, while
some energy is irreversibly lost through turbulence and heat. This phenomenon can be seen not
only in rivers and spillways but also in air flows of the atmosphere. This is for instance believed
to explain the phenomenon of “Morning Glory cloud” [7] and may be at the origin of some gliders’
crashes [18]. Hydraulic jumps are important not only because they occur naturally but also because
they are sometimes engineered on purpose and are very useful in hydraulic applications to dissipate
energy in water and prevent in this way the erosion of the streambed or damages on hydraulic in-
stallations [16]. However, when studying the flow equations, the stabilization of hydraulic jumps is
seldom considered and almost all the studies focus on the stabilization of the dynamics of the fluvial
regime [1, 2, 3, 4, 9, 11, 14, 19]. In this paper, we explicitly address the issue of the stabilization of a
hydraulic jump represented by a discontinuous shock solution of the flow equations, switching from the
torrential regime to the fluvial regime. In other words, the two eigenvalues of the hyperbolic system
modeling the shallow water are both positive in the torrential regime and one of them changes sign and
switches to a negative value in the fluvial regime. Our goal is to achieve the stability of the channel
with a general class of local feedback controls at the boundary. Fundamentally, the stabilization of
shock steady states for hyperbolic systems, while being very interesting, has rarely been studied. One
can refer to [5] and [21] for the scalar case and to our knowledge, no such result exists for systems.
By a Lyapunov approach we prove the exponential H2-stability of the steady state, with an arbitrary
decay rate and with an exact exponential stabilization of the desired location of the hydraulic jump.

We consider a channel with a rectangular cross section with constant width, which is taken to be
1 without loss of generality. We denote by Q(t, x) the flux and H(t, x) the water depth, where t and x
are, respectively, the time and space independent variables as usual. As the channel has a finite length
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L > 0, the spatial domain is bounded and noted [0, L]. The Saint-Venant model which, neglecting
friction, consists in a continuity equation and an equilibrium of forces, is written as

∂tH + ∂xQ = 0,

∂tQ+ ∂x

(
gH2

2
+
Q2

H

)
= 0.

(1)

We are interested with solution trajectories (H(t, x), Q(t, x))T that may have a jump discontinuity at
some point xs(t) ∈ (0, L) and are classical otherwise. Thus, in order to close the system, we need
a relationship between Q and H before and after this jump. From the Rankine-Hugoniot condition
applied to (1), two quantities are conserved through the jump in the jump’s referential: the flux Q
and the momentum gH2/2 +Q2/H. This gives the following relationships at the jump xs(t):

[Q]+− = ẋs[H]+−,

[Q]+−ẋs =

[
Q2

H
+

1

2
gH2

]+
−
,

(2)

where, as usual, ẋs denotes the time derivative of xs, i.e., the speed of the jump. These relationships
can be reformulated as:

ẋs =
[Q]+−
[H]+−

, (3)

and ([Q]+−)2 = [H]+−

[
Q2

H
+

1

2
gH2

]+
−
, (4)

where we define for any bounded function f in a neighbourhood of xs: [f ]+− = f(x+s (t)) − f(x−s (t)).
This relation (4) can be regarded as the generalisation for non-stationary states of the well-known
Bélanger equation (8) below.

Our goal is to stabilize the steady states of the system (1), (3) and (4) where a (single) hydraulic
jump occurs, meaning that the flow switches from the torrential regime to the fluvial regime with a
discontinuity in height. Therefore, such steady states ((H∗, Q∗)T, x∗s) satisfy the following conditions:

1. Q∗ is constant and positive, x∗s ∈ (0, L) and

H∗ =

{
H∗1 , x ∈ [0, x∗s),

H∗2 , x ∈ (x∗s, L],
(5)

where H∗1 , H∗2 are positive constants.

2. The steady state flow is in the torrential regime before the jump and in the fluvial regime after
the jump. This means that in the torrential regime the two system eigenvalues are positive,

λ1 =
Q∗

H∗1
−
√
gH∗1 > 0, λ2 =

Q∗

H∗1
+
√
gH∗1 > 0, for x ∈ [0, x∗s), (6)

while there is one positive and one negative eigenvalue in the fluvial regime [2],

− λ3 =
Q∗

H∗2
−
√
gH∗2 < 0, λ4 =

Q∗

H∗2
+
√
gH∗2 > 0, for x ∈ (x∗s, L]. (7)

In particular this implies that H∗1 < H∗2 .

3. Furthermore, the Rankine-Hugoniot conditions applied to (1) in the stationary case are equiva-
lent to the following well-known Bélanger equation [6]

H∗2
H∗1

=
−1 +

√
1 + 8 (Q∗)2

g(H∗
1 )

3

2
. (8)
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Physical remarks:

� The switch from the torrential regime to the fluvial regime corresponds to a transition (shock)
between a state where the system (1) has two positive eigenvalues and a state where the system
has one positive and one negative eigenvalue. As we will see later (from Theorem 1.1 together
with (6) and (7)), this transition (shock) induces a discontinuity not only for the eigenvalue
that changes sign but also for the eigenvalue that keeps the same sign. More precisely, if we
denote by λs the eigenvalue that changes sign, then λs(x

−
s (t)) > 0 > λs(x

+
s (t)) for all t > 0.

And if we denote by λc the eigenvalue that does not change sign, then λc(x
−
s (t)) 6= λc(x

+
s (t))

for all t > 0. We point out that smooth transitions could happen around critical equilibria or
when source terms are considered (see [10], [15]). Such smooth transitions are also related to
coupling conditions for networks for the transition from supersonic to subsonic fluid states, such
as natural gas pipeline transportation systems that have been analyzed in [13].

� Note that when the solutions are classical, the formulation (1) of the Saint-Venant equations
with the level H and the flux Q as state variables is equivalent to the alternative formulation
with the level H and the velocity Q/H that is obtained by replacing the equilibrium of forces
by an energy equation and is used for instance in [2, 3, 17]. When the solutions are not classical
however, the two formulations are not equivalent anymore and this can be seen by looking at the
stationary states: the formulation (1) in level and flux is compatible with shock and discontinuity
of H∗(x) while the version with the energy equation is not. This is logical as there is a pointwise
loss of energy in the hydraulic jump, which implies that the energy conservation does not hold
anymore.

� From (3), the location of the shock xs may be moving around its initial location and potentially
all along the channel. This can be seen in practical phenomena such as tidal bores. The main
challenge of this work is to also stabilize this location when stabilizing the state of the system.
This is not obvious as one can see that for given heights and flux (H∗1 , H

∗
2 , Q

∗) satisfying (6)–(8),
any shock location x∗s ∈ [0, L] induces an admissible steady state ((H∗, Q∗)T, x∗s), where H∗ is
given by (5). Thus the steady states are not isolated and therefore not asymptotically stable in
open loop. Indeed, any small perturbation on x∗s corresponds to another steady state with the
same heights and flux at the two ends.

Q0(t)

H0(t)
QL(t)

Control actions: Q0(t), H0(t), QL(t)

Boundary conditions

H(t, 0) = H0(t)

Q(t, L) = QL(t)

Q(t, 0) ⇡ Q0(t) (quasi-static approx)

Hydraulic
Jump
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Figure 1: Open channel with a hydraulic jump and three control devices : the gate opening H0(t) and
the inflow Q0(t) and outflow QL(t) which are driven by two pumps.

As illustrated in Figure 1, let us consider a channel which is equipped with devices allowing
a feedback control on H(t, 0) = H0(t), Q(t, L) = QL(t) and Q(t, 0) ≈ Q0(t) (quasi-steady state
approximation). Let the set point for the control be a steady state ((H∗, Q∗)T, x∗s) defined as previously
by (5)-(8). We assume that static boundary feedback control laws are selected so that the boundary
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conditions can be written in the following general form:

H(t, 0)−H∗1
Q(t, 0)−Q∗
Q(t, L)−Q∗

 = G


Q(t, x−s )−Q∗
Q(t, x+s )−Q∗
H(t, x−s )−H∗1

xs − x∗s

−
 0

0
G4(H(t, L)−H∗2 )

 (9)

where G = (G1, G2, G3)T : R4 → R3 and G4 : R→ R are of class C2 and satisfy

G(0) = 0, G4(0) = 0, G′4(0) = −λ4. (10)

Obviously, by (5), the steady state ((H∗, Q∗)T, x∗s) satisfies the boundary conditions (9), as H∗(0) =
H∗1 and H∗(L) = H∗2 . Note that this boundary feedback is quite simple to implement as it only
requires a pointwise measure of H(t, L), xs(t), H(t, x−s ), Q(t, x+s ) and Q(t, x−s ).

In order to state the main stability result of this article, we first introduce the following notations:

D(x, γ) = diag

(
si(1− si λiλ4

)

bi
e

γ
xiλi

(x∗
s−x), i ∈ {1, 2, 3}

)
,

D̃(γ) = diag

 3∑
j=1

e
γx∗s
xiλi
− γx∗s
xjλj

(1− si
λi
λ4

)2
, i ∈ {1, 2, 3}

 ,

K =


λ2λ1

λ2−λ1
− λ1

λ2−λ1
0

λ2λ1

λ1−λ2
− λ2

λ1−λ2
0

0 0 λ3

λ3+λ4

G′(0)


1 1 0

λ1

λ4

λ2

λ4
1 + λ3

λ4

1
λ1

1
λ2

0

0 0 0

 ,

d =
1

H∗1 −H∗2
,

b1b2
b3

 =


λ2λ1

λ2−λ1
− λ1

λ2−λ1
0

λ2λ1

λ1−λ2
− λ2

λ1−λ2
0

0 0 λ3

λ3+λ4

G′(0)


0
0
0
1



(11)

with s1 = s2 = 1, s3 = −1, x1 = x2 = 1, x3 = x∗s/(L− x∗s) and x4 = x∗s/(x
∗
s − L).

We consider the following initial condition

H(0, x) = H0(x), Q(0, x) = Q0(x), xs(0) = xs,0 (12)

where xs,0 ∈ (0, L) and (H0(x), Q0(x))T ∈ H2((0, xs,0);R2) ∩H2((xs,0, L);R2). We assume that the
initial condition satisfies the first order compatibility conditions derived from (9), (see [2] for a proper
definition of the first order compatibility condition which is omitted here for the sake of simplicity).
Now, we give the following definition:

Definition 1.1. The steady state ((H∗, Q∗)T, x∗s) is locally exponentially stable for the H2-norm
with decay rate γ, if there exist δ∗ > 0 and C∗ > 0 such that for any initial data (H0(x), Q0(x))T ∈
H2((0, xs,0);R2) ∩H2((xs,0, L);R2) and xs,0 ∈ (0, L) satisfying

|(H0 −H∗1 , Q0 −Q∗)T|H2((0,xs,0);R2) + |(H0 −H∗2 , Q0 −Q∗)T|H2((xs,0,L);R2) ≤ δ∗, (13)

|xs,0 − x∗s| ≤ δ∗, (14)

and the corresponding first order compatibility conditions derived from (9), and for any T > 0,
the system (1), (3), (4), (9) and (12) has a unique solution (H,Q)T ∈ C0([0, T ];H2((0, xs(t));R2) ∩
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H2((xs(t), L);R2)) and xs ∈ C1([0, T ]) and

|(H(t, ·)−H∗1 , Q(t, ·)−Q∗)T|H2((0,xs(t));R2)

+ |(H(t, ·)−H∗2 , Q(t, ·)−Q∗)T|H2((xs(t),L);R2) + |xs(t)− x∗s|
≤ C∗e−γt

(
|(H0 −H∗1 , Q0 −Q∗)T|H2((0,xs,0);R2)

+ |(H0 −H∗2 , Q0 −Q∗)T|H2((xs,0,L);R2) + |xs,0 − x∗s|
)
, ∀t ∈ [0, T ).

(15)

Remark 1. A function f in C0([0, T ];H2((0, xs(t));R2) ∩ H2((xs(t), L);R2)) is a function f in
C0([0, T ];L2((0, L);R2)) such that, if one defines

f1(t, x) := f(t, xs(t)x), t ∈ (0, T ), x ∈ (0, 1), (16)

f2(t, x) := f(t, L+ (xs(t)− L)x), t ∈ (0, T ), x ∈ (0, 1), (17)

then f1 and f2 are both in C0([0, T ];H2((0, 1);R2)). The transformation f → (f1, f2) enables us
to reduce the problem to a time-invariant domain and to define the stability of a function f ∈
C0([0, T ];H2((0, xs(t));R2)∩H2((xs(t), L);R2)), a function that is piecewise H2 with a discontinuity
that is potentially moving. This transformation will also be used later on in the analysis of the problem
(see (23) below).

Based on Definition 1.1, we have the following theorem.

Theorem 1.1. For any given steady state ((H∗, Q∗)T, x∗s) of the system (1) satisfying (5)-(8) and
the boundary conditions (9), for any γ > 0,

if for i = 1, 2, 3

bi ∈

 −γe−
γ

xiλi
x∗
s

3dsi

(
1− si λiλ4

)
(1− e−

γ
xiλi

x∗
s )
,
−γe−

γ
xiλi

x∗
s

3dsi

(
1− si λiλ4

)
 , if si

(
1− si

λi
λ4

)
< 0,

bi ∈

 −γe−
γ

xiλi
x∗
s

3dsi

(
1− si λiλ4

) , −γxie−
γ

xiλi
x∗
s

3dsi

(
1− si λiλ4

)
(1− e−

γ
xiλi

x∗
s )

 , if si

(
1− si

λi
λ4

)
> 0,

(18)

and if the matrix

D(x∗s, γ)−KTD(0, γ)K −
(

3∑
k=1

2d2

γ2
bksk(1− sk

λk
λ4

)(e
γx∗s
xkλk − 1)

)
D̃(γ) (19)

is positive definite, with (b1, b2, b3)T, D, D̃ and K defined in (11), then the steady state ((H∗, Q∗)T, x∗s)
is locally exponentially stable for the H2-norm with decay rate γ/4.

Remark 2. Note that it is not obvious that there always exists G such that K and (b1, b2, b3)T defined
in (11) satisfy (18)-(19). We will prove in details that such G indeed exists in Appendix A.

2 Well-posedness of the system

In this section, we prove the well-posedness of the Saint-Venant equations (1) with the hydraulic jump
conditions (3) and (4), the boundary feedback control conditions (9) and initial condition (12). We
have the following well-posedness theorem.

Theorem 2.1. For any T > 0, there exists δ(T ) > 0 such that, for any given initial condition (12)
satisfying the first order compatibility conditions and

|(H0 −H∗1 , Q0 −Q∗)T|H2((0,xs,0);R2) + |(H0 −H∗2 , Q0 −Q∗)T|H2((xs,0,L);R2) ≤ δ(T ), (20)

|xs,0 − x∗s| ≤ δ(T ), (21)
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the system (1), (3), (4), (9) and (12) has a unique solution (H,Q)T ∈ C0([0, T ];H2((0, xs,0);R2) ∩
H2((xs,0, L);R2)) and xs ∈ C1([0, T ]). Moreover, the following estimate holds for any t ∈ [0, T ]

|(H(t, ·)−H∗1 , Q(t, ·)−Q∗)T|H2((0,xs(t));R2)

+ |(H(t, ·)−H∗2 , Q(t, ·)−Q∗)T|H2((xs(t),L);R2) + |xs(t)− x∗s|
≤ C(T )

(
|(H0 −H∗1 , Q0 −Q∗)T|H2((0,xs,0);R2)

+ |(H0 −H∗2 , Q0 −Q∗)T|H2((xs,0,L);R2) + |xs,0 − x∗s|
)
.

(22)

Proof. One can see that the shock location xs depends on t in general. In order to avoid the time-
varying domains [0, xs(t)] and [xs(t), L], under the assumption that xs ∈ C0([0, T ]), we perform, as
in [12, 20], a transformation of the space coordinate x which allows to define new state variables on
the fixed domain [0, x∗s] as follows:

H1(t, x) = H(t, x
xs
x∗s

),

Q1(t, x) = Q(t, x
xs
x∗s

),

H2(t, x) = H(t, L+ x
xs − L
x∗s

),

Q2(t, x) = Q(t, L+ x
xs − L
x∗s

).

(23)

Let us denote by hi and qi the deviations

hi = Hi −H∗i , qi = Qi −Q∗, i = 1, 2. (24)

Then, the system (1), (3) and (4) is equivalent to the following 4× 4 system, which is diagonalisable
by blocks and defined on R+ × [0, x∗s]:

∂th1 −
(
x
ẋs
x∗s

)
x∗s
xs
∂xh1 +

x∗s
xs
∂xq1 = 0,

∂tq1 +

(
2(q1 +Q∗)

h1 +H∗1
− x ẋs

x∗s

)
x∗s
xs
∂xq1 +

(
g(h1 +H∗1 )− (q1 +Q∗)2

(h1 +H∗1 )2

)
x∗s
xs
∂xh1 = 0,

∂th2 +

(
x
ẋs
x∗s

)
x∗s

L− xs
∂xh2 −

x∗s
L− xs

∂xq2 = 0,

∂tq2 −
(

2(q2 +Q∗)

h2 +H∗2
− x ẋs

x∗s

)
x∗s

L− xs
∂xq2 −

(
g(h2 +H∗2 )− (q2 +Q∗)2

(h2 +H∗2 )2

)
x∗s

L− xs
∂xh2 = 0,

(25)

where

ẋs =
q2(t, x∗s)− q1(t, x∗s)

h2(t, x∗s)− h1(t, x∗s) +H∗2 −H∗1
(26)

and with, from the jump condition (4), the following boundary condition at x = x∗s:

(q2 − q1)2 = (h2 − h1 +H∗2 −H∗1 )

(
(q2 +Q∗)2

h2 +H∗2
+
g

2
(h2 +H∗2 )2 − (q1 +Q∗)2

h1 +H∗1
− g

2
(h1 +H∗1 )2

)
. (27)

Now, we introduce the following Riemann coordinates

u =


u1
u2
u3
u4

 =

(
S1 0
0 S2

)
h1
q1
h2
q2

 (28)

with

S1 =

(
1
λ1

1
λ2

1 1

)−1
, S2 =

(− 1
λ3

1
λ4

1 1

)−1
(29)
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and λi defined in (6), (7). Then the system (25) can be rewritten as

ut + (Λ(xs) +A(u, xs) + xẋsB(xs))ux = 0, (30)

where

Λ =



x∗s
xs
λ1 0 0 0

0
x∗s
xs
λ2 0 0

0 0
x∗s

L− xs
λ3 0

0 0 0 − x∗s
L− xs

λ4


(31)

and where A, B are two matrices of class C2 that can be obtained by direct computations (omitted
here for simplicity) and such that A satisfies A(0, xs) = 0. Using the change of coordinates (28),
equation (26) becomes:

ẋs =
u1(t, x∗s) + u2(t, x∗s)− u3(t, x∗s)− u4(t, x∗s)

3∑
i=1

ui(t, x
∗
s)

λi
− u4(t, x∗s)

λ4
+ (H∗1 −H∗2 )

(32)

and the boundary condition (27) becomes:

2Q∗

H∗2
(u3+u4)− 2Q∗

H∗1
(u1+u2)+(gH∗2−

Q∗2

H∗22
)(
u4
λ4
−u3
λ3

)−(gH∗1−
Q∗2

H∗21
)(
u1
λ1

+
u2
λ2

) = O
(
|u(t, x∗s)|2

)
. (33)

Here and hereafter, O(s) (with s ≥ 0) means that for any ε > 0, there exists C1 > 0 such that

(s ≤ ε) =⇒ (|O(s)| ≤ C1s).

With the expression of the eigenvalues given by (6) and (7), (33) becomes

λ4u4(t, x∗s) = λ1u1(t, x∗s) + λ2u2(t, x∗s) + λ3u3(t, x∗s) +O
(
|u(t, x∗s)|2

)
. (34)

Using (23), (24), (28) and (34), the boundary conditions (9) now becomeu1(t, 0)
u2(t, 0)
u3(t, 0)

 = B

u1(t, x∗s)
u2(t, x∗s)
u3(t, x∗s)

 , u4(t, 0), xs − x∗s

 , (35)

where B = (B1, B2, B3)T : R3 × R× R→ R3 is of class C2 and where B1 and B2 are defined by

B1 = (λ2G1(u(t, x∗s), xs)−G2(u(t, x∗s), xs))
λ1

λ2 − λ1
, (36)

B2 = (λ1G1(u(t, x∗s), xs)−G2(u(t, x∗s), xs))
λ2

λ1 − λ2
. (37)

To define B3, from the boundary conditions (9) and the change of variables (24), (28), we have

u3(t, 0) =
−λ4λ3
λ3 + λ4

(
u4(t, 0)

λ4
− u3(t, 0)

λ3

)
+

λ3
λ3 + λ4

G3(u(t, x∗s), xs)

− λ3
λ3 + λ4

G4

(
u4(t, 0)

λ4
− u3(t, 0)

λ3

)
. (38)

From condition (10), applying the implicit function theorem, one obtains

B3 = F(u4(t, 0), G3(u(t, x∗s), xs)) (39)

in a neighborhood of u = 0 with

F(0, 0) = 0, ∂1F(0, 0) = 0, ∂2F(0, 0) =
λ3

λ3 + λ4
, (40)

where ∂iF , i = 1, 2, denote the partial derivative of F with respect to its i-th variable.
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Remark 3. For simplicity, in (36)-(39), we have used the following slight abuse of notation adapted
from (9):

Gi(u(t, x∗s), xs) = Gi


u1(t, x∗s) + u2(t, x∗s)

u3(t, x∗s) + u4(t, x∗s)

u1(t, x∗s)

λ1
+
u2(t, x∗s)

λ2
xs − x∗s

 , i = 1, 2, 3. (41)

From (23), (24), (28) and (34), one can see that, as expressed in (35), B only depends on ui(t, x
∗
s),

i = 1, 2, 3, u4(t, 0) and xs−x∗s because from (34) u4(t, x∗s) can be considered as a function of ui(t, x
∗
s),

i = 1, 2, 3.

The initial condition (12) becomes

u(0, x) = u0(x) = (u10(x), u20(x), u30(x), u40(x))T,

xs(0) = xs,0
(42)

that satisfies the first order compatibility conditions corresponding to (35). Thus, to study the well-
posedness of (1), (3), (4), (9) and (12) is equivalent to study the well-posedness of (30), (32), (34),
(35) and (42). We have the following lemma from which one can easily obtain Theorem 2.1.

Lemma 2.1. For any T > 0, there exists δ(T ) > 0 such that, for any xs,0 ∈ (0, L) and u0 ∈
H2((0, x∗s);R4) satisfying the first order compatibility conditions and

|u0|H2((0,x∗
s);R4) ≤ δ(T ) and |xs,0 − x∗s| ≤ δ(T ), (43)

the system (30), (32), (34), (35) and (42) has a unique solution u ∈ C0([0, T ];H2((0, x∗s);R4)) and
xs ∈ C1([0, T ]). Moreover, the following estimate holds for any t ∈ [0, T ]

|u(t, ·)|H2((0,x∗
s);R4) + |xs(t)− x∗s| ≤ C(T )(|u0|H2((0,x∗

s);R4) + |xs,0 − x∗s|). (44)

Remark 4. For the proof of Lemma 2.1, we refer to [5, Appendix], where the well-posedness of a 2×2
nonlinear hyperbolic system coupled with an ODE was studied. But the proof there can be easily
adapted to the 4 × 4 nonlinear hyperbolic system coupled with an ODE. Noticing that A(0, xs) = 0
and that, from (32), ẋs = 0 when u = 0, one has

Λ(xs) +A(u, xs) + xẋsB(xs) = Λ(xs)

when u = 0. Thus, (30) is indeed strictly hyperbolic provided that |u|C0([0,T ];H2((0,x∗
s);R4)) is small

enough and can be diagonalized in a neighbourhood of u = 0. Then we can perform similar fixed
point argument as in [5, Appendix] by carefully estimating the related norms of the solution along
the characteristic curves. The C1 regularity of xs is then obtained directly from (32). We omit the
details.

This completes the proof of Theorem 2.1.

3 Exponential stability of the steady state for the H2-norm

In this section we prove Theorem 1.1.

Proof of Theorem 1.1. It is worth noticing that due to the equivalence of the system (1), (3), (4),
(9) and the system (30), (32), (34) and (35), one only needs to prove the exponential stability of the
null-steady state of the system (30), (32), (34) and (35) for the H2-norm.
Motivated by [8], see also [2, Section 4.4], and by [5], we introduce the following Lyapunov function:

V (u, xs) = V1(u) + V2(u) + V3(u) + V4(u, xs) + V5(u, xs) + V6(u, xs), (45)
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where:

V1(u) =

∫ x∗
s

0

4∑
i=1

pie
− µ
xiλi

x
u2i dx, (46)

V2(u) =

∫ x∗
s

0

4∑
i=1

pie
− µ
xiλi

x
u2itdx, (47)

V3(u) =

∫ x∗
s

0

4∑
i=1

pie
− µ
xiλi

x
u2ittdx, (48)

V4(u, xs) =

∫ x∗
s

0

3∑
i=1

p′i
λi
e
− µ
xiλi

x
ui(t, x)(xs − x∗s)dx+ C0(xs − x∗s)2, (49)

V5(u, xs) =

∫ x∗
s

0

3∑
i=1

p′i
λi
e
− µ
xiλi

x
uit(t, x)ẋsdx+ C0(ẋs)

2, (50)

V6(u, xs) =

∫ x∗
s

0

3∑
i=1

p′i
λi
e
− µ
xiλi

x
uitt(t, x)ẍsdx+ C0(ẍs)

2, (51)

where pi and C0 are positive constants that shall be determined later on, while p′i are constants, not
necessarily positive, which will also be determined later on. Besides we impose C0 > 3/2 and we
recall that x1 = x2 = 1, x3 = x∗s/(L− x∗s) and x4 = x∗s/(x

∗
s − L). In the following we may denote for

simplicity Vi := Vi(u, xs) and |u|H2 := |u(t, ·)|H2((0,x∗
s);R4) in the computations. Similarly to what is

done in [5], from the Cauchy-Schwarz inequality and as C0 > 3/2, it can be shown that the Lyapunov
function V considered here is equivalent to (|u|H2 + |xs−x∗s|)2 provided that |u|H2 + |xs−x∗s| is small
enough and that

max
i

(
p′2i xi
µλipi

(1− e−
µ

xiλi
x∗
s )

)
< 2. (52)

This means that, under condition (52), there exists ρ̄ > 0 and C̄ such that, for every T > 0 and
u ∈ C0([0, T ];H2((0, x∗s);R4)) and for every xs ∈ C1([0, T ]) solution of the system (30), (32), (34)
and (35), if |u|H2 + |xs − x∗s| ≤ ρ̄

1

C̄
(|u|H2 + |xs − x∗s|)2 ≤ V (u, xs) ≤ C̄(|u|H2 + |xs − x∗s|)2. (53)

This can be proved by direct estimations (see [5] for more details).
From the boundary condition (35), as B is of class C2, we have

v(t, 0) = ∂1B(0, 0, 0)v(t, x∗s)+∂2B(0, 0, 0)u4(t, 0)+∂3B(0, 0, 0)(xs−x∗s)+O((|u|H2 +|xs−x∗s|)2), (54)

where v = (u1, u2, u3)T is the vector of the components of u on which the feedback (35) applies. This
notation is practical as it isolates u1, u2 and u3 from u4 on which we have no control and whose
boundary condition is imposed by the condition (34). In (54), the notation ∂1B is the 3× 3 Jacobian
matrix of the vector-valued function B with respect to its first variable which is a 3-D vector (see
the expression of B in (35)). From (36)-(40), one can check that ∂2B(0, 0, 0) ≡ 0. Moreover, from
(36)–(39), noticing (40), it can be verified that the matrix K and the vector (b1, b2, b3)T defined in
(11) satisfy

K = (kij)(i,j)∈{1,2,3}2 = ∂1B(0, 0, 0), ∂3B(0, 0, 0) = (b1, b2, b3)T. (55)

Let T̄ > 0 be given and let xs,0 ∈ (0, L) and u0 ∈ H2((0, x∗s);R4) satisfying the first order compatibility
conditions and (43). Let u ∈ C0([0, T̄ ];H2((0, x∗s);R4)) and xs ∈ C1([0, T̄ ]) be the solution of the
system (30), (32), (34)-(42). Let us start with the case where u is of class C3. Taking the time
derivative of V1 along this solution and integrating by parts, we obtain

dV1
dt

= −µV1 −
[

4∑
i=1

pixiλie
− µ
xiλi

x
u2i

]x∗
s

0

+O
(
(|u|H2 + |xs − x∗s|)3

)
. (56)
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By differentiating (30), similarly as (56), we can obtain

dV2
dt

= −µV2 −
[

4∑
i=1

pixiλie
− µ
xiλi

x
u2it

]x∗
s

0

+O
(
(|u|H2 + |xs − x∗s|)3

)
. (57)

Now, let us deal with the V3 term. To that end, we derive from (30) that

uttt + Λ(xs)uttx + 2ẋsΛ
′(xs)utx + (Λ′′(xs)(ẋs)

2 + Λ′(xs)ẍs)ux

+ (A(u, xs)ux)tt + x
...
x sB(xs)ux + 2xẍs(B(xs)ux)t + xẋs(B(xs)ux)tt = 0.

(58)

Thus,

dV3
dt

=− µV3 −
[

4∑
i=1

pixiλie
− µ
xiλi

x
u2itt

]x∗
s

0

−
∫ x∗

s

0

4∑
i=1

2pie
− µ
xiλi

x
x

...
x suitt

 4∑
j=1

Bijujx

 dx

+O
(
(|u|H2 + |xs − x∗s|)3

)
.

(59)

We observe that now
...
x s appears. As

...
x s is proportional to utt(x

∗
s), it can not be bounded by |u|H2 .

However, we can use Young’s inequality to compensate it with the boundary terms. Using (54), one
has

dV3
dt
≤− µV3 −

4∑
i=1

((
pixiλie

− µx∗s
xiλi +O(|u|H2)

)
u2itt(x

∗
s)− u2itt(0)

)
+O

(
(|u|H2 + |xs − x∗s|)3

)
.

(60)

Differentiating (49), from (30), one has

dV4
dt

=(xs − x∗s)
∫ x∗

s

0

3∑
i=1

p′i
λi
e
− µ
xiλi

x
uit(t, x)dx

+ ẋs

∫ x∗
s

0

3∑
i=1

p′i
λi
e
− µ
xiλi

x
ui(t, x)dx+ 2C0ẋs(xs − x∗s)

=− (xs − x∗s)
∫ x∗

s

0

3∑
i=1

xip
′
ie
− µ
xiλi

x
uix(t, x)dx

+ d (u1(x∗s) + u2(x∗s)− u3(x∗s)− u4(x∗s))

∫ x∗
s

0

3∑
i=1

p′i
λi
e
− µ
xiλi

x
ui(t, x)dx

+ 2dC0(xs − x∗s) (u1(x∗s) + u2(x∗s)− u3(x∗s)− u4(x∗s))

+O
(
(|u|H2 + |xs − x∗s|)3

)
,

(61)

where we recall that d = (H∗1 −H∗2 )−1 < 0 is defined in (11). Thus, integrating by parts and using
(34),

dV4
dt

= −(xs − x∗s)
[

3∑
i=1

xip
′
ie
− µ
xiλi

x
ui(t, x)

]x∗
s

0

− µ(V4 − C0(xs − x∗s)2)

+ d

(
u1(x∗s)

(
1− λ1

λ4

)
+ u2(x∗s)

(
1− λ2

λ4

)
− u3(x∗s)

(
1 +

λ3
λ4

))
(

2C0(xs − x∗s) +

∫ x∗
s

0

3∑
i=1

p′i
λi
e
− µ
xiλi

x
ui(t, x)dx

)
+O

(
(|u|H2 + |xs − x∗s|)3

)
. (62)
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Similarly for V5, from (30), one has

dV5
dt

=− ẋs
[

3∑
i=1

xip
′
ie
− µ
xiλi

x
uit(t, x)

]x∗
s

0

− µ(V5 − C0(ẋs)
2)

+ d

(
3∑
i=1

(
1− si

λi
λ4

)
siuit(x

∗
s)

)(
2C0ẋs +

∫ x∗
s

0

3∑
i=1

p′i
λi
e
− µ
xiλi

x
uit(t, x)dx

)
+O

(
(|u|H2 + |xs − x∗s|)3

)
.

(63)

By (58), for V6, one has

dV6
dt

=− ẍs
[

3∑
i=1

xip
′
ie
− µ
xiλi

x
uitt(t, x)

]x∗
s

0

− µ(V6 − C0(ẍs)
2)

+ d

(
3∑
i=1

(
1− si

λi
λ4

)
siuitt(x

∗
s)

)(
2C0ẍs +

∫ x∗
s

0

3∑
i=1

p′i
λi
e
− µ
xiλi

x
uitt(t, x)dx

)

−
∫ x∗

s

0

3∑
i=1

p′i
λi
e
− µ
xiλi

x
x

...
x s

 4∑
j=1

Bijujx

 (xs − x∗s) dx+O
(
(|u|H2 + |xs − x∗s|)3

)
.

(64)

Dealing with the
...
x s term in (64) similarly as for V3, we have

dV6
dt

=− ẍs
3∑
i=1

((
xip
′
ie
− µ
xiλi

x∗
s +O (|u|H2)

)
uitt(x

∗
s)− xip′iuitt(0)

)
− µ(V6 − C0(ẍs)

2)

+ d

(
3∑
i=1

(
1− si

λi
λ4

)
siuitt(x

∗
s)

)(
2C0ẍs +

∫ x∗
s

0

3∑
i=1

p′i
λi
e
− µ
xiλi

x
uitt(t, x)dx

)
+O

(
(|u|H2 + |xs − x∗s|)3

)
.

(65)

Note that V2 + V5 has the same structure as V1 + V4 with ui and xs − x∗s being replaced by uit and
ẋs respectively. The same applies for V3 + V6 by replacing ui and xs − x∗s in V1 + V4 with uitt and
ẍs respectively. Hence, we only need to analyze V1 + V4. From (56) and (62), recalling that si = 1 if
i ∈ {1, 2} and s3 = −1, one has

d(V1 + V4)

dt
=−

[
4∑
i=1

pixiλie
− µ
xiλi

x
u2i

]x∗
s

0

− µ(V1 + V4)

− (xs − x∗s)
[

3∑
i=1

xip
′
ie
− µ
xiλi

x
ui

]x∗
s

0

+ µC0(xs − x∗s)2

+ d

(
3∑
i=1

ui(x
∗
s)si

(
1− si

λi
λ4

))(
2C0(xs − x∗s) +

∫ x∗
s

0

3∑
i=1

p′i
λi
e
− µ
xiλi

x
ui(t, x)dx

)
+O

(
(|u|H2 + |xs − x∗s|)3

)
. (66)
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Using now the boundary conditions (54) and (34), and noticing (55), (66) becomes

d(V1 + V4)

dt
=− µ(V1 + V4)

− v(x∗s)
T
(
F (x∗s, µ)−KTF (0, µ)K

)
v(x∗s)−

x4p4
λ4

e−
µ

x4λ4
x∗
s (λ1u1(x∗s) + λ2u2(x∗s) + λ3u3(x∗s))

2

− λ4|x4|p4u24(0) +

3∑
i=1

xipiλib
2
i (xs − x∗s)2 + 2

3∑
i=1

xipiλibi

 3∑
j=1

kijuj(x
∗
s)(xs − x∗s)


−

 3∑
i=1

ui(x
∗
s)(xs − x∗s)

(
xip
′
ie
− µ
xiλi

x∗
s − 2dC0si

(
1− si

λi
λ4

))
−

3∑
j=1

kijuj(x
∗
s)(xs − x∗s)xip′i


+

3∑
i=1

xip
′
ibi(xs − x∗s)2 + µC0(xs − x∗s)2

+ d

(
3∑
i=1

ui(x
∗
s)si

(
1− si

λi
λ4

))∫ x∗
s

0

3∑
j=1

p′j
λj
e
− µ
xjλj

x
uj(t, x)dx


+O

(
(|u|H2 + |xs − x∗s|)3

)
, (67)

where
F (x, µ) = diag

(
λipixie

− µ
xiλi

x
, i ∈ {1, 2, 3}

)
. (68)

We observe that, except from the last product proportional to d, a quadratic form in (v(x∗s)
T, u4(0), xs−

x∗s) appears. Using successively the Young and Cauchy-Schwarz inequalities to deal with the last prod-
uct, and noticing that ∫ x∗

s

0

e
− µ
xiλi

x
dx =

λixi
µ

(1− e−
µ

xiλi
x∗
s ), (69)

we get that, for any j ∈ {1, 2, 3},

d

(
3∑
i=1

ui(x
∗
s)si

(
1− si

λi
λ4

))(∫ x∗
s

0

p′j
λj
e
− µ
xjλj

x
uj(t, x)dx

)
≤

εj
µ

p′2j xj(1− e− µ
xjλj

x∗
s )

λjpj

(∫ x∗
s

0

pje
− µ
xjλj

x
u2j (t, x)dx

)
+

d2

4εj

(
3∑
i=1

ui(x
∗
s)

(
1− si

λi
λ4

)
si

)2

.

Using again the Cauchy-Schwarz inequality, we get that

d2

4εj

(
3∑
i=1

ui(x
∗
s)

(
1− si

λi
λ4

)
si

)2

≤ d2

4εj

 3∑
i=1

u2i (x
∗
s)

(
1− si

λi
λ4

)2
 3∑
j=1

e
µx∗s
xiλi
− µx∗s
xjλj

 . (70)

12



Therefore, combining (67)-(70), one has

d(V1 + V4)

dt
≤− µ(V1 + V4)− v(x∗s)

T
(
F (x∗s, µ)−KTF (0, µ)K

− d2

4

(
3∑
k=1

1

εk

)
diag

 3∑
j=1

e
µx∗s
xiλi
− µx∗s
xjλj

(1− si
λi
λ4

)2

i∈{1,2,3}

)
v(x∗s)

− x4p4
λ4

e−
µ

x4λ4
x∗
s (λ1u1(x∗s) + λ2u2(x∗s) + λ3u3(x∗s))

2 − λ4|x4|p4u24(0)

+

(
µC0 +

3∑
i=1

(xipiλib
2
i + xip

′
ibi)

)
(xs − x∗s)2

+

3∑
i=1

(εi
µ

(
p′2i xi(1− e−

µ
λixi

x∗
s )

λipi

)(∫ x∗
s

0

pie
− µ
xiλi

x
u2i (t, x)dx

))
+

3∑
j=1

(
2dC0sj

(
1− sj

λj
λ4

)
− xjp′je

− µ
xjλj

x∗
s

+

3∑
i=1

(2xipiλibikij + xip
′
ikij)

)
uj(x

∗
s)(xs − x∗s)

+O
(
(|u|H2 + |xs − x∗s|)3

)
. (71)

In order to obtain an exponential decay, we first choose εi such that

1

εi
=

2p′2i xi(1− e−
µ

xiλi
x∗
s )

µ2λipi
, i = 1, 2, 3. (72)

Therefore, (71) becomes

d(V1 + V4)

dt
≤ −µ

2
V1 − µV4 − v(x∗s)

T

(
F (x∗s, µ)−KTF (0, µ)K − d2

4

(
3∑
k=1

1

εk

)
D̃(µ)

)
v(x∗s)

− x4p4
λ4

e−
µ

x4λ4
x∗
s (λ1u1(x∗s) + λ2u2(x∗s) + λ3u3(x∗s))

2 − λ4|x4|p4u24(0)

+
(
µC0 +

3∑
i=1

(xipiλib
2
i + xip

′
ibi)
)

(xs − x∗s)2

+

3∑
j=1

(
2dC0sj

(
1− sj

λj
λ4

)
− xjp′je

− µ
xjλj

x∗
s +

3∑
i=1

(2xipiλibikij + xip
′
ikij)

)
uj(x

∗
s)(xs − x∗s)

+O
(
(|u|H2 + |xs − x∗s|)3

)
. (73)

We clearly see now two terms proportional to V1 and V4 respectively that will bring the exponential
decay, and a quadratic form in (v(x∗s)

T, u4(0), xs − x∗s) appears. In order to simplify the quadratic
form by cancelling the cross terms, we choose

p′i = 2
dC0si

(
1− si λiλ4

)
e

µ
xiλi

x∗
s

xi
, i = 1, 2, 3. (74)

Observe that from (18), one always has bixip
′
i < 0 for i = 1, 2, 3, thus we can choose

pi = − p′i
2biλi

> 0, i = 1, 2, 3. (75)
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Therefore we have, using (74), (75) and Young’s inequality

d(V1 + V4)

dt
≤− µ

2
V1 − µV4 − v(x∗s)

T
(
F (x∗s, µ)−KTF (0, µ)K − d2

4

(
3∑
k=1

1

εk

)
D̃(µ)

− diag

(
3|x4|p4λ2i

λ4
e−

µ
x4λ4

x∗
s

)
i∈{1,2,3}

)
v(x∗s)

− λ4|x4|p4u24(0) +

(
µC0 −

1

2

3∑
i=1

|xip′ibi|
)

(xs − x∗s)2

+O
(
(|u|H2 + |xs − x∗s|)3

)
. (76)

Observe that the conditions (18) and (19) are satisfied for γ > 0, but as the inequalities are strict,
there exists µ > γ such that (18) and (19) are also verified with µ instead of γ. We choose such µ and
using (74), one can see that (

µC0 −
1

2

3∑
i=1

|xip′ibi|
)
< 0, (77)

and one can also check from (72), (74), (75), (11), condition (19) and the fact that −dC0 > 0 that the
matrix defined by

F (x∗s, µ)−KTF (0, µ)K − d2

4

(
3∑
k=1

1

εk

)
D̃(µ) (78)

is positive definite. This implies that there exists p4 > 0 such that the quadratic form in v(x∗s) in (76)
is non-positive. Therefore

d(V1 + V4)

dt
≤− µ

2
V1 − µV4 +O

(
(|u|H2 + |xs − x∗s|)3

)
. (79)

As µ > γ, at least if |u|H2 + |xs − x∗s| is small enough which can be guaranteed from Lemma 2.1 by
requiring δ(T̄ ) small enough

d(V1 + V4)

dt
≤− γ

2
(V1 + V4), (80)

thus,

dV

dt
≤− γ

2
V. (81)

We have derived (81) under the assumption that the trajectories of (30), (32), (34) and (35) are of class
C3, but one can use a density argument to generalize the result for trajectories in C0([0, T̄ ];H2((0, x∗s);R4))
by noticing that γ does not depend on any C2 or C3-norm of u. The inequality (81) is then understood
in the distribution sense. One can refer to [5] or [2, Comment 4.6] for more details.

By the equivalence between the Lyapunov function V and (|u|H2 + |xs−x∗s|)2 if this last quantity
is small, we get immediately the exponential stability of the null steady state of the system (30), (32),
(34) and (35) for the H2-norm with decay rate γ/4. It remains to check that under assumption (19),
(52) holds with p′i and pi defined as (74) and (75). Indeed,

max
i

(
p′2i xi
µλipi

(1− e−
µ

xiλi
x∗
s )

)
<

4C0

3
, (82)

therefore there exists C0 > 3/2 such that the condition (52) is satisfied.
So far δ(T̄ ) depends on T̄ , we next prove that for any given T > 0, we can choose δ∗ independent

of T such that (81) holds on (0, T ) as required in Definition 1.1.
Let us now assume that xs,0 ∈ (0, L) and u0 ∈ H2((0, x∗s);R4) satisfying the first order compati-

bility conditions and

|u0|H2((0,x∗
s);R4) + |xs,0 − x∗s| < ρ̄ and V (u0, xs,0) ≤ ν, (83)
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where ν > 0 is going to be chosen small enough. Then, for any t ∈ [0, T̄ ], at least if ν > 0 is small
enough, from (44), (53) and (81),

|u(t)|H2((0,x∗
s);R4) + |xs(t)− x∗s| < ρ̄ and V (u(t), xs(t)) ≤ ν. (84)

Using (84) for t = T̄ one can keep going on [T̄ , 2T̄ ] and then on [2T̄ , 3T̄ ], etc. So we get that, for every
j = 1, 2, 3, . . . ,

V (u(t), xs(t)) ≤ ν, t ∈ [(j − 1)T̄ , jT̄ ], (85)

(|u(t)|H2((0,x∗
s);R4) + |xs(t)− x∗s|) < ρ̄, t ∈ [(j − 1)T̄ , jT̄ ], (86)

dV

dt
≤ −γ

2
V in the distribution sense on (0, jT̄ ). (87)

Noticing (28), there exists a δ∗ such that if (13)-(14) hold, one has (83). Thus, noticing also that for
any T > 0 there exists j ∈ N such that (0, T ) ⊂ (0, jT̄ ), one gets that the steady state ((H∗, Q∗)T, x∗s)
is locally exponentially stable for the H2-norm with decay rate γ/4. The proof of Theorem 1.1 is thus
complete.

Remark 5. Given the assumptions of Theorem 1.1, it is obvious that this stability result is robust
with respect to small variations of G in the feedback control. However, it is actually also robust
with respect to small variations of G4. Indeed, if |G′4(0) + λ4| is sufficiently small but with a bound
independent of the state (H,Q)T and xs, we can still define B as in (36)–(39) using the implicit
function theorem. Then looking at (54), ∂2B(0, 0, 0) 6= 0, but for any δ > 0, |∂2B(0, 0, 0)| < δ
provided |G′4(0) + λ4| is sufficiently small. Then all the additional terms about u24(0) and u2i (x

∗
s),

i = 1, 2, 3 will be compensated by the fact that p4 > 0 in (73) and that |G′4(0) + λ4| is sufficiently
small. The rest of the proof is the same as in the case where G′4(0) = −λ4.

4 Conclusion

In this article, we have considered the problem of the boundary feedback stabilization of an open
channel with a hydraulic jump. We focused on the case where the channel has a rectangular cross
section without friction or slope. The channel dynamics are modelled by a version of the homogeneous
Saint-Venant equations with the water level H and the flow rate Q as state variables. The hydraulic
jump is represented by a discontinuous shock solution of the system. The main contribution of this
paper is to analyze the boundary feedback stabilization of the system with a general class of static
feedback controls that require pointwise measurements of the level and the flux at the boundary and
in the immediate vicinity of the hydraulic jump. In order to prove the well-posedness of the system,
we first introduce a change of variables which allows to transform the Saint-Venant equations with
shock wave solutions into an equivalent 4 × 4 quasilinear hyperbolic system which is parametrized
by the jump position but has shock-free solutions. Then, by a Lyapunov approach, we show that,
for the considered class of boundary feedback controls, the exponential stability in H2-norm of the
steady state can be achieved with an arbitrary decay rate and with an exponential stabilization of the
desired location of the hydraulic jump. Compared with previous results in the literature for classical
solutions of quasilinear hyperbolic systems, the H2-Lyapunov function introduced in [8] (see also [2,
Section 4.4]) has to be augmented with suitable extra terms for the analysis of the stabilization of the
jump position. In the case where the cross section is irregular and with friction or slope, the jump
stabilization issue is much more challenging and remains an open problem.

A Appendix

In this appendix we prove that that there always exists G such that K and (b1, b2, b3)T defined in (11)
satisfy (18)-(19). Let us first point out that, for every K ∈ R3×3, there exists a linear map G : R4 → R3

such that the third equation of (11) holds. Hence it remains only to show that there always exist K
and (b1, b2, b3)T satisfying (18) and (19). In the special case where K = diag(ki, i ∈ {1, 2, 3}), the
condition that the matrix defined in (19) is positive definite becomes

k2i < e
− γ
xiλi

x∗
sDi, ∀i ∈ {1, 2, 3}, (88)
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with

Di := 1− 2d2bi

γ2si(1− si λiλ4
)

(
3∑
k=1

bksk(1− sk
λk
λ4

)(e
γx∗s
xkλk − 1)

)
(

3∑
j=1

e
γx∗s
xiλi
− γx∗s
xjλj )(1− si

λi
λ4

)2. (89)

Let us look at a limiting case in (18) and take bi = −γe−γx∗
s/(xiλi)/3dsi

(
1− si λiλ4

)
. Then we have

Di = 1− 2

9

(
3∑
k=1

(1− e−
γx∗s
xkλk )

)
(

3∑
j=1

e
− γx∗s
xjλj ). (90)

We denote y =

(
3∑
k=1

e
− γx∗s
xkλk

)
. Thus we get

Di : = 1− 2

3
y +

2

9
y2. (91)

This is a second order polynomial with negative discriminant, thus Di is always strictly positive. As
Di depends continuously on bi, this implies that there exist K = diag(ki, i ∈ {1, 2, 3}) and (b1, b2, b3)T,
satisfying (18) and (19).
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