
HAL Id: hal-02003676
https://hal.science/hal-02003676

Submitted on 1 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aperiodic String Transducers
Luc Dartois, Ismaël Jecker, Pierre-Alain Reynier

To cite this version:
Luc Dartois, Ismaël Jecker, Pierre-Alain Reynier. Aperiodic String Transducers. International Journal
of Foundations of Computer Science, 2018. �hal-02003676�

https://hal.science/hal-02003676
https://hal.archives-ouvertes.fr

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

Aperiodic String Transducers ∗

Luc Dartois, Ismaël Jecker

Université Libre de Bruxelles, Belgium

Pierre-Alain Reynier

Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Regular string-to-string functions enjoy a nice triple characterization through determinis-
tic two-way transducers (2DFT), streaming string transducers (SST) and MSO definable

functions. This result has recently been lifted to FO definable functions, with equivalent
representations by means of aperiodic 2DFT and aperiodic 1-bounded SST, extending a

well-known result on regular languages. In this paper, we give three direct transforma-

tions: i) from 1-bounded SST to 2DFT, ii) from 2DFT to copyless SST, and iii) from
k-bounded to 1-bounded SST. We give the complexity of each construction and also

prove that they preserve the aperiodicity of transducers. As corollaries, we obtain that

FO definable string-to-string functions are equivalent to SST whose transition monoid
is finite and aperiodic, and to aperiodic copyless SST.

1. Introduction

The theory of regular languages constitutes a cornerstone in theoretical computer

science. Initially studied on languages of finite words, it has since been extended in

numerous directions, including finite and infinite trees. Another natural extension

is moving from languages to transductions. We are interested in this work in string-

to-string transductions, and more precisely in string-to-string functions. One of the

strengths of the class of regular languages is their equivalent presentation by means

of automata, logic, algebra and regular expressions. The class of so-called regular

string functions enjoys a similar multiple presentation. It can indeed be alternatively

defined using deterministic two-way finite state transducers (2DFT), using Monadic

Second-Order graph transductions interpreted on strings (MSOT) [8], and using

the model of streaming string transducers (SST) [1]. More precisely, regular string

functions are equivalent to different classes of SST, namely copyless SST [1] and

k-bounded SST, for every positive integer k [3]. Different papers [8, 1, 3, 2] have

proposed transformations between 2DFT, MSOT and SST, summarized on Figure 1.

The connection between automata and logic, which has been very fruitful for

model-checking for instance, also needs to be investigated in the framework of trans-

∗This work is supported by the ARC project Transform (French speaking community of Belgium),

the Belgian FNRS PDR project Flare, the PHC project VAST (35961QJ) funded by Campus
France and WBI, and the DeLTA project (ANR-16-CE40-0007).

1

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

2 Dartois, Jecker and Reynier

(aperiodic) 1-b. SST

(FOT) MSOT(aperiodic) 2DFT

(aperiodic) copyless SST (aperiodic) k-b. SST

[1, 3]

[3]

[3]

[1] [2]
[12]

[8]

[4]

⊆⊆

Fig. 1: Summary of transformations between equivalent models. k-b. stands for k-bounded.

Plain (resp. dotted) arrows concern regular models (resp. bracketed models). Original

constructions presented in this paper are depicted by thick dashed arrows and are valid

for both regular and aperiodic versions of the models.

ductions. As it has been done for regular languages, an important objective is then

to provide similar logic-automata connections for subclasses of regular functions,

providing decidability results for these subclasses. As an illustration, the class of

rational functions (accepted by one-way finite state transducers) owns a simple char-

acterization in terms of logic, as shown in [9]. The corresponding logical fragment

is called order-preserving MSOT. The decidability of the one-way definability of

a two-way transducer proved in [11] thus yields the decidability of this fragment

inside the class of MSOT.

The first-order logic considered with order predicate constitutes an important

fragment of the monadic second order logic. It is well known that languages definable

using this logic are equivalent to those recognized by finite state automata whose

transition monoid is aperiodic (as well as other models such as star-free regular

expressions). These positive results have motivated the study of similar connec-

tions between first-order definable string transformations (FOT) and restrictions of

state-based transducers models. Two recent works provide such characterizations

for 1-bounded SST and 2DFT respectively [12, 4]. The authors study a notion of

transition monoid for these transducers, and prove that FOT is expressively equiv-

alent to transducers whose transition monoid is aperiodic by providing back and

forth transformations between FOT and 1-bounded aperiodic SST (resp. aperiodic

2DFT). In particular, [12] lets as an open problem whether FOT is also equivalent

to aperiodic copyless SST and to aperiodic k-bounded SST, for every positive inte-

ger k. It is also worth noticing that these characterizations of FOT, unlike the case

of languages, do not allow to decide the class FOT inside the class MSOT. Indeed,

while decidability for languages relies on the syntactic congruence of the language,

no such canonical object exists for the class of regular string transductions, although

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

Aperiodic String Transducers 3

some recent work was done on one-way transducers [10].

In this work, we aim at improving our understanding of the relationships be-

tween 2DFT and SST. We first provide an original transformation from 1-bounded

(or copyless) SST to 2DFT, and study its complexity. While the existing construc-

tion used MSO transformations as an intermediate formalism, resulting in a non-

elementary complexity, our construction is in double exponential time, and in single

exponential time if the input SST is copyless. Conversely, we describe a direct con-

struction from 2DFT to copyless SST, which is similar to that of [1], but avoids

the use of an intermediate model. These constructions also allow to establish links

between the crossing degree of a 2DFT, and the number of variables of an equiv-

alent copyless (resp. 1-bounded) SST, and conversely. Last, we provide a direct

construction from k-bounded SST to 1-bounded SST, while the existing one was

using copyless SST as a target model and not 1-bounded SST [3]. These construc-

tions are represented by thick dashed arrows on Figure 1.

In order to lift these constructions to aperiodic transducers, we introduce a

new transition monoid for SST, which is intuitively more precise than the existing

one (more formally, the existing one divides the one we introduce). We use this new

monoid to prove that the three constructions we have considered above preserve the

aperiodicity of the transducer. As a corollary, this implies that FOT is equivalent

to both aperiodic copyless and k-bounded SST, for every integer k, two results that

were stated as conjectures in [12] (see Figure 1).

2. Definitions

2.1. Words, Languages and Transducers

Given a finite alphabet A, we denote by A∗ the set of finite words over A, and by

ε the empty word. The length of a word u ∈ A∗ is its number of symbols, denoted

by |u|. For all i ∈ {1, . . . , |u|}, we denote by u[i] the i-th letter of u.

A language over A is a set L ⊆ A∗. Given two alphabets A and B, a trans-

duction from A to B is a relation R ⊆ A∗ × B∗. A transduction R is functional

if it is a function. The transducers we will introduce will define transductions. We

will say that two transducers T, T ′ are equivalent whenever they define the same

transduction.

Automata A deterministic two-way finite state automaton (2DFA) over a finite

alphabet A is a tuple A = (Q, q0, F, δ) where Q is a finite set of states, q0 ∈ Q is

the initial state, F ⊆ Q is a set of final states, and δ is the transition function, of

type δ : Q× (A] {`,a})→ Q× {+1, 0,−1}. The new symbols ` and a are called

endmarkers.

An input word u is given enriched by the endmarkers, meaning that A reads

the input ` u a. We set u[0] = ` and u[|u| + 1] = a. Initially the head of A is on

the first cell ` in state q0 (the cell at position 0). When A reads an input symbol,

depending on the transitions in δ, its head moves to the left (−1), stays at the same

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

4 Dartois, Jecker and Reynier

1 2 3

a|a,+1

`|ε,+1

b|ε,−1

a|ε,−1

a|b,−1

b|ε,+1

`|ε,+1

a|ε,+1

b|ε,+1

a
X 7→Xa
Y 7→Y b b

X 7→XY
Y 7→ε

XY

Fig. 2: Aperiodic 2DFT (left) and SST (right) realizing the function f .

position (0), or moves to the right (+1). To ensure the fact that the reading of A
does not go out of bounds, we assume that there is no transition moving to the left

(resp. to the right) on input symbol ` (resp. a). A stops as soon as it reaches the

endmarker a in a final state.

A configuration of A is a pair (q, i) ∈ Q×N where q is a state and i is a position

on the input tape. A run r of A is a finite sequence of configurations. The run

r = (p1, i1) . . . (pm, im) is a run on an input word u ∈ A∗ of length n if im 6 n+ 1,

and for all k ∈ {1, . . . ,m− 1}, 0 6 ik 6 n+ 1 and δ(pk, u[ik]) = (pk+1, ik+1− ik). It

is accepting if p1 = q0, i1 = 0, and m is the only index where both im = n+ 1 and

pm ∈ F . The language of a 2DFA A, denoted by L(A), is the set of words u such

that there exists an accepting run of A on u.

Transducers Deterministic two-way finite state transducers (2DFT) from A to B

extend 2DFA with a one-way left-to-right output tape. More formally, the transition

relation is extended with outputs: δ : Q × (A] {`,a}) → B∗ × Q × {−1, 0,+1}.
When a transition with right-hand side (v, q,m) ∈ B∗ × Q × {−1, 0,+1} is fired,

the word v is appended to the right of the output tape. Formally, 2DFT are defined

as tuples T = (A,B,Q, q0, F, δ).

A run of a 2DFT is a run of its underlying automaton, i.e. the 2DFA obtained

by ignoring the output (called its underlying input automaton). A run r may be

simultaneously a run on a word u and on a word u′ 6= u. However, when the input

word is given, there is a unique sequence of transitions associated with r. Given

a 2DFT T , an input word u ∈ A∗ and a run r = (p1, i1) . . . (pm, im) of T on u,

the output of r on u is the word obtained by concatenating the outputs of the

transitions followed by r. If r contains a single configuration, this output is simply

ε. The transduction defined by T is the relation R(T) defined as the set of pairs

(u, v) ∈ A∗ ×B∗ such that v is the output of an accepting run r on the word u. As

T is deterministic, such a run is unique, thus R(T) is a function.

Streaming String Transducers Let X be a finite set of variables denoted by

X,Y, . . . and B be a finite alphabet. A substitution σ is defined as a mapping

σ : X → (B ∪ X)∗. Let SX ,B be the set of all substitutions. Any substitution σ

can be extended to σ̂ : (B ∪ X)∗ → (B ∪ X)∗ in a straightforward manner. The

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

Aperiodic String Transducers 5

composition σ1σ2 of two substitutions σ1 and σ2 is defined as the standard function

composition σ̂1σ2, i.e. σ̂1σ2(X) = σ̂1(σ2(X)) for all X ∈ X . We say that a string

u ∈ (B ∪X)∗ is k-linear if each X ∈ X occurs at most k times in u. A substitution

σ is k-linear if σ(X) is k-linear for all X. It is copyless if for any variable X, there

exists at most one variable Y such that X occurs in σ(Y), and X occurs at most

once in σ(Y).

A streaming string transducer (SST) is a tuple T = (A,B,Q, q0, Qf , δ,X , ρ, F),

where (Q, q0, Qf , δ) is a deterministic one-way automaton over the alphabet A, B is

the finite output alphabet, X is the finite set of variables, ρ : Q×(A]{`,a})→ SX ,B
is the variable update function and F : Qf ⇀ (X ∪B)∗ is the output function.

The concept of a run of an SST is defined in an analogous manner to that of

a finite state automaton. The sequence 〈σr,i〉06i6|r| of substitutions induced by a

run r = q0
a1−→ q1

a2−→ q2 . . . qn−1
an−−→ qn is defined inductively as the following:

σr,i=σr,i−1ρ(qi−1, ai) for 1 < i 6 |r| and σr,1 = ρ(q0, a1). We denote σr,|r| by σr
and say that σr is induced by r.

If r is accepting, i.e. qn ∈ Qf , we can extend the output function F to r by

F (r) = σεσrF (qn), where σε substitutes all variables by their initial value ε. For

all words u ∈ A∗, the output of u by T is defined only if there exists an accepting

run r of T on u, and in that case the output is denoted by T (u) = F (r). The

transformation R(T) is then defined as the set of pairs (u, T (u)) ∈ A∗ ×B∗.

Example 1. As an example, let f : {a, b}∗ → {a, b}∗ be the function mapping any

word u = ak0bak1 · · · bakn to the word f(u) = ak0bk0ak1bk1 · · · aknbkn obtained by

adding after each block of consecutive a a block of consecutive b of the same length.

Since each word u over A can be uniquely written u = ak0bak1 · · · bakn with some

ki being possibly equal to 0, the function f is well defined. We give in Figure 2 a

2DFT and an SST that realize f .

An SST T is copyless if for every (q, a) ∈ Q× (A] {`,a}), the variable update

ρ(q, a) is copyless. Given an integer k ∈ N>0, we say that T is k-bounded if all its

runs induce k-linear substitutions. It is bounded if it is k-bounded for some k.

The following theorem gives the expressiveness equivalence of the models we

consider. Since our results will only involve state-based transducers, we give no

definition of MSO graph transductions (see [9] for more details).

Theorem 2 ([8, 1, 3]) Let f : A∗ → B∗ be a function over words. Then the fol-

lowing conditions are equivalent:

• f is realized by an MSO graph transduction,

• f is realized by a 2DFT,

• f is realized by a copyless SST,

• f is realized by a bounded SST.

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

6 Dartois, Jecker and Reynier

2.2. Transition monoid of transducers

A (finite) monoid M is a (finite) set equipped with an associative internal law ·M
having a neutral element for this law. A morphism η : M → N between monoids is

an application from M to N that preserves the internal laws, meaning that for all

x and y in M , η(x ·M y) = η(x) ·N η(y). When the context is clear, we will write xy

instead of x ·M y. A monoid M divides a monoid N if there exists an onto morphism

from a submonoid of N to M . A monoid M is said to be aperiodic if there exists a

least integer n, called the aperiodicity index of M , such that for all elements x of

M , we have xn = xn+1.

Given an alphabet A, the set of words A∗ is a monoid equipped with the concate-

nation law, having the empty word as neutral element. It is called the free monoid

on A. A finite monoid M recognizes a language L of A∗ if there exists an onto mor-

phism η : A∗ → M such that L = η−1(η(L)). It is well-known that the languages

recognized by finite monoids are exactly the regular languages.

The monoid we construct from a machine is called its transition monoid. We are

interested here in aperiodic machines, in the sense that a machine is aperiodic if its

transition monoid is aperiodic. We now give the definition of the transition monoid

for a 2DFT and an SST.

u

p

q

Deterministic Two-Way Finite State Transducers As in

the case of automata, the transition monoid of a 2DFT T is

the set of all possible behaviors of T on a word. The following

definition comes from [4], using ideas from [15] amongst others.

As a word can be read in both ways, the possible runs are split

into four relations over the set of states Q of T . Given an input

word u, we define the left-to-left behavior bh``(u) as the set of pairs (p, q) of states

of T such that there exists a run on u starting on the first letter of u in state

p and exiting u on the left in state q (see Figure on the right). We define in an

analogous fashion the left-to-right, right-to-left and right-to-right behaviors denoted

respectively bh`r(u), bhr`(u) and bhrr(u). Then the transition monoid of a 2DFT

is defined as follows:

Let T = (A,B,Q, q0, F, δ) be a 2DFT. The transition monoid of T is

(A] {`,a})∗/∼T where ∼T is the conjunction of the four relations ∼ll, ∼lr, ∼rl and

∼rr defined for any words u, u′ of A∗ as follows: u ∼xy u′ iff bhxy(u) = bhxy(u′), for

x, y ∈ {`, r}. The neutral element of this monoid is the class of the empty word ε,

whose behaviors bhxy(ε) is the identity function if x 6= y, and is the empty relation

otherwise.

Note that since the set of states of T is finite, each behavior relation is of finite

index and consequently the transition monoid of T is also finite. Let us also remark

that the transition monoid of T does not depend on the output and is in fact the

transition monoid of the underlying 2DFA.

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

Aperiodic String Transducers 7

Streaming String Transducers A notion of transition monoid for SST was de-

fined in [12]. We give here its formal definition and refer to [12] for advanced con-

siderations. In order to describe the behaviors of an SST, this monoid describes the

possible flows of variables along a run. Since we give later an alternative definition

of transition monoid for SST, we will call it the flow transition monoid (FTM).

Let T be an SST with states Q and variables X . The flow transition monoid

MT of T is a set of square matrices over the integers enriched with a new absorbent

element ⊥. The matrices are indexed by elements of Q×X . Given an input word u,

the image of u in MT is the matrix m such that for all states p, q and all variables

X,Y , m[p,X][q, Y] = n ∈ N (resp. m[p,X][q, Y] = ⊥) if, and only if, there exists a

run r of T on u from state p to state q, and X occurs n times in σr(Y) (resp. iff

there is no run of T on u from state p to state q).

Note that if T is k-bounded, then for every word w, all the coefficients of its

image in MT are bounded by k. The converse also holds. Then MT is finite if, and

only if, T is k-bounded, for some k.

It can be checked that the machines given in Example 1 are aperiodic. Theorem 2

extends to aperiodic subclasses and to first-order logic, as in the case of regular

languages [14, 13]. These results as well as our contributions to these models are

summed up in Figure 1.

Theorem 3 ([12, 4]) Let f : A∗ → B∗ be a function over words. Then the follow-

ing conditions are equivalent:

• f is realized by a FO graph transduction,

• f is realized by an aperiodic 2DFT,

• f is realized by an aperiodic 1-bounded SST.

3. Substitution Transition Monoid

In this section, we give an alternative take on the definition of the transition monoid

of an SST, and show that both notions coincide on aperiodicity and boundedness.

The intuition for this monoid, that we call the substitution transition monoid, is for

the elements to take into account not only the multiplicity of the output of each

variable in a given run, but also the order in which they appear in the output. It

can be seen as an enrichment of the classic view of transition monoids as the set

of functions over states equipped with the law of composition. Given a substitution

σ ∈ SX ,B , let us denote σ̃ the projection of σ on the set X , i.e. we forget the parts

from B. The substitutions σ̃ are homomorphisms of X ∗ which form an (infinite)

monoid. Note that in the case of a 1-bounded SST, each variable occurs at most

once in σ̃(Y), and in the case of a copyless SST, the monoid is finite.

Substitution Transition Monoid of an SST. Let T be an SST with states Q

and variables X . The substitution transition monoid (STM) of T , denoted Mσ
T , is a

set of partial functions f : Q ⇀ Q×SX , where SX is the monoid of homomorphisms

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

8 Dartois, Jecker and Reynier

on X , equipped with the composition. Given an input word u, the image of u in

Mσ
T is the function fu such that for all states p, fu(p) = (q, σ̃r) if, and only if, there

exists a run r of T on u from state p to state q that induces the substitution σ̃r. This

set forms a monoid when equipped with the following composition law: Given two

functions fu, fv ∈Mσ
T , the function fuv is defined by fuv(q) = (q′′, σ̃ ◦ σ̃′) whenever

fu(q) = (q′, σ̃) and fv(q
′) = (q′′, σ̃′).

We now make a few remarks about this monoid. Let us first observe that the

FTM of T can be recovered from its STM. Indeed, the matrix m associated with a

word u inMT is easily deduced from the function fu inMσ
T . This observation induces

an onto morphism from Mσ
T to MT , and consequently the FTM of an SST divides its

STM. This proves that if the STM is aperiodic, then so is the FTM since aperiodicity

is preserved by division of monoids. Similarly, copyless and k-bounded SST (given

k ∈ N>0) are characterized by means of their STM. This transition monoid can

be separated into two main components: the first one being the transition monoid

of the underlying deterministic one-way automaton, which can be seen as a set

of functions Q → Q, while the second one is the monoid SX . The aware reader

could notice that the STM divides the wreath product of transformation semigroups

(Q,QQ) ◦ (X ∗,SX). However, as the monoid of substitutions is obtained through

the closure under composition of the homomorphisms of a given SST, it may be

infinite while the STM is always finite for k-bounded SST.

The next theorem proves that aperiodicity for both notions coincide, since the

converse comes from the division of the STM by the corresponding FTM.

Theorem 4. Let T be a k-bounded SST with ` variables. If its FTM is aperiodic

with aperiodicity index n then its STM is aperiodic with aperiodicity index at most

n+ (k + 1)`.

Proof. Let T be a k-bounded SST. We define a loop as the run induced by a pair

(q, u) ∈ Q × A∗ such that δ(q, u) = q. Suppose now that MT is aperiodic, and let

n be its aperiodicity index. Wlog, we assume that the transition function of T is

complete. This implies that for all states p of T , there exists a state q such that

p
un

−−→ q
u−→ q. Then if the image of the loops (i.e. the set of all σ̃ such that there

exists a loop (q, u) where fu(q) = (q, σ̃)) in the STM is aperiodic with index m,

then the STM is aperiodic with index at most n+m.

Consequently, in the following σ denotes the substitution of a loop of T , and we

aim to prove that σ̃(k+1)` = σ̃(k+1)`+1.

Before proving this though, we define the relation l ⊆ X ×X as follows. Given

two variables X and Y , we have X l Y if there exists a positive integer i such that

X flows into Y in σi. This relation is clearly transitive. The next lemma proves that

it is also anti-symmetric, hence we can use this relation as an induction order to

prove the result.

Lemma 5. Given two different variables X and Y , if X l Y , then Y 6lX.

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

Aperiodic String Transducers 9

Proof. We proceed by contradiction and assume that there exist two different

variables X and Y and two integers i and j such that X occurs in σi(Y) and Y

occurs in σj(X).

Then for any m > 0, X occurs in σm(i+j)(X) and Y occurs in σm(i+j)+j(X). As

T is aperiodic of index n, for m large enough we have σm(i+j) = σm(i+j)+j = σn

and thus both X and Y occur in both σn(X) and σn(Y). Then σ2n(X) contains

both σn(X) and σn(Y) and thus contains at least two occurrences of X and Y . By

aperiodicity we have σ2n(X) = σn(X) thus σn(X) contains two occurrences of X.

By iterating this process, we prove that the number of occurrences of X in σn(X)

is not bounded, yielding a contradiction.

We now prove that for all variables X in X , σ̃(k+1)`(X) = σ̃(k+1)`+1(X) by treating

the following two cases:

• If X ∈ σ(X), then either σ̃(X) = X and then σ̃2(X) = σ̃(X), or there

exists Y 6= X such that Y ∈ σ̃(X). In the latter case, we get by iteration

that for all i > 0, |σ̃i(X)| > Σj<i|σ̃j(Y)|. Then as T is k-bounded, we have

|σ̃i(X)| 6 k` and thus Σj<i|σ̃j(Y)| is bounded, and σ̃k`(Y) = ε, which

proves that σ̃k`(X) = σ̃k`+1(X).

• If X 6∈ σ(X), let us consider the relation l. By Lemma 5 this relation is

cycle-free. Then there is a lesser level, on which there are the variables Y

such that σ̃(Y) ⊆ {Y }. There, either σ̃(Y) = ∅ and aperiodicity becomes

trivial, or σ̃(Y) = Y and the case was dealt with in the previous point and

is thus aperiodic with index k`. Now we can end the proof by reasoning by

induction on l, as if X 6∈ σ(X) and all variables Y lX are aperiodic with

index i, then σ̃i+1(X) can be written as the concatenation of σ̃i(Y), for

aperiodic variables Y of index i. Then σ̃i+1(X) = σ̃i+2(X). We conclude

by noticing that the length of the longest chain of l is bounded by `.

4. From 1-bounded SST to 2DFT

The existing transformation of a 1-bounded (or even copyless) SST into an equiva-

lent 2DFT goes through MSO transductions, yielding a non-elementary complexity.

We present here an original construction whose complexity is elementary.

Theorem 6. Let T be a 1-bounded SST with n states and m variables. Then we

can effectively construct a deterministic 2-way transducer that realizes the same

function. If T is 1-bounded (resp. copyless), then the 2DFT has O(m2m2mnn) states

(resp. O(mnn)).

Proof. Let T = (A,B,Q, q0, Qf , δ,X , ρ, F) be an SST. Let us construct a two-way

transducer A that realizes the same function. The transducer A will follow the

output structure (see Figure 3) of T and construct the output as it appears in the

structure. To make the proof easier to read, we define A as the composition of a

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

10 Dartois, Jecker and Reynier

qi−1 qi
ai qi+1

ai+1
qi+2

ai+2

X 7→ aa

Z 7→ aZab

X 7→ aXc

Y 7→ bZ

X 7→ XaaY b

Xi:

Xo:

Yi:

Yo:

Zi:

Zo:

• • •
• •
•

•
•
• •

εa

aa c

aa
b

a

ab

ε

b

Fig. 3: The output structure of a partial run of an SST used in the proof of Theo-

rem 6.

left-to-right sequential transducer A′, a right-to-left sequential transducer A′′ and a

2-way transducer B. Remark that this proves the result as two-way transducers are

closed under composition with sequential ones [5]. The transducer A′ does a single

pass on the input and enriches it with the transition used by T in the previous step.

The second transducer uses this information, and enriches the input word with

the set of variables corresponding to the variables that will be produced from this

position. The last transducer is more interesting: it uses the enriched information

to follow the output structure of T .

The output structure of a run is a labeled and directed graph such that, for

each variable X useful at a position j, we have two nodes Xj
i and Xj

o linked by

a path whose concatenated labels form the value stored in X at position j of the

run (see [12] and Figure 3). Formally, the output structure of a run q0
u−→ qn is the

oriented graph over X × [1, |u|] × {i, o} whose edges are labeled by output words

and are of the form:

• ((X, j, i), v, (Y, j − 1, i)) if ρ(qj−1, aj , X) starts with vY .

• ((X, j, o), v, (Y, j − 1, i)) if there exists Z such that XvY appears in

ρ(qj−1, aj , Z),

• ((X, j, o), v, (Y, j + 1, o)) if ρ(qj−1, aj , Y) ends by Xv,

• ((X, j, i), v, (X, j + 1, o)) if ρ(qj−1, aj , X) = v.

We furthermore restrict to the connected component corresponding to the actual

output of the run.

The set of variables (added to the input word by A′′) will be used to clear

the nondeterminism due to the 1-bounded property. Note that in the case of a

copyless SST, the transducer A′′ can be omitted. We now explain how the several

transducers behave on a given run r = q0
a1−→ q1 . . .

an−−→ qn. To ease the notations,

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

Aperiodic String Transducers 11

u : (a, q, S) (a′, q′, S′)

(X, i)(Y, i)
σ(X) = uY..

(X, o)

σ(X) = u

(Y, o)
σ′(Y) = ..Xu

Y ∈ S′
(X ′, i)

σ′(Y) = ..XuX′..

Y ∈ S′

Fig. 4: The third transducer follows the output structure. States indexed by i cor-

respond to the beginning of a variable, while states indexed by o correspond to the

end. σ (resp. σ′) stands for the substitution at position a (resp. a′).

we let Aa = A] {a}.
The transducer A′ = (A,Aa × Q,Q] {i′, f ′}, {i′}, {f ′}, δ′), which enriches the

input word with the transitions of the previous step, can be done easily with a 1-

way transducer. The transitions of δ′ are defined as follows: first, we have i′
`|ε−−→ q0.

Second, we have q
σ|(σ,q)−−−−→ q′ for all q ∈ Q and σ ∈ Aa, where q′ = δ(q, a) if σ ∈ A,

and q′ = f otherwise. Note that one can recover the transition taken by the SST

from the letter read and the previous state. Then on the run r, if u = a1 . . . an, we

get the output word A′(` u a) = (a1, q0)(a2, q1) . . . (an, qn−1)(a, qn).

The transducer A′′ = (Aa×Q,Aa×Q×2X , 2X]{i′′, f ′′}, {i′′}, {f ′′}, δ′′), which

enriches each letter of the input word (except the endmarkers) with the set of

variables involved in the final output from this step, can be done with a right-to-left

sequential transducer. The last symbol (a, qn) allows to identify the set of variables

appearing in F (qn). This information can be propagated while getting back in the

run of the SST. Formally, the transitions of δ′′ are defined as follows:
i′′
a|ε−−→ i′′

i′′
(a,q)|(a,q,∅)−−−−−−−−→ {X ∈ X | X appears in F (q)}

S
(a,q)|(a,q,S)−−−−−−−−→ {X ∈ X | ∃Y ∈ S, X occurs in ρ(q, a, Y)} for all q ∈ Q, a ∈ A

S
`|ε−−→ f ′′

Given the run r of the SST on the input word u, we define Sn = F (qn), and

Si−1 = {X ∈ X | ∃Y ∈ F (qn) X ∈ σqi−1,ai...an(Y)}. Then we get the output word

A′′ ◦ A′(` u a) = (a1, q0, S1)(a2, q1, S2) . . . (an, qn−1, Sn)(a, qn, ∅).
The aim of the third transducer B is to follow the output structure of T . Let

B = (Aa × Q × 2X , B, P, {p0}, {pf}, δB) be defined as follows. First, P = (X ×
{i, o})]{p0, pf} is the set of states. The transducer does a first left-to-right reading

of the input in state p0. The subset X ×{i, o} will then be used to follow the output

structure while keeping track of which variable we are currently producing. The set

{i, o} stands for in and out and corresponds to the similar notions in the output

structure. Informally, in states will move to the left, while out states move to the

right. The states p0 and pf are new states that are respectively initial and final.

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

12 Dartois, Jecker and Reynier

The transition function δB is detailed below (see also Figure 4). In the following,

we consider that the transducer is in state p reading the triplet t = (a, q, S) ∈
Aa ×Q× 2X , or one of the endmarkers:

• If p = p0 and a 6=a, then we set δB(p0, t) = (ε, p0,+1).

• If p = p0 and a =a, then if F (q) starts by uX with u ∈ B∗ and X ∈ X ,

then δB(p, t) = (u, (X, i),−1).

• If p = (X, i), and t 6=` then:

– either ρ(q, a)(X) = u ∈ B∗ and does not contain any variable, and we

set δB(p, t) = (u, (X, o),+1),

– or ρ(q, a)(X) starts by uY with u ∈ B∗ and Y ∈ X , then δB(p, t) =

(u, (Y, i),−1).

• If p = (X, i), and t =` then δB(p, t) = (ε, (X, o),+1).

• If p = (X, o) and a 6=a, then let Y be the unique variable of S such that X

appears in ρ(q, a)(Y). Then we have:

– either ρ(q, a)(Y) ends by Xu with u in B∗ and we set δB(p, t) =

(u, (Y, o),+1),

– or ρ(q, a)(Y) is of the form (B∪X)∗XuX ′(B∪X)∗ and we set δB(p, t) =

(u, (X ′, i),−1).

Note that the unicity of such Y in S is due to the 1-boundedness property.

If T is copyless, then this information is irrelevant and A′′ can be bypassed.

• If p = (X, o), q ∈ Qf and a =a then:

– either F (q) ends by Xu with u in B∗ and we set δB(p, t) = (u, pf ,+1),

– or F (q) is of the form (B ∪ X)∗XuX ′(B ∪ X)∗ and we set δB(p, t) =

(u, (X ′, i),−1).

Then we can conclude the proof as T = B ◦ A′′ ◦ A′ and 2-way transducers are

closed under composition [5].

Regarding complexity, a careful analysis of the composition of a one-way trans-

ducer of size m with a two-way transducer of size n from [6, 4] shows that this can

be done by a two-way transducer of size O(nmm). Then given a 1-bounded SST

with n states and m variables, we can construct a deterministic two-way transducer

of size O(m(2m)2
m

nn) = O(m2m2mnn). If T is copyless, the sequential right-to-left

transducer can be omitted, and the resulting 2DFT is of size O(mnn).

Theorem 7. Let T be an aperiodic 1-bounded SST. Then the equivalent 2DFT

constructed using Theorem 6 is also aperiodic.

Proof. We prove separately the aperiodicity of the three transducers. Then the

result comes from the fact that aperiodicity is preserved by composition of a one-

way by a two-way [4].

First, consider the transducer A′. It is a one-way transducer that simply en-

riches the input word with transitions from T , each enrichment corresponding to

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

Aperiodic String Transducers 13

the transition taken by T in the previous step. Then since T is aperiodic, so is its

underlying automaton. Then the enrichment and thus A′ are aperiodic.

Secondly, given an input word, the transducer A′′ stores at each position the set

of variables that will be output by T . Now as T is aperiodic, the flow of variable is

aperiodic. Thus the value taken by this set is aperiodic and so is A′′.
Now, consider the transducer B and a run r of B on un starting in state p. Note

that the fact that there exists a run on an enriched input word v implies that it is

well founded, meaning that it is the image of some word of A∗ by A′′ ◦A′. If p is of

the form (X, i), then the run starts from the right of un and follows the substitution

σr(X). It exits un either in state (X, o) on the right if σr(X) is a word of B∗, or in

a state (Y, i) on the left where Y is the first variable appearing in σr(X). In both

cases the state at the end of the run only depends on the underlying automata of T

and the order of variables appearing in the substitution induced by the run. Since

the substitution transition monoid is aperiodic if T is aperiodic by Theorem 4, a

similar run exists on un+1.

Finally, if p is of the form (X, o), then the state in which the run exits un depends

on the unique variable Y such that X belongs to σr(Y) and Y belongs to the set

of variables of the last letter of the input. Then the run follows the substitution

σr(Y). It will exit the input word in state (X ′, i) on the left if X ′ appears in σ̃r(Y)

for some variable X ′ and in state (Y, o) otherwise. As the flow of variable as well as

the underlying automaton are aperiodic, a similar run exists on un+1.

We conclude the proof by noticing that the same arguments will hold to reduce

runs on un+1 to runs on un.

5. From 2DFT to copyless SST

In [1], the authors give a procedure to construct a copyless SST from a 2DFT. This

procedure uses the intermediate model of heap based transducers. We give here a

direct construction with similar complexity. This simplified presentation allows us

to prove that the construction preserves the aperiodicity.

Theorem 8. Let T be a 2DFT with n states. Then we can effectively construct a

copyless SST with O((2n)2n) states and 2n − 1 variables that computes the same

function.

The main idea is for the constructed SST T ′ to keep track of the right-to-right

behavior of the prefix read until the current position, similarly to the construction

of Shepherdson [15]. This information can be updated upon reading a new letter,

constructing a one-way machine recognizing the same input language. The idea

from [3] is to have one variable per possible right-to-right run, which is bounded by

the number of states. However, since two right-to-right runs from different starting

states can merge, this construction results in a 1-bounded SST. To obtain copyless-

ness, we keep track of these merges and the order in which they appear. Different

variables are used to store the production of each run before the merge, and one

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

14 Dartois, Jecker and Reynier

au

q5 q5

q4 q4

q3 q3

q2 q2

q1 q1

q0 q0
•

•

•

⇒

ua

q5

q4

q3

q2

q1

q0

•

•

Fig. 5: Left: The state of the

SST is represented in black.

The red part corresponds to

the local transitions of the

2DFT. Right: After reading

a, we reduce the new for-

est by eliminating the useless

branches and shortening the

unlabeled linear paths.

more variable stores the production after.

The states of T ′ are represented by sets of labeled trees having the states of the

input 2DFT as leaves. Each inner vertex represents one merging, and two leaves

have a common ancestor if the right-to-right runs from the corresponding states

merge at some point. Each tree then models a set of right-to-right runs that all

end in a same state. Note that it is necessary to also store the end state of these

runs. For each vertex, we use one variable to store the production of the partial run

corresponding to the outgoing edge.

Given such a state and an input letter, the transition function can be defined by

adding to the set of trees the local transitions at the given letter, and then reducing

the resulting graph in a proper way (see Figure 5).

Finally, as merges occur upon two disjoint sets of states of the 2DFT (initially

singletons), the number of merges, and consequently the number of inner vertices

of our states, is bounded by n− 1. Therefore, an input 2DFT with n states can be

realized by an SST having 2n − 1 variables. Finally, as states are labeled graphs,

Cayley’s formula yields an exponential bound on the number of states.

The remainder of the section is dedicated to give a formal proof of this intuition.

Subsection 5.1 describes the merging forests that are the states of the SST, and

Subsection 5.2 proves complexity bounds on the size of these objects. These bounds

are then used in Subsection 5.3 to precisely define the substitution function. The

formal construction is presented in Subsection 5.4 and its aperiodicity proved in

Subsection 5.5.

5.1. Merging forests

Let T = (A,B,Q, q0, F, δ) be a 2DFT. We suppose that the transducer T starts to

read its input from the end, and not from the beginning, i.e., given an input w, the

initial configuration is (q0, |w| + 1). Moreover, we also assume that T produces no

output while reading the symbol `, i.e., for any every p ∈ Q, δ(p,`) = (ε, q,+1) for

some q ∈ Q. Note that any 2DFT can be transformed with ease into a transducer

satisfying those two properties.

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

Aperiodic String Transducers 15

For every word w over the alphabet Ā∗, we expose a pair (Gw, φw) that contains

the information concerning the right-to-right runs of T on the input word ` w, and

their mergings. It is composed of a forest Gw whose branches represent right-to-

right runs and vertices represent merging of such runs, and an injective function φw
that maps the root of each tree of Gw, representing a set of merging runs, to an

element of Q, corresponding to the final state of these right-to-right runs.

In order to represent mergings, we use rooted forests whose vertices are included

into 2Q \ ∅. A merging between the right-to-right runs starting from two states q1
and q2 is expressed by adding an edge from both {q1} and {q2} towards {q1, q2}.
Then, if a third run starting from state {q3} merges with them later on, an edge

is added from both {q1, q2} and {q3} towards {q1, q2, q3}. Formally, we will use the

set FQ of rooted forests G satisfying the following properties.

• The vertices of G are non empty subsets of Q.

• The roots of G are disjoint subsets of Q.

• For every vertex s of G, the sons of s are disjoint proper subsets of s.

Note that, as a direct consequence of those properties, there exists no pair of distinct

forests of FQ that share the same set of vertices. Therefore, in order to define an

element of FQ, it is enough to expose its set of vertices.

In order to ensure that the pair (Gw, φw) accurately represents the behavior of

T on ` w , we want the two following properties to be satisfied. For every state

q ∈ Q that appears in a vertex of Gw, let rq ∈ 2Q denote the root of the forest Gw
that contains q.

P1.1 The vertices of Gw are the sets s ⊆ Q such that the right-to-right runs of T on

` w starting in a state belonging to s merge at some point, before merging

with any other.

P1.2 For all (p, q) ∈ bhrr(` w), we have φw(rp) = q.

We begin by defining (Gε, φε). For every q ∈ Q, let δ−1` (q) ⊆ Q denote the set

of states p such that δ(p,`) = (ε, q,+1). Let Gε be the graph of FQ whose set of

vertices is composed of the singletons {p}, and the sets δ−1` (q) that are not empty.

Moreover, let φε be the function mapping each root δ−1` (q) of Gε to q ∈ Q. Then

both P1.1 and P1.2 are satisfied for w = ε.

Now, given w ∈ Ā∗, a ∈ Ā, and a pair (Gw, φw) satisfying the properties for

w, we expose the construction in three steps of the pair (Gwa, φwa) satisfying the

properties for wa. First, we build a graph G′wa by adding to Gw edges corresponding

to the function φw. Second, we build a graph G′′wa by adding to G′wa the local

transitions induced by the letter a. Finally, since the intermediate graph G′′wa is not

an element of FQ, we shrink it into a new graph Gwa ∈ FQ. The reduction of this

last step is depicted by Figure 5, while the copy Qi of the second step appear in

red on the left picture.

• Let G′wa = (V ′wa, E
′
wa) be the graph defined by V ′wa = Vw ∪Qi, where Qi is

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

16 Dartois, Jecker and Reynier

a copy of the set Q, and E′wa = Ew ∪{(φ−1w (p), pi) ∈ 2Q×Qi|p ∈ Im(φw)}.
• Let G′′wa = (V ′′wa, E

′′
wa) be the graph defined by V ′′wa = V ′wa ∪Qo, where Qo

is a copy of the set Q, and let E′′wa = E′wa ∪ {(pi, τ(p)) ∈ Qi × V ′wa|p ∈ Q},
where τ is defined as follows. For every q ∈ Q, let sq denote the smallest

vertex of Gw containing q. Then, for every p ∈ Q,

τ(p) =


qo ∈ Qo if δ(p, a) = (q,+1);

qi ∈ Qi if δ(p, a) = (q, 0);

sq ∈ Vw if δ(p, a) = (q,−1).

• By definition of G′′wa, for every vertex s ∈ V ′′wa there exists at most one

path rs between s and a vertex qo ∈ Qo. Let out : V ′′wa → Q ∪ {⊥} be the

function mapping s ∈ V ′′wa to ⊥ if there exists no such path, and to the state

q ∈ Q corresponding to the target of rs otherwise. Let in : V ′′wa → 2Q be the

function mapping each vertex s of G′′wa to the set in(s) of states q ∈ Q such

that out(qi) 6= ⊥ and the path rqi goes through s. Let Gwa ∈ FQ, be defined

by its set of vertices Vwa = {in(s) ⊂ Q|s ∈ V ′′wa, in(s) 6= ∅, and out(s) 6= ⊥},
and let φwa be the function mapping each root in(s) of Vwa to out(s) ∈ Q.

We prove that the pair (Gwa, φwa) satisfies the desired properties.

Lemma 9. The set of vertices Vwa corresponds to a graph Gwa ∈ FQ. Moreover,

the pair (Gwa, φwa) satisfies P1.1 and P1.2 for wa.

Proof. By definition of Vwa, the vertices of Gwa are non empty subsets of Q.

Therefore, in order to show that the set of vertices Vwa corresponds to a graph

Gwa ∈ FQ, it is sufficient to show that for every pair of vertices of Vwa that are

not disjoint, one is included into the other. Let s1, s2 ∈ Vwa. If s1 and s2 are not

disjoint, let s ∈ s1 ∩ s2, let s′1 ∈ V ′′wa denote the state such that in(s′1) = s1 and

let s′2 ∈ V ′′wa denote the state such that in(s′2) = s2. Then there exists a run rs in

G′′wa between qi and an element qo ∈ Qo that goes through s′1 and s′2. If s′1 appears

earlier, s1 ⊆ s2, and if s′2 appears earlier, s2 ⊆ s1. This proves the desired result.

Now consider a vertex s of Gwa. By construction, this means that all runs

starting from the right on ` wa in a state q of s end in the same state p. This

particularly means that all these runs merge, thus we only have to prove that they

merge together before potentially merging with another run. To this end, assume

that there exists a state p not present in s, and two states p1 and p2 of s such that

p merges with p1 before p1 merges with p2. Then either the merging appears while

processing w and by induction there is a contradiction, or the mergings appear on

a, but by construction of G′′wa, this would imply that there is a state containing p

and p1 but not p2. Hence in both cases we get a contradiction and property P1.1 is

satisfied.

Finally, we show that P1.2 is satisfied. By the induction hypothesis, Gw satisfies

P1.2, hence for all (p1, q1) ∈ bhrr(` w), we have φw(sp1) = q1, where sp1 is the root

of Gw containing p1. Moreover, since Gw ∈ FQ, there is a path in Gw between p1

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

Aperiodic String Transducers 17

and sp1 . Therefore, by definition of G′wa, there is a path in G′wa between p1 and

qi1. Then, by definition of G′′wa, for every (p2, q2) ∈ bhrr(` wa), there is a path r in

G′′wa between pi2 and qo2. By definition of G′′wa, in(pi2) ∈ 2Q is a vertex of Gwa that

contains p2. Let sp2 be the root of Gwa that contains p2, and let s′ ∈ V ′′wa be the

state such that in(s′) = sp2 . By definition of in, the path r goes through s′. Since

qo2 is the target of r, φwa(sp2) = out(s′) = q2, which proves that P1.2 is satisfied.

Remark 10. Since the construction of Gwa only depends on Gw and a, for every

w′ ∈ Ā∗, if Gw′ = Gw then Gw′a = Gwa.

5.2. Bounded size complexity

The next results will allow us to obtain the bound over the size of the set of states

presented in the statement of Theorem 8.

Lemma 11. Every rooted forest G = (V,E) in FQ has at most 2|Q| − 1 vertices.

Proof. The proof is by induction on the size of Q. If |Q| = 1, |2Q \ ∅| = 1, hence

|V | 6 1 = 2|Q| − 1. Now suppose that |Q| > 1, and that the result is true for every

set Q′ such that |Q′| < |Q|. Let G′ be the graph obtained by removing all the roots

of G. Then G′ is a union of trees G1 = (V1, E1), G2 = (V2, E2), . . . , Gm = (Vm, Em).

For every 1 6 i 6 m, the forest Gi is an element of Fsi , where si ⊂ Q denotes the

root of Gi. Therefore, by using the induction hypothesis, we have

|V | = 1 + |V1|+ |V2|+ . . .+ |Vm|
6 1 + (2|s1| − 1) + (2|s2| − 1) + . . .+ (2|sm| − 1)

= 2(|s1|+ . . .+ |sm|) + 1−m
6 2|Q| − 1.

Lemma 12. Let n = |Q|. The size of FQ is smaller than or equal to (2n)2n−2

(n−2)! .

Proof. By Cayley’s Formula, there exist exactly (2n)2n−2 labeled trees on 2n ver-

tices. If we only label n+2 elements, we gain n−2 degrees of liberty and hence there

is only (2n)2n−2

(n−2)! such trees. We prove that we can injectively project the elements of

FQ into trees with 2n vertices and n+ 2 labels, proving the bound.

Given an element G = (V,E) of FQ, we know that |V | 6 2n− 1 by Lemma 11.

Let G′ be the tree on 2n vertices obtained by adding to G a vertex s⊥, an edge from

each root of G to s⊥, and, if |V | < 2n− 1, a linear path composed of 2n− |V | − 1

new vertices starting from a vertex s>, and whose end is linked to s⊥. Now for

each state q of Q, let sq be the smallest in terms of inclusion of labels vertice of

V that contains q, if it exists. Then each vertex of G′ corresponding to a vertex sq
is labeled sq, and for all q in Q that do not appear in a vertex of V , we label one

element of the linear path under s> by q. We can assign a different element to all

such q by Lemma 11, since q not appearing is equivalent to having V on a smaller

set of states.

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

18 Dartois, Jecker and Reynier

Thus we proved that G can indeed be embedded into a tree with 2n vertices and

n + 2 labels (we added the s⊥ and s> labels). We conclude the proof by showing

that the projection is injective. Note that all leaves of G are a vertex sq for some

q, and that if all sq are fixed, then the label of a vertex in G which is not a state

sq is simply the union of the labels of its sons. Then two different forests will be

embedded into two different trees, proving injectivity.

Corollary 13. Let n = |Q|. The size of {(Gw, φw)|w ∈ Ā∗} is smaller than or

equal to (2n)2n.

Proof. For every w ∈ Ā∗, since φw is an injective function mapping the trees of Gw
to Q and Gw contains at most n trees, we have |{(Gw, φw)|w ∈ Ā∗}| 6 n!|FQ| 6
(2n)2n.

5.3. Substitution function

As a consequence of Lemma 11, for every word w ∈ Ā∗, the graph Gw = (Vw, Ew)

admits an injective vertex labeling λw : Vw → X , where X = (X1, . . . , X2|Q|−1) is a

set containing 2|Q|−1 variables. We now present, for every w ∈ A∗, the construction

of a substitution σw ∈ SX ,B that will allow us, together with the graph Gw and

its vertex labeling λw, to describe the output production of the right-to-right runs

of T on the input word ` w. Formally, for every (p, q) ∈ bhrr(` w), let wp,q ∈ B∗
denote the production of the corresponding right-to-right run. Moreover, for every

vertex s of Gw, let λ̄w(s) denote the concatenation of the λ-labels of the vertices

forming the path between s and the root of the corresponding tree in Gw, and for

every state q ∈ Q that appears in at least one vertex of Gw, let sq ∈ 2Q be the

vertex of Gw of minimal size such that q ∈ sq. We want the following property to

be satisfied.

P2 For all (p, q) ∈ bhrr(` w), we have (σw)(λ̄w(sp)) = wp,q.

Let σε be the substitution mapping every variable to ε. By supposition, for every

p ∈ Q, we have δ(p,`) = (ε, q,+1) for some q ∈ Q. Therefore P2 is satisfied for ε.

Now, given w ∈ Ā∗, a ∈ Ā, and a substitution σw satisfying P2 for w, we

expose the construction in three steps of a copyless substitution σw,a such that the

composition σwa = σw ◦σw,a satisfies P2 for wa. First, we extend the labeling λw of

Vw to a labeling µ′′wa : V ′′wa → X ∪B∗ of G′′wa. Second, we reduce it into a labelling

µwa : Vwa → (X ∪ B)∗ of Gwa. Then, σw,a is defined as the substitution mapping

λwa(s) to µwa(s).

• Let µ′′wa : V ′′wa → X ∪B∗ be the substitution mapping s ∈ Vw to λw(s), qo ∈
Qo to ε, and pi ∈ Qi to the word w′ ∈ B∗ satisfying δ(p, a) = (w′, q,m).

• For every t ∈ Vwa, the set Vt of vertices s of G′′wa such that t = in(s) is

not empty, and they form a path s1, . . . , sm such that s1 ∈ Qi ⊆ V ′′wa. Let

µwa(t) = µ′′wa(s1) . . . µ′′wa(sm).

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

Aperiodic String Transducers 19

• For every X ∈ X , let σw,a(X) = ε if no state s ∈ Vwa is mapped to X by

λwa, and let σw,a(X) = µwa(s) for some state s ∈ Vw satisfying λwa(s) = X

otherwise. Since λwa is injective, the function σw,a is well-defined.

We prove that σwa satisfies the desired properties.

Lemma 14. The substitution σw,a is copyless and σw ◦ σw,a satisfies P2 for wa.

Proof. We prove that σw,a is copyless by contradiction. Suppose that there exists

a variable X ∈ X that appears twice in σw,a(Y) for some Y ∈ X , or that appears in

the image of two distinct variables Y1, Y2 ∈ X by σw,a. Then, by definition of σw,a,

X appears twice in µwa(s) for some vertex s ∈ Vwa, or X appears in the image of two

distinct vertices s1, s2 ∈ Vwa by µwa. Therefore, by definition of µ′′wa, there exist two

distinct vertices s′1, s
′
2 ∈ V ′′wa such that λw(s′1) = µ′′wa(s′1) = X = µ′′wa(s′2) = λw(s′2).

This is not possible, since λw is injective.

We now prove that P2 is satisfied. Let µ̄wa(s) (resp. µ̄′′wa(s)) denote the con-

catenation of the labels of the vertices forming the path starting from a vertex

s of Gwa (resp. G′′wa) and ending at the corresponding root. Since P2 is satisfied

for w by supposition, for every (p, q) ∈ bhrr(wa) we have, by definition of G′′wa,

σw(µ̄wa(in(pi))) = σw(µ̄′′wa(pi)) = wp,q. Note that σwa = σw ◦ σw,a, in(pi) is equal

to the smalles vertex sp of Vwa containing p, and σw,a(λwa(sp)) = µwa(sp). We

obtain σwa(λ̄wa(sp)) = σw(µ̄wa(in(pi))) = wp,q. This proves that P2 is satisfied for

wa.

Remark 15. Since the construction of σw,a only depends on Gw and a, for every

w′ ∈ Ā∗, if Gw′ = Gw then σw′,a = σw,a.

5.4. Construction

We now have all the ingredients to define formally a copyless SST T ′ =

(A,B,Q′, q′0, Q
′
f , α,X , β, F ′) equivalent to T . Recall that we assumed that the 2DFT

T read its input starting from the right, and that nothing was produced on the initial

marker `. Let

• Q′ = {(Gw, φw)|w ∈ A∗};
• q′0 = (Gε, φε);

• Q′f = {(Gw, φw)|φw(rq0) ∈ F};
• α : Q′ ×A→ Q′, ((Gw, φw), a) 7→ (Gwa, φwa);

• X = {Xi|1 6 i 6 2|Q| − 1};
• β : Q′ ×A→ SX ,B , ((Gw, φw), a) 7→ σw,a;

• F ′ : Q′f → (X ∪B)∗, (Gw, φw)) 7→ σw,a(λ̄wa(sq0)).

Note that the functions α and β are well-defined as a consequence of the remarks

10 and 15. For every input word w ∈ A∗, as a direct consequence of the definitions of

α and β, the state reached by T ′ on input ` w is Gw, and the substitution induced

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

20 Dartois, Jecker and Reynier

by the corresponding run is σw. Therefore, by P1.1 and the definition of Pf , the

domains of the function fT defined by T and the function fT ′ defined by T ′ are

identical. Moreover, by P2 and the definition of F ′, the image of a given word by

those two functions are identical, hence the functions are the same.

5.5. Aperiodicity of the construction

We now prove that this construction preserves aperiodicity:

Theorem 16. Let T be an aperiodic 2DFT. Then the equivalent SST constructed

using Theorem 8 is also aperiodic.

To prove this theorem, we introduce a new equivalence relation ∼m, and we

prove that the aperiodicity of the 2DFT T implies the aperiodicity of this relation,

which in turn implies the aperiodicity of the SST T ′. We say that two words v and

w are merge equivalent (v ∼m w) if both v and w induce the same merges in the

same order, and bhxy(v) = bhxy(w) for every x, y ∈ {r, `}.

Lemma 17. Let v, w ∈ Ā∗. If v ∼m w, then for every word u ∈ Ā∗, Guv = Guw.

Proof. This follows from the fact that for every word u ∈ Ā∗, the graph Guv
represents the merges of the right-to-right runs of T on uv, and these runs can be

decomposed into right-to-right runs on u, and partial runs on v.

Lemma 18. Let w ∈ Ā∗ be such that wn ∼T wn+1. Then w2n ∼m w2n+1.

Proof. Let w and n be such that wn ∼T wn+1. Given a run r on w2n+1, if ρ is

left-to-left or right-to-right, it never reaches the middle iterations of w in w2n+1.

Moreover, if r is left-to-right or right-to-left, it reaches exactly once the middle

iteration of w in w2n+1, which it crosses while staying in the same state. This

proves that, on input wn+1, runs are only merging in the leftmost and rightmost n

iterations of w, and they merge in the same order in w2n.

The two following lemmas now conclude the proof, since the aperiodicity of both

the underlying automaton and the substitution imply the aperiodicity of the whole

SST.

Lemma 19. Let w ∈ Ā∗. If wn ∼T wn+1, then for every u ∈ Ā∗ Guw2n+1 = Guw2n .

Proof. This follows directly from Lemma 18 and Lemma 17.

Lemma 20. Let w ∈ Ā∗. If wn ∼T wn+1, then for every u ∈ Ā∗ σu,w2n ∼ σu,w2n+1 .

Proof. By construction, reducing the graph G′′ua to Gua amounts to deleting the

unnecessary information from Gu, i.e. deleting cycles and reducing paths with no

new merges to a single vertex. Therefore, each vertex s from Gua can be traced back

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

Aperiodic String Transducers 21

to a sequence s0 . . . sk of vertices of Gu. Should we forget about the production,

σw,a(λwa(s)) corresponds to λw(s0) . . . λw(sk). Thanks to Lemma 18, we know that

wn and wn+1 are merge equivalent. Then given a state Gu and one of its vertex,

it will correspond to the same vertex after reading w2n or w2n+1. Since we have a

unique way of mapping vertices to variables, the substitutions σuw2n and σuw2n+1

will be equal when production is erased, proving the aperiodicity of the substitution

function.

As a corollary, we obtain that the class of aperiodic copyless SST is expressively

equivalent to first-order definable string-to-string transductions.

Corollary 21. Let f : A∗ → B∗ be a function over words. Then f is realized by a

FO graph transduction iff it is realized by an aperiodic copyless SST.

6. From k-bounded to 1-bounded SST

The existing construction from k-bounded to 1-bounded, presented in [3], builds a

copyless SST. We present an alternative construction that, given a k-bounded SST,

directly builds an equivalent 1-bounded SST. We will prove that this construction

preserves aperiodicity.

Theorem 22. Given a k-bounded SST T with n states and m variables, we can

effectively construct an equivalent 1-bounded SST. This new SST has n2N states

and mkN variables, where N = O(nn(k + 1)nm
2

) is the size of the flow transition

monoid MT .

Proof. In order to move from a k-bounded SST to a 1-bounded SST, the natural

idea is to use copies of each variable. However, we cannot maintain k copies of each

variable all the time: suppose that X flows into Y and Z, which both occur in the

final output. If we have k copies of X, we cannot produce in a 1-bounded way k

copies of Y and k copies of Z. We will thus limit, for each variable X, the number of

copies of X we maintain. In order to get this information, we will use a look-ahead

information on the suffix of the run.

The proof relies on the following fact: suppose that we know at each step what

is the substitution induced by the suffix of the run. From this substitution, we

know how many copies of each variable X will be involved in the final output. We

can thus copy each variable sufficiently many times and use them to produce this

substitution in a copyless fashion.

One can observe that there are finitely many substitutions, this information

being held in the transition monoid of the SST. Then we can compute, at each step

and for each possible substitution, a copyless update. But as a given element of the

monoid may have several successors, the update function flows variables from one

element to variables of several elements. As these variables are never recombined,

we get the 1-boundedness of the construction.

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

22 Dartois, Jecker and Reynier

Let T = (A,B,Q, q0, Qf , δ,X , ρ, F) be an aperiodic k-bounded SST, MT be its

transition monoid, and ηT : A∗ →MT be its transition morphism.

We construct T ′ = (A,B,Q′, q′0, Q
′
f , δ
′,X ′, ρ′, F ′) where:

• The set of states Q′ = Q×P(MT) is the current state plus a set of elements

of MT corresponding to the possible images of the current suffix.

• q′0 = (q0, S0) where S0 = {m ∈ MT | δ(q0,m) ∈ Qf} is the set of relevant

possible images of input words. Here, we are abusing notations as δ(q,m)

stands for δ(q, u) where ηT (u) = m. By definition of the transition monoid,

we have that ηT (u) = ηT (v) implies δ(q, u) = δ(q, v), thus this is well

defined.

• Q′f = {(q, S) | q ∈ F and 1MT
∈ S}.

• δ′ : Q′ × A→ Q′ is defined by δ((q, S), a) = (q′, S′) where q′ = δ(q, a) and

S′ = {m ∈MT | ηT (a)m ∈ S}.
• X ′ = X × MT × {1, . . . , k}. Variables from X ′ will be denoted Xm

i for

X ∈ X , i 6 k and m ∈MT .

• The variable update function is defined as follows. First given a state q of

T and an element m of MT , we define σ̃q,m as the projection of the output

substitution induced by a run starting on q on a word whose image is m,

i.e σ̃q,u = γ(q, u) ◦ F (δ(q, u)) for ηT (u) = m. Note that by definition of the

transition monoid of an SST, it is well defined.

Now consider a transition (q, S)
a−→ (q′, S′). For any s ∈ S′ and 0 < i 6

|σ̃q′,s|X , ρ′((q, S), a,Xs
i) is defined similarly to ρ(q, a,X), but all variables

are labeled by the element ηT (a)s from S and they are all distinct copies

to ensure the 1-bounded property. Such a numbering is possible thanks

to the fact that s indicates which variables are used as well as how many

times. This allows us to copy each variables the right amount of times, using

different copies at each occurrence. The k-bounded property then ensures

that we will never need more than k variables for a possible output.

• F ′ : Q′f → (B ∪ X ′)∗ is defined as follows. Let (q, S) ∈ Q′f . The string

F ′(q, S) is obtained from the string F (q) by substituting each variable X

by a variable Xn
i , where 0 < i 6 |F (q)|X and n = 1MT

.

Theorem 23. Let T be an aperiodic k-bounded SST. Then the equivalent 1-bounded

SST constructed using Theorem 22 is also aperiodic.

Proof. We now have to prove that T ′ is aperiodic. By construction of T ′, we have

that the runs of T ′ are of the form (q, S)
u−→ (q′, S′) where q

u−→T q
′ and S′ = {n ∈

MT | ηT (u)n ∈ S}. The update for such a run is then the update of T over the

run q
u−→T q

′, where variables are labeled by elements from S and S′ and numbered

accordingly. Then as T is aperiodic, the Q part of the run is also aperiodic by

construction. The other part computes sets of runs according to MT , which is also

aperiodic. Then T ′ will also be aperiodic as the set S′ only depends on the image

of the word read, and by definition ηT (un) = ηT (un+1) for n large enough.

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

Aperiodic String Transducers 23

As a corollary, we obtain that for the class of aperiodic bounded SST is expressively

equivalent to first-order definable string-to-string transductions.

Corollary 24. Let f : A∗ → B∗ be a function over words. Then f is realized by a

FO graph transduction iff it is realized by an aperiodic k-bounded SST (k ∈ N>0).

7. Perspectives

There is still one model equivalent to the generic machines whose aperiodic subclass

elude our scope yet, namely the functional two-way transducers, which correspond to

non-deterministic two-way transducers realizing a function. To complete the picture,

a natural approach would then be to consider the constructions from [7] and prove

that aperiodicity is preserved. One could also think of applying this approach to

other varieties of monoids, such as the J -trivial monoids, equivalent to the boolean

closure of existential first-order formulas BΣ1[<]. Unfortunately, the closure of such

transducers under composition requires some strong properties on varieties (at least

closure under semidirect product) which are not satisfied by varieties less expres-

sive than the aperiodic. Consequently the construction from SST to 2DFT cannot

be applied. On the other hand, the other construction could apply, providing one

inclusion. Then an interesting question would be to know where the corresponding

fragment of logic would position.

References

[1] R. Alur and P. Černý. Expressiveness of streaming string transducers. In FSTTCS,
volume 8 of LIPIcs., pages 1–12. Schloss Dagstuhl. Leibniz-Zent. Inform., 2010.

[2] R. Alur, A. Durand-Gasselin, and A. Trivedi. From monadic second-order definable
string transformations to transducers. In LICS, pages 458–467, 2013.

[3] R. Alur, E. Filiot, and A. Trivedi. Regular transformations of infinite strings. In LICS,
pages 65–74, 2012.

[4] O. Carton and L. Dartois. Aperiodic two-way transducers and fo-transductions. In
CSL, volume 41 of LIPIcs, pages 160–174. Schloss Dagstuhl. Leibniz-Zent. Inf., 2015.

[5] M. P. Chytil and V. Jákl. Serial composition of 2-way finite-state transducers and
simple programs on strings. In Automata, languages and programming, pages 135–
137. LNCS, Vol. 52. Springer, Berlin, 1977.

[6] L. Dartois. Méthodes algébriques pour la théorie des automates. PhD thesis, LIAFA-
Université Paris Diderot, Paris, 2014.

[7] R. de Souza. Uniformisation of two-way transducers. In LATA, pages 547–558, 2013.
[8] J. Engelfriet and H. J. Hoogeboom. MSO definable string transductions and two-way

finite-state transducers. ACM Trans. Comput. Log., 2(2):216–254, 2001.
[9] E. Filiot. Logic-automata connections for transformations. In ICLA, volume 8923 of

LNCS, pages 30–57. Springer, 2015.
[10] E. Filiot, O. Gauwin, and N. Lhote. First-order definability of rational transductions:

An algebraic approach. In LICS, pages 387–396, 2016.
[11] E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. From two-way to one-way finite

state transducers. In LICS, pages 468–477. IEEE Computer Society, 2013.
[12] E. Filiot, S. N. Krishna, and A. Trivedi. First-order definable string transformations.

March 8, 2018 13:0 WSPC/INSTRUCTION FILE Ap2w-SST

24 Dartois, Jecker and Reynier

In FSTTCS, volume 29 of LIPIcs, pages 147–159. Schloss Dagstuhl - Leibniz-Zent.
Inform., 2014.

[13] R. McNaughton and S. Papert. Counter-free automata. The M.I.T. Press, Cambridge,
Mass.-London, 1971.

[14] M. P. Schützenberger. On finite monoids having only trivial subgroups. Information
and Control, 8:190–194, 1965.

[15] J. C. Shepherdson. The reduction of two-way automata to one-way automata. IBM
Journal of Research and Development, 3(2):198–200, 1959.

