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DETERMINATION OF CONVECTION TERMS AND QUASI-LINEARITIES
APPEARING IN DIFFUSION EQUATIONS

PEDRO CARO AND YAVAR KIAN

ABsTrRACT. We consider the highly nonlinear and ill-posed inverse problem of determining some general
expression F'(z,t,u, Vyu) appearing in the diffusion equation diu — Agu+ F(z,t,u, Vyu) =0 on Q x (0,7,
with T" > 0 and Q a bounded open subset of R™, n > 2, from measurements of solutions on the lateral
boundary 9 x (0,T). We consider both linear and nonlinear expression of F(z,t,u, Vzu). In the linear
case, the equation is a convection-diffusion equation and our inverse problem corresponds to the unique
recovery, in some suitable sense, of a time evolving velocity field associated with the moving quantity as
well as the density of the medium in some rough setting described by non-smooth coefficients on a Lipschitz
domain. In the nonlinear case, we prove the recovery of more general quasilinear expression appearing
in a non-linear parabolic equation. Our result give a positive answer to the unique recovery of a general
vector valued first order coefficient, depending on both time and space variable, and to the unique recovery
inside the domain of quasilinear terms, from measurements restricted to the lateral boundary, for diffusion
equations.

Keywords: Inverse problem, convection-diffusion equation, non-smooth coefficients, uniqueness, nonlinear
equation, Carleman estimates.

Mathematics subject classification 2010 : 35R30, 35K20, 35K59, 35K60.

1. INTRODUCTION

1.1. Statement of the problem. Let  be a Lipschitz bounded domain of R™, n > 2, such that R™\ Q is
connected. We set Q@ = Q x (0,T), ¥ =90 x (0,T), with T > 0, Q° := Q x {s}, s =0,T. In this paper, we
study the inverse problems associated with an initial boundary value problem (IBVP in short) taking the
form
Ou — Agu+ F(x,t,u, Vyu) =0, in Q,
u(+,0) = wo, in €, (1.1)
u=g, on X.
Our goal is to prove the recovery of the term F(x,t,u, V,u) appearing, in the above diffusion equation, from
measurements of its solutions on the lateral boundary Y. We consider both linear expressions of the form
F(z,t,u,Vyu) = A(z,t) - Vyu+ Vi - [B(x, t)]u + ¢(x, t)u, and more general quasi-linear expressions.
For the linear problem the IBVP takes the form
Ou — Agu+ Az, t) - Vyeu+ V- [B(z, t)]u+ ¢(z, t)u = 0, in Q,
u(-,0) =0, in Q, (1.2)
u =g, on 3.
For A,B € L*>®(Q)™ and ¢q € L‘X’(O,T;L%n(ﬂ)), we consider the Dirichlet-to-Neumann (DN in short)
map associated with this problem given by
AaB,q: 9 Napgu,
where u solves (1.2). Here the convection term A takes values in R™. We define N4 qu in such a way that
for w € H'(Q) satisfying wjgr = 0 we have

<NA737qu, ’U.)|2> = / [—udw + Vyu-Vow+ A Veuw — B - Vi (uw) + quwldzdt. (1.3)
Q
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We refer to Section 2 for more detail and a rigorous definition of this map and we mention that for g, A, B,
q and  sufficiently smooth, we have

Na,Bqu = [0yu — (B - v)u]s,

with v the outward unit normal vector to 9€2. This means that N4 g, and A4 g4 are the natural extension
of, respectively, the normal derivative of the solution of (1.2) and the DN map of (1.2) to non-smooth setting.
In this paper we study the inverse problem of determining in some suitable sense the coefficient (A, B, q)
from the full DN map A4 g 4 or from partial knowledge of this map to some parts of X.

1.2. Motivations. Let us observe that the IBVP (1.2) is associated with a convection-diffusion equation
which corresponds to a combination of diffusion and convection equations. These equations describe the
transfer of mass or heat, due to both diffusion and convection process, of different physical quantities (par-
ticles, energy,...) inside a physical system (see for instance [61]). The problem (1.2) can also describe the
velocity of a particle (Fokker-Planck equations) or the price evolution of a European call (Black-Scholes
equations). Here the coefficient A corresponds to the velocity field associated with the moving quantity and
our inverse problem corresponds to the recovery of this field from measurement given by an application of
source and measurement of the flux at the boundary of the domain. Actually we manage to prove the simul-
taneous recovery, in some suitable sense, of the the coefficient A, B and ¢, where the zero order coefficient
q can be associated with a time-evolving density of an inhomogeneous medium. By allowing our coefficients
to depend both on time and space we can apply our inverse problem to several context where the evolution
in time of these physical phenomena can not be omitted. We mention also that the general setting of our
problem allows to cover different types of unstable physical phenomenon associated with singular coefficients
and a non-smooth domain.
The quasi-linear problem (1.1) corresponds to more complex model where the linear expression

F(z,t,u,Vyu) = A(z,t) - Vyu+ Vg - [B(z, t)]u + q(z, t)u

is replaced by a more general nonlinear term. Here the goal of the inverse problem is to prove the recovery of
this nonlinear expression F'(x,t,u, V,u) describing the underlying physical law of the system. This inverse
problem can be associated with different models like physics of high temperatures, chemical kinetics and
aerodymanics.

1.3. Obstruction to uniqueness. We recall that there is an obstruction to uniqueness for our inverse
problem given by a gauge invariance. More precisely, we fix p; € [1,400) such that we have

_fn forn>=3
Pri=9 94¢ for n = 2,

(1.4)
with & € (0,1). Let Ay, By € L=(Q)™, ¢ € L>=(0,T; L5 ()) and
p € L%(0,T; WH(Q)) N WH(0,T; LP* (@) N L>(0, T Hy (2)) \ {0}
Now consider Ay € L= (Q)™, g2 € L>(0,T; L% () given by
Ay = A1 +2V,0, By=DBi+Vap, @ =q —p—|Vap|* — A1 Voo (1.5)

Then, assuming that u; € HY(0,T; H=1(Q))NL?(0,T; H*(Q)) solves (1.2) with A = Ay, B = B; and ¢ = q1,
and fixing uy = e®u; we find
(at Ay +A-V,+V, - (BZ) + q2)u2
= ew[at - ACD + (AQ - 2VI§0) : vm + Vm : (BQ - Vz‘ﬂ) + (Q2 + 3t90 + |va:(p|2 + Al ' vz‘ﬁ)]ul
=e?(0 — Ay + A1 -V + V- (B1) + q1)ur = 0.
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This and the fact that ¢z, = 0 proves that uy solves (1.2) with A = Ay, B = By and q = g2. Then, for any
w € HY(Q) satisfying wigr = 0, we get

(N g By gotiz, W) = /Q[—U2atw + Vot - Vow 4 (A - Vaug)w — By - V(ugw) + qougw)dadt
= /Qe“’[—ulatw + Vauy - Vew + (Ve - Veur)w + (A1 — By) - Vaug)w — ug (B - Vew)|dzdt
+ /Q e? (g2 + (A1 = B1) - Voo + [V Juwdrdt
- /Q [—u10y(e?w) + Vguy - Vo (ePw) + (A1 - Vour)(ePw) — By - Vo (urefw)|dadt

+ / e?(q2 + 0o + A1 - Voo + | Voo Juwdzdt
Q

= <NA17317Q1U17 6<pw|2> :

Combining this with the fact that (1 —e¥)w € L?(0,T; Hi(£2)) and the fact that, by the Sobolev embedding
theorem, we have e?w € H'(Q), we deduce that Na, p, g, u1 = Na, B,,gu2. It follows that, for any

@ € {h € L>®(0,T; WH™(Q)) NWH>(0,T; LP* (Q)) : h)s = 0},
the DN map of problem (1.2) satisfies the following gauge invariance

AAB.q = Ma42v,0,B+V.0,q-00—|Vep|2— AV, -

According to this obstruction, the best result that one can expect is the recovery of the gauge class of
the coefficients (A, B, q) given by the relation (1.5). Note also that, without additional information about
the coefficient B it is even impossible to recover the gauge class of (A4, B,q) given by (1.5). Indeed, for
any ¢ € W°°(Q) satisfying o5, = d,¢)s; = 0, the DN map of problem (1.2) satisfies the following gauge
invariance

AaBg = Dagav,o.B.a-0,0- V.0~ AVt A, 0
This means that for

Ay = A1 +2V,0, Bo=DB1, q=q —0p—|Vap|* — A1 - Vip + Ao,

with ¢ € W2>(Q) satisfying s, = d,¢)ss = 0 and ¢ # 0, we have Aa, B,y = Aay B,y but condition
(1.5) is not fulfilled. In light of these obstructions, in the present paper we counsider the recovery of some
information about the gauge class of the coefficient (4, B, ¢) given by (1.5) from the DN map A4 p 4.

1.4. State of the art. The recovery of coeflicients appearing in parabolic equations has attracted many
attention these last decades. We refer to [14, 34] for an overview of such problems. While numerous authors
considered the recovery of the zero order coefficient ¢, only few authors studied the determination of the
convection term A. We can mention the work of [19, 63] for the treatment of this problem in the 1 dimensional
case as well as the work of [12] dealing with the unique recovery of a time-independent convection term for
n = 2 from a single boundary measurement.

Recall that, for time-independent coefficients (A, B, q) and with suitable regularity assumptions, one
can apply the analyticity in time of solutions of (1.2), with suitable boundary conditions g, and the Laplace
transform with respect to the time variable in order to transform our inverse problem into the recovery of
coefficients appearing in a steady state convection-diffusion equation (see for instance [36] for more details
about this transformation of the inverse problem). This last inverse problem has been studied by [11,
13, 46, 53] and it is strongly connected to the recovery of magnetic Schrodinger operator from boundary
measurements which has been intensively studied these last decades. Without being exhaustive, we refer
to the work of [9, 20, 40, 54, 55, 57, 59]. In particular, we mention the work of [45] where the recovery
of magnetic Schrédinger operators has been addressed for bounded electromagnetic potentials which is the
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weakest regularity assumption so far for general bounded domains. Let us also observe that there is a strong
connection between this problem and the so called Calderén problem studied by [6, 7, 8, 21, 37, 62| and
extended to the non-smooth setting in [1, 10, 25, 26].

Several authors considered also the determination of time-dependent coefficients appearing in parabolic
equations. In [30], the author extended the construction of complex geometric optics solutions, introduced by
[62], to various PDEs including hyperbolic and parabolic equations to prove density of products of solutions.
From the results of [30] one can deduce the unique determination of a coefficient ¢ depending on both
space and time variables, when A = B = 0, from measurements on the lateral boundary ¥ with additional
knowledge of all solutions on ° and Q7. In Subsection 3.6 of [14], the author extended the uniqueness result
of [30] to a log-type stability estimate. In the special case of cylindrical domain, [22] proved recovery of a
time-dependent coefficient, independent of one spatial direction, from single boundary measurements. In [15]
the authors addressed recovery of a parameter depending only on the time variable from single boundary
measurements. More recently, [16] proved that the result of [30] remains true from measurements given
by As g4 when A = B = 0. More precisely, [16] proved, what seems to be, the first result of stability in
the determination of a coefficient, depending on the space variable, appearing in a parabolic equation with
measurements restricted to the lateral boundary X. We recall also the works of [3, 5, 29, 38, 39, 42] related
to the recovery of time-dependent coeflicients for hyperbolic equations and the stable recovery of coefficients
appearing in Schrodinger equations established by [17, 43].

For the recovery of nonlinear terms, we mention the series of works [31, 32, 33] of Isakov dedicated
to this problem for elliptic and parabolic equations. In [31, 32] the author considered the recovery of a
semi-linear term of the form F(x,u) inside the domain (i.e F(z,u) with z € Q, u € R) or restricted
to the lateral boundary (i.e F(z,u) with € 99, v € R) while in [33] he considered the recovery of a
quasilinear term of the form F'(u, V,u). In all these works, the approach developed by Isakov is based on
a linearization of the inverse problem for nonlinear equations and results based on recovery of coefficients
for linear equations. More precisely, in [31] the author used his work [30], related to the recovery of a
time-dependent coefficient ¢ on @, while in [32, 33] he used results of recovery of coefficients on the lateral
boundary Y. The approach of Isakov, which seems to be the most efficient for recovering general nonlinear
terms from boundary measurements, has also been considered by [35, 60] for the recovery of more general
nonlinear terms appearing in nonlinear elliptic equations and by [40] who proved, for what seems to be
the first time, the recovery of a general semi-linear term appearing in a semi-linear hyperbolic equation
from boundary measurements. In [16], the authors proved a log-type stability estimate associated with the
uniqueness result of [31] but with measurements restricted only to the lateral boundary X. Finally, for results
stated with single measurements we refer to [18, 44] and for results stated with measurements given by the
source-to-solution map associated with semilinear hyperbolic equations we refer to [27, 47, 48, 49].

1.5. Main result for the linear problem. Our main result for the linear equation takes the following
form.
Theorem 1.1. For j = 1,2, let g; € L*>(0,T; LP(Q0)) UC([0,T); L= (), with p > 2n/3, and let A;,Bj €
L>(Q)™. The condition
AAl,Bhth = AA2J32,<]2 (16)
implies
dA; = dAs. (1.7)
Here for A= (ai,...,a,), dA denotes the 2-form given by
dA = Z (02,05 — Op,a3)dx; N dxj.
1<i<j<n
Let us also consider the additional conditions
Ay — Ay e WH(0,T5 LP ()", Vu- (A1 — A), Vi (B1— Bs), ¢1 — 2 € L®(Q), (1.8)
(Bl —Bz) 'V|g :2(A2—A1) 'V\Ev (19)
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where (By— Ba)-v (resp. (A1 —As)-v) corresponds to the normal trace of By — By (resp. (A1 — As)) restricted
to X which is well defined as an element of L>(0,T; B(Hz (0Q); H~ 2 (8Q))). Assuming that (1.8)-(1.9) are
fulfilled, (1.6) implies that there exists ¢ € W1°°(Q) such that

A2 = Al + 2vz§07 m Qv
Ve Ba+qo =V, (B + Vi) +q1 — 0o — |[Vaep|> — A1 - Ve, in @, (1.10)
p =0, on 2.

This result says that conditions (1.6) implies that (A1, B1,¢1) and (As, Ba, g2) are gauge equivalent. A
direct consequence of this result is the following corollary.

Corollary 1.1. Let Q be connected and let A1, As € L>®(Q)™ be such that V, - (A1 — As)in € L™(Q) and
(A2 — A1) vz = 0. Then, for any q € L>=(0,T; LP(2)) UC([O,T];L%(Q)), pE (%",n), and B € L*(Q)",
we have

AAl,B,q = AAz,B,q = A1 = AQ.

Let us mention that there is another way to formulate convection or advection-diffusion equations given

by the following IBVP

v — Ayv + V- (A(z, t)v) =0, in Q,

(0,-) =0, in €, (1.11)

v =g, on .
The corresponding inverse problem consists in recovering the velocity field described by the coefficient A
from the associated DN map

]\A g = NAU,

where, for v € L*(0,T; H*(Q)) N H*(0,T; H~'(Q)) solving (1.11) and for w € H'(Q) satisfying wjqr = 0,
N v is defined by

- 1 1 1
<NAU,U}‘2> = / [—udw + Vyu - Vyw + §(A -Vau)w — iu(A - Vgaw) + ivx - (A)uw]dzdt.
Q

Using the identity Ag=A 4 4 vaa and applying Theorem 1.1 we obtain the following.
I

Corollary 1.2. Let Q be connected and let Ay, Ay € L>®(Q)™ be such that

Vi (A1), Vo (A2) € L®(0,T; LY(Q) UC(0, T} LF (@), p > 2n/3.
Iflssume~ also that (1.8)-(1.9) are fulfilled, for B; = % and q; = w, j = 1,2. Then, the condition
Aa, = Ay, implies Ay = As.

In the spirit of [2], by assuming that the coefficients are known in the neighborhood of ¥, we can improve
Theorem 1.1 into the recovery of the coeflicients from measurements in an arbitrary portion of the boundary.
More precisely, for any open set v of 92, we denote by H., the subspace of H'(Q) given by

Hy={hz: he HI(Q), hjgr =0, supp(hx;) C v x [0,T1}.
We fix v1, 72 two arbitrary open and not empty subsets of 9. Then, we can consider, for A, B € L>(Q)"
and g € L>°(0,T; LP*(£2)), the partial DN map

AA B gyt He D 5/(’)/1 x [0,T]) 29— NA,B,qu\Hvzv

with u the solution of (1.2) and H, the space defined in Section 2. Then, we can improve Theorem 1.1 in
the following way.
Corollary 1.3. Let Q be connected. We fix q1,q2 € L*°(0,T; LP1(R2)), with p; given by (1.4), and we
consider A;j, B; € L*(Q)", j = 1,2, satisfying V- (4;), Vs - (Bj) € L=(0,T; LP(R2)). Assume that there
exists an open connected set Q. C ), satisfying 0Q C 0, such that

Ay (z,t) = As(x,t), Bi(z,t) = Ba(x,t), q(z,t)=q(z,t), (x,t)€Qx(0,T). (1.12)
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Then the condition

AA17317417"/17"/2 = AA27327Q27’)’1,’Y2 (113)
implies that dA; = dAs. If in addition (1.8) is fulfilled, (1.13) implies that there exists ¢ € W1>°(Q)
satisfying (1.10).

1.6. Recovery of quasilinear terms. In this subsection, we will state our results related to the recovery
of general quasi-linear terms F(x,t,u, V,u) appearing in (1.1). We denote by X, the parabolic boundary
of Q defined by ¥, = X U Q°. Moreover, for all a € (0,1), we denote by C* 2 (Q) the space of functions

f € C(Q) satistying
a = Sup | (-’I;, t) <y’ )‘ X S X 7é S (0 ¢]
[f]avz {(Ix y‘Q |t 9|)% ’ ( >t)7(y7 ) € Q7 ( ’t) (ya )} < .

Then we define the space C2T%1+%(Q) as the set of functions f lying in C([0,T];C?(Q)) N C*([0,T];C(2))
such that

8tf,8ffecu’%(§)7 peN", |ﬁ|:2'
We consider on these spaces the usual norm and we refer to [14, pp. 4] for more details. We consider the
nonlinear parabolic equation

{ (Oru — Au+ F(z,t,u,Vyu) =0 in Q,

u=G_G on X,. (1.14)

For o € (0,1) and © a C?>T® bounded domain, F : (z,t,u,v) — F(z,t,u,v) € C1(Q x R x R") satisfying
(6.1)-(6.3), G € X = {Kp55; for some K € C?rel+e/2(Q)) ) problem (1.14) admits a unique solution
upg € C*ro1+e/2(Q) (see Section 6 for more detail). Then, for v the outward unit normal vector to 98,
we can introduce the DN map associated with (1.14) given by

NF X>G— 8VUF,G|E S LQ(Z)

and we consider the recovery of F' from partial knowledge of NE. More precisely, we prove in Proposition 6.1
that for 9, F € C1(Q x R" x R;R) and 9, F € C}(Q x R" x R; R"™), N is continuously Fréchet differentiable.
Then, fixing
X ={GecX: G =0}, kyix—=z-v, hyp:r—z-v+a,
where a € R, v € R", we consider the recovery of F' from
Np(kols,)H and  Np(haols,)H, He Xy, acR, veR",

where N, denotes the Fréchet differentiation of Np.
We obtain two main results for this problem. In our first main result, we are interested in the recovery
of information about general nonlinear terms of the form F(z,t,u, V,u) form the knowledge of

Np(hawls,)H, He Xy, aeR, veR"
Our first main result can be stated as follows.

Theorem 1.2. Let Q be a C?T* bounded and connected domain and let Fy, Fy € C?*T1*%(Q;C3(R x R™))
satisfy (6.1)-(6.3). Let also, for j = 1,2, 0,F; € C**3 ([0, T];CH( x R™ x R); R™) and let

O F(x,0,u,0) =0, j=1,2 k=01, 1€9Q ucR, veR", £cN" [{|<2. (1.15)
Then, the condition
7 (hawls,)H = N, (hapls,)H, He Xy, acR, veR" (1.16)

imply that there exists
©: QxR XR" > (z,t,u,v) — @(x,t,u,v) € CH([0,T];C(Q x R x R™)) NC*(Q;C([0,T] x R x R™))
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such that, for all (u,v) € R x R™, we have

Oy (Fy — F1)(2,0,u,v) = 20,0(x,0,u — 2z - v,v), x e,
Ou(Fy — F1)(,0,u,v) = —(04p — |Voo|> — 0uF1(2,0,u,0)0,0)(2,0,u — z - v,v), x €L, (1.17)
w(w,t,u,v) =0, (l‘,t) S

From this result, we deduce the following.

Corollary 1.4. Let the condition of Theorem 1.2 be fulfilled. Assume also that, for allx € Q, u € R, v € R",
the following condition

Z [azj&,j Fi(2,0,u,v) + 0,0, F1(x,0, u,v)vj] = Z [61.7. Oy, Fo(,0,u,v) + 0y 0, Fg(z,O,u,v)vﬂ (1.18)
j=1 j=1
is fulfilled. Then condition (1.16) implies
O F1(z,0,u,v) = 0, Fa(x,0,u,v), xz€Q, ueR, veR" (1.19)
In particular, if there exists vg € R™ such that
Fi(x,0,u,v9) = Fy(x,0,u,v9), x€Q, u€eR, (1.20)
and (1.24) are fulfilled, then condition (1.16) implies
Fi(z,0,u,v) = F5(z,0,u,v), z€, ueR, veR™ (1.21)

Remark 1.1. The result of Corollary 1.4 can be applied to the unique full recovery of quasilinear terms of
the form

F(x,t,u,Vou) = Gi(z,u, Veu) + tGo(x, t, u, Vyu), (1.22)
with Go and

H: (x,u,v) — Z [&J.@v].Gl(x,u,v) + auaijl(a:,um)vj]
j=1
two known functions.

For our second main result we consider the full recovery of the nonlinear term F(z,t,u, V,u) from the
data
Np(kyls,)H, He Xy, veR"
For this purpose, taking into account the natural invariance for the recovery of such nonlinear terms, described
by condition (1.17), our result will require some additional assumptions on the class of nonlinear terms under
consideration. Our second main result related to this problem can be stated as follows.

Theorem 1.3. Let Q be a C?>T bounded and connected domain and let Fy, Fy € C?F1+5(Q;C3(R x R"))
satisfy (6.1)-(6.3). Let also, for j = 1,2, 8,F; € C1T%([0,T];C1(Q x R™ x R); R") and let (1.15) be fulfilled.
Then, the conditions

Ng, (kols,)H = Ny, (ko|s,)H, H e Xy, veR" (1.23)

and
OuF1(z,t,u,v) = Oy Fa(x, t,u,v), (x,t) €Q, ueR, veR? (1.24)
O2Fy (z,t,u,v) (2, 1) = 0, 0,0, Fy(x,t,u,v)(z,t) =0, (x,t)€Q, ucR, veR", (1.25)

imply (1.19). In addition, if there exists vg € R™ such that (1.20) and (1.24) are fulfilled, then condition
(1.23) implies (1.21).
Remark 1.2. The result of Theorem 1.3 can be applied to the unique full recovery of quasilinear terms of
the form

F(z,u,Vyu) = Gi(z, Vyu) + Ga(z, t)u, (1.26)

when Gg is known.
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A direct consequence of Theorem 1.3 will be a partial data result in the spirit of Corollary 1.3. More
precisely, for any open set v of 99, we define Np ., by

NFWG = NF<G)\7><(O,T)a GelX.

We denote also by Ap . the set Xy, :={G € &y : supp(G|x) C v x [0,T]}. Then, we deduce from Theorem
1.3 the following result.

Corollary 1.5. Let the condition of Theorem 1.3 be fulfilled. Let Q. be an open connected subset of
satisfying 02 C 0 and let 1,72 be two arbitrary open subset of Q2. We assume that Iy, Fo fulfill

O F1(z,t,u,v) = Oy Fo(x,t,u,v) =0, (x,t) € A x(0,T), ue R, veR" (1.27)
and (1.24). Then the condition
Fiya (kols, ) H = N,

2

(Rl )H, H€ Xy, veR, (1.28)
implies (1.19).

1.7. Comments about our results. Let us first observe that, to our best knowledge, Theorem 1.1 is
first result of unique recovery, modulo gauge invariance, of general convection term depending on both time
and space variables. Actually, in Theorem 1.1 we prove the simultaneous recovery of the three coefficients
A, B, g modulo the gauge invariance given by (1.10). According to the obstruction described in Section 1.3,
this is the best one can expect for the simultaneous recovery of the three coefficients A, B,q. Note also
that, in contrast to time-independent coefficients, our inverse problem can not be reduced to the recovery of
coefficients appearing in a steady state convection-diffusion equation from the associated DN map.

Not only Theorem 1.1 provides, for what seems to be the first time, a result of recovery of general
first and zero order time-dependent dependent coefficients appearing in a parabolic equation but it is also
stated in a non smooth setting. Indeed, we only require the two vector valued coefficients A, B to be
bounded and we allow g to have singularities with respect to the space variable. Moreover, we state our
result in a general Lipschitz domain 2. Such general setting make Theorem 1.1 suitable for many potentials
application and the regularity of the coefficients A, B, ¢ can be compared to [45] where one can find the best
result known so far, in terms of regularity of the coefficients, about the recovery of similar coefficients for
elliptic equations in a general bounded domain (see also [24]). Note that, assuming that A, B are known
and A € L>(0,T; W2 (Q))" N W10, T; L>(2))*, V, - B € L>(Q), we can prove the recovery of more
general zero order coefficient g. Actually, in that context, using our approach, one can prove the recovery of
coefficients ¢ lying in L>°(0,T; LP(Q))UC([0, T]; L= (Q)), with p > 2n/3. However, like for elliptic equations
(see [45]) we can not reduce simultaneously the smoothness assumption for the first and zero order coefficients
under consideration. For this reason, we have proved first the recovery of the 2-form dA associated with
the convection term A with the weakest regularity that allows our approach for all the coefficients A, B,
g. Then, we have proved the recovery of the gauge class of the coefficients (A, B, q), given by (1.10), by
increasing the regularity of the unknown part of the coefficients B and ¢ (see (1.8)-(1.9)).

One of the main tools for the proof of Theorem 1.1 are suitable solutions of (1.2) also called geometric
optics (GO in short) solutions. Similar type of solutions have already been considered by [16, 30] for the
recovery of bounded zero order coefficients q. None of these constructions works with variable coefficients of
order 1 or non-bounded coefficient g. Therefore, we introduce a new construction, inspired by the approach
of 20, 58, 45] for elliptic equations, in order to overcome the presence of variable coefficients of order 1.
More precisely, we derive first a new Carleman estimate stated in Proposition 3.1 from which we obtain
Carleman estimates in negative order Sobolev space stated in Proposition 4.1, 4.2. Applying Proposition
4.1, 4.2, we built our GO solutions by a duality argument and an application of the Hahn Banach theorem.
In contrast to the analysis of [20, 58, 45] for elliptic equations, we need to consider GO solutions that vanish
on the top QT or on the bottom Q° of the space-time cylindrical domain Q. For this purpose, we freeze the
time variable and we work only with respect to the space variable for the construction of our GO solutions.
Then, using the estimate on Q7 or Q° of the Carleman estimates of Proposition 4.1 we can apply Proposition
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4.1, 4.2 to functions vanishing only at ¢ = T or t = 0. This additional constraint on Q7 or QY makes an
important difference between the construction of the so called complex geometric optics solutions considered
by [20, 58, 45] for elliptic equations and our construction of the GO solutions for parabolic equations. Like
in [45] for elliptic equations, thanks to the estimate of the Laplacian in Proposition 3.1, we can apply our
construction to coefficients with low regularity. Actually, we improve the construction of [45] by extending
our approach to unbounded zero order coefficients q. Note also that, quite surprisingly, in Proposition 4.1,
4.1, 4.2, we obtain better estimates with respect to the space variables than what has been proved in [45, 58|,
for the 3-dimensinal case an averaging procedure provides an equivalent gain to ours, see [24].

From the recovery of the gauge class of (A, B, q), stated in Theorem 1.1, we derive three different results
for the linear problem stated in Corollary 1.1, 1.2, 1.3. In all these three results, we use unique continuation
results for parabolic equations in order to derive conditions that guaranty ¢ = 0 in (1.10) or to obtain a
density arguments in norm L? on a subdomain of (). Using such arguments we can prove the full recovery
of the convection term A and prove the recovery of the gauge class of (A, B, q) from measurements on an
arbitrary portion of 9 when (A, B, q) are known on neighborhood of X.

According to [33, Lemma 8.1], with additional regularity assumptions imposed to the coeflicients (A, B, q)
and to the domain €2, the DN map A4 p 4 determines A-v on ¥. Therefore, for sufficiently smooth coefficients
(A;,B,q), j = 1,2, and sufficiently smooth domain €, the condition (1.9) can be removed from the statement
of Corollary 1.1 and 1.2. We believe that the condition (1.9) can also be removed with less regular coefficients
and domain. However, we do not treat that issue in the present paper.

To our best knowledge, in Theorem 1.2 and 1.3 we have stated the first results of recovery of a general
quasilinear term of the form F(z,t,u, V, u), (z,t) € Q, that admits variation independent of the solutions
inside the domain (i.e we recover the part F(x,0,u,v) with z € Q, v € R, v € R™ of such functions)
from measurements restricted to the lateral boundary. Indeed, one can apply our result to the unique full
recovery of nonlinear terms of the form (1.22) and (1.26) (see Remark 1.1 and 1.2 for more details). The
only other comparable result is the one stated in [33] where the author proved the recovery of quasilinear
terms depending only on the solutions (i.e of the form F(u,V,u)) on some suitable sets. Therefore, our
result provide a more precise information about the nonlinear term under consideration than [33] and it can
be also applied to more general quasilinear terms admitting variation independent of the solution inside the
domain, while [33] restrict his analysis to quasilinear terms depending only on the solutions.

We prove Theorem 1.2 and 1.3 by combining Theorem 1.1 and Corollary 1.1 with the linearization
procedure described in [16, 32, 33, 34]. More precisely, we transform the recovery of the nonlinear term
F(z,t,u, Vyu) into the recovery of time-dependent coefficients A(z,t) = 0, F(x,t,u(z,t), Vyu(z,t)), where
u solves (1.14). Here the variable v € R™ corresponds to V,u in the expression F(z,t,u, V,u). In contrast
to all other results stated for nonlinear parabolic equations (e.g. [16, 31, 32, 33]), we do not need the full
map Np for proving the recovery of the quasilinear term but only some partial knowledge of its Fréchet
derivative NJ,. More precisely, our result requires only the knowledge of N, applied to restriction of linear
or affine functions on ¥,. By taking into account the important amount of information contained in the
map Nr, this makes an important restriction on the data used for solving the inverse problem. To do so, in
contrast to [31, 32, 33] we need to explicitly derive the Fréchet derivative of Np. A similar idea has been
considered in [40] for the recovery of a semilinear term appearing in nonlinear hyperbolic equations.

The result of Theorem 1.2 is stated for more general quasilinear terms than the one of Theorem 1.3.
However, Theorem 1.2 can not be applied directly to the full recovery of the nonlinear term like in Theorem
1.3. Indeed, Theorem 1.2 provide only some knowledge of the nonlinear term F'(x,t,u, V,u) given by the
conditions (1.17). On the other hand, with the additional condition (1.18), we can derive form Theorem 1.2
the uniqueness full recovery stated in Corollary 1.4.

Applying Corollary 1.3, we also prove in Corollary 1.5 recovery of nonlinear terms known on the neigh-
borhood of the boundary from measurements on some arbitrary portion of the boundary 0f2.
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2. PRELIMINARY RESULTS
We recall that Q0 = Q x {0} € Q and QT = Q x {T} C Q Let us first consider the space
Hy={vs: ve H(0,T; H Q) NL*0,T; H(Q)), vjq0 = 0},
H_:={vxg: ve HY(0,T; H*(Q) N L*(0,T; H'(R)), vigr = 0}
which is a subspace of L?(0, T} H%(GQ)). We introduce also the spaces
Sy ={ue H'(0,T;H'(Q)) N L*(0,T; H'(Q)) : (0 — Ay)u =0, yjgo = 0},
S_={ue H(0,T;H () NL*0,T; H' (Q)): (=8 — Ay)u=0, ugr = 0}.
In order to define an appropriate topology on H_ for our problem, we consider the following result.
Proposition 2.1. For all f € H there exists a unique u € St such that ux, = f.

Proof. Without lost of generality we assume that the functions are real valued. We will only prove the
result for f € H,, using similar arguments one can extend the result to f € H_. Let f € H, and consider
F € HY0,T; H'(Q)) N L*(0,T; H*(2)) such that Fjs, = f and Fjgo = 0. Fix G = — (0, — A,)F €
L?(0,T; H~1(Q)) and w the solution of the IBVP
ow—Aw = G, (z,t) €Q,
U}‘QO = O,
’LU|Z = 0.

According to [51, Theorem 4.1, Chapter 3] this IBVP admits a unique solution w € H(0,7; H1(Q)) N
L?(0,T; H'(Q)). Thus v = w+ F € S; and clearly vjz, = w)x + Fs; = f. This prove the existence of u € S
such that ujs, = f. For the uniqueness, let vi,vy € Sy satisfies Tov; = Tov2. Then, v = v1 — vy solves

ov—A7Ayv = 0, (z,t)€qQ,

’U‘QO = 0,
U\E = 0.
which from the uniqueness of this IBVP implies that v; — vy = 0. ]

Following Proposition 2.1, we consider the norm on H given by

2 2 2
1Fis 50, = 120 mim ey + IF e o o1y - F € S
We introduce the IBVPs
Opu — Agu+ Az, t) - Vyu + [V - B(z, t)]u + g(z, t)u = 0, in Q,

u(0,) =0, in £, (2.1)
U =gy, on X,
=0 — Agu — Az, t) - Vau + (¢(x,t) + [V - (B — A)(z,t)])u = 0, in Q,
u(-,T) =0, in Q, (2.2)
uU=g_, on .

We are now in position to state existence and uniqueness of solutions of these IBVPs for g+ € H.

2n

Proposition 2.2. Let g1 € Hy, A, B € L>®(Q)", ¢ € L>(0,T; L= (). Then, the IBVP (2.1) (respectively
(2.2)) admits a unique weak solution w € H*(0,T; H=1(Q))NL2(0,T; H*(Q)) (respectively u € H_) satisfying
lull 20,711 @)) + 1l o, -1 0)) < C g+l
(respectively HUHL2(O,T;H1(Q)) + ||UHH1(O,T;H*1(Q)) < COllg-ll%_);

where C depends on Q, T and M > + 1 All oo (gyn -

(2.3)

lall 0 2:0% ()
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Proof. Since the proof of the well-posedness result is similar for (2.1) and (2.2), we will only treat (2.1).
According to Proposition 2.1, there exists a unique G' € Sy such that G|x = g+ and

||G||L2(0,T;H1(Q)) < H9+||H+'

We split u into two terms u = w + G where w solves

ow—ANw+A-Vyw+ (Ve -Blw+qw = —A-V,G— (Ve B)G—qG, (x,t) €Q,
wo = 0, (2.4)
|
w|g = 0.

From the Sobolev embedding theorem we have —A -V, G — (V. - B)G — ¢G € L*(0,T; H~1(Q)) with
[=A- VoG = (Vo B)G = 4Gl 1201511
C (4l =@y + 1Bl poe @y + 1l 11 % ) NG 2011y

with C' depending only on . Let H = L?(Q), V = H(Q) and consider the time-dependent sesquilinear
form a(t,-,-) with domain V and defined by

a’(t7 h7g) = /szh(l') ’ ng(x) + (A(l‘,t) : th(l‘) + Q(%t)h(f))m - B(:L‘,t) : Vw(hg)(l')d$7 h‘>g ev.

Note that here for all h,g € V, we have t — a(t,h,g) € L°°(0,T) and an application of the Sobolev
embedding theorem implies

la(t, h,g)] < C ”hHHl(Q) HQHHl(Q) ) (2.5)
with C' > 0 depending on [|A| gy, [ Bll1~(q) and HqHLw(o,T;L%(Q))' In addition, there exists A,¢ > 0

such that, for any h € V, we have
Ralt, )+ A Ay > el 1€ 0.7) (2:6)
Indeed, for h € V, ¢t € (0,7T) and &1 € (0, 1), we have

Ra(t, o) > [ (920 = (1Al gy + 2Bl ) [ IValiblde = [ ) [hPda

1Al o+ 211Bll 1~ o1
> (1-e) / Vb2 — (141~ @) =) / B2 / gl [2dz.
Q Q Q

€1

In addition applying the Holder inequality, the Sobolev embedding theorem and an interpolation between
Sobolev spaces, for all t € (0,T"), we get

Ll <l g P

< Cllgll

"3 0))
Lo (0,713 () 1 ”H%(Q)
3 1
2 1 2 s
< C Nl g g2 ey (120)) (101 20)
3
2 1 — 2
e N N L PSS R Gl L1 Py

361 61_3 2
e A T

with C' > 0 depending only on €. Therefore, choosing

1
1

-1
<C||q||L°°0TL2P:L(Q))+2> voe=1-a(Clldl o 1023 @) T
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2
(1Al (g + 2 Bll = 1 )

_ -3
A= €1 +CHq”Loo(o,T;L%(Q))51 +2

we get (2.6). Combining (2.5)-(2.6) with the fact that

a‘(t7 h"g) = <_Alh + A(7 t) -Vzh+ (VI ’ B(7 t))h + q(7 t)ha g>H*1(Q),Hé(Q) , tE (07 T)7
we deduce from [51, Theorem 4.1, Chapter 3] that problem (2.4) admits a unique solution w € H(0,T; H~(Q))N
L2(0,T; HY(Q)) satisfying

lwll 220,701 ) + 1@l 10,73 5-10)) < Cll=A- VoG = (Vo - B)G = 4Gl 1200, 7,11 ()

<C ”G”L?(O,T;Hl(ﬂ)) <C ||9+||;!-[+ )

where C depends on Q, T and M. Therefore, u = w + G is the unique solution of (2.1) and the above
estimate implies (2.3). O

Using these properties, we would like to give a suitable definition of the normal derivative of solutions of
(1.2). For this purpose, following [45] we will give a variational sense to the normal derivative for solutions
of these problems. For this purpose, we start by considering the spaces

HY2(U) := {gls : g € HY*(8Q), supp(j) € 9Q \ QT}.

We use the symbols U because it turns out to be convenient to keep in mind that the corresponding functions
vanish on Q7 := Q x {T'}. Note that the norms

gl 272y = mf {113l /200 = Gle = g, supp(§) € 9Q \ @}

makes H'/2(L)) be a Banach space. We recall that there exists a lifting operator L : H/?(U) — {w €
H'Y(Q) : wjgr = 0} such that L is a bounded and

Lgs =g, g€ HY*U).

For any g, € Hy and w € H*(0,T; H=1(2))NL?(0,T; H'(£2)) the solution of (2.1), we define N4 p qu €
H'2(U)*, where H'/?(L)* denotes the dual space of H'/?(L), by

<NA,B,qU7 g—>H1/2(|_|)*7H1/2(\_,)

2.7
= / [—ud:Lg- +Vau-ViLg- +A-VyulLg — B-V(uLg-)+ quLg_]dxdt. 27)
Q

Note that, for w € H*(Q) satisfying wjgr = 0 and w|s, = 0, since u € H'(0,T; H*(Q)) N L*(0, T; H'(2))
solves (2.1), we have

/ [—udiw + Vyu - Vew + A-Vyuw — B -V (uw) + quw]dzdt
Q

= (O —Au+ A-Vou+ (Vo - B)u+ qu,w) 120 1,1 -1(0)),22(0,1:12 (2)) = 0-

Therefore, (2.7) is well defined since the right hand side of this identity depends only on g_. We define the
DN map associated with (2.1) by

Aapyg: My 390 Napgue HV2 ()
and, applying Proposition 2.2 one can check that this map is continuous from ., to H'/? (U)*. By density,

we derive the following representation formula

Proposition 2.3. For j = 1,2, let A;, B; € L*(Q)", ¢; € L>(0,T; L% (Q)). Then, the operator
Aa, Bign — Ma, By g, can be extended to a bounded operator from Hy to H', where H* denotes the du-
al space of H_. Moreover, for g, € Hy, g— € H_, we consider uy € H'(0,T; H-*(Q)) N L?(0,T; H(Q))
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the solution of (2.1) with A = Ay, B = By, ¢ = q1 and ug € HY(0,T; H-*(Q)) N L%(0,T; H(2)) be the
solution of (2.2) with A= As, B = Bg, ¢ = q2. Then we have

<(AA1131»Q1 - AA2,B2,q2)g+v g*>7-t*_,7-t,

= / (Al - AQ) . qul’LLQd.’Edt - /
Q

Q

2.8
(Bl — B2) . vz('UqUQ)dl'dt + / (CI1 — (D)Uﬂtgdifdt. ( )
Q

Proof. Without loss of generality we assume that all the functions are real valued. We consider vy €
HY0,T; H-1(Q)) N L2(0, T; H*(Q2)) solving

Opvg — Agvg + Ag(x,t) - Vyvg + [V - Ba(x, t)]va + g2(x, t)ve = 0, in Q,
02(07 ) =0, in Q,
Vo = G4, on X.

Then, for any g_ € HY?(U) fixing w = Lg_ € H*(Q), we find

<(AA1731>111 - AA27B27q2)9+7 g—>H1/2(u)*,H1/2(u)

= <(NA17317II1U1 - NAzsz,qu%g—>H1/2(u)*,H1/2(u)

= / [—(u1 —v2)0pw + Vi (ug —v2) - Vow + Ay - Vg (ur — vo)w — By - Vo ((ur — v2)w) + qa(uy — vo)wldadt
Q

+/ [(Al - AQ) . Vmulw - (Bl - BQ) . Vx(ulw) + ((J1 - qg)ulw]dxdt
Q

Now using the fact that (u; —v2) € L2(0,T; H(9)), we get

((Aay,Brgr — Mas,Baga) 9+ g*>H1/2(u)*,H1/2(u)

= = (Gew, ur = v2) 20,110, L2 0,7 (@) T /Q Va(ur = v2) - Vowdadt

2.9
+/ Ag - Vy(ur — vo)wdzdt —/ By - Vy[(u1 — vo)wldzdt +/ g2(u1 — vo)wdzdt (2:9)
Q Q Q

+ / [(Al - AQ) . qulw — (B1 — BQ) . Vx(ulw) + (111 — qg)ulw]dxdt
Q

We can choose w to be the unique element of S_ satisfying @y, = g, and since w — w € L2(0,T; HY(Q))
and w — W|gr = 0, w can be replaced by w in the identity (2.9). Moreover, we have

Cllgtllae, U@l 20,711 @) T 1101 g 0,750-1(02)))

<(AA1,B1,Q1 - AAz,Bz,Q2)g+7g*>H1/2(|_|)*,H1/2(u) <
S Cllg+llag, lg-llg_

where C depends only on A;, By, q;, j = 1,2, T and ). From this identity, we deduce that the map
A4, Bi,gs — M4, By,g, can be extended continuously to a continuous linear map from Hy to H* and the

identity (2.9) holds for g_ € H_, whose extension w to @ belongs to H'(0,T; H=1(Q)) N L?(0,T; H'()).
Thus, we are allowed to replace w in (2.9) by us. Since ug satisfies the identity below, the proposition is
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proved:
= (Oruz,ur = V2) 20 1o (@), L2 0.1y () T /Q Va(ur = v3) - Voupdudt
= (—Opuz — Aug,u; — U2>L2(0,T;H—1(Q)),L2(0,T;H(}(Q))
= (A2 - Vaug, uy —v2) + (Vo - (A2 — Ba), (U1 — v2)U2) 12 (0.1 -1 (0)),12 (0,731 (2) — /qu(m — vz )updudt

= (Vx . (UQAQ) - vx . (BQ)UQ,UJ - U2>L2(O,T;(H—1(Q)),L2(07T;Hé(Q)) - /Q C]Q(Ul — ’L)Q)Ugdl‘dt

= —/ (As - Vi (ur — va)uodadt —|—/ By - Vi [(ug — vo)ug]dxdt — / g2 (u1 — vo)ugdadt.
Q Q

Q
O
3. CARLEMAN ESTIMATES
We introduce two parameters s, p € (1,400) and we consider, for p > s > 1, the perturbed weight
T+ x0) - w)?
i s(2,t) = H(p*t + pw - ) — s%. (3.1)
We define
Lia= +0, — A, £ A-V,, Pyt = e_vi‘sLi,Aeg)i’s.

Here x¢ € R™ is chosen in such a way that

To - w =2+ sup |z|. (3.2)

e

The goal of this section is to prove the following Carleman estimates.

Proposition 3.1. Let A € L>(Q)" and 2 be C2%. Then there exist s1 > 1 and, for s > s1, p1(s) such that
for any v € C?(Q) satisfying the condition

U|Z = 0, ’U‘QO = 0, (33)

the estimate

2
2y

<C

\&,U|2\w~u\da(x)dt+sp/ |v|2(m,T)da:+s_1/ |A$v\2dmdt+sp2/ |v|2dadt
Q Q Q
] (3.4)

,w

[Pakatliag o [ 0Pl vido(e)ds

holds true for s > s1, p 2 pi(s) with C' depending only on Q, T and M > ||Al| e (g)yn- In the same way,
there exist s > 1 and, for s > sa, p2(s) such that for any v € C*(Q) satisfying the condition
’U\E = 07 ’U|QT = 0, (35)
the estimate
p/ 10,02 |w - v|do(z)dt + sp/ lv|(2,0)dz 4+ s~ 1 / |A v |2dadt + sp2/ |v|2dadt
Cw Q Q Q
(3.6)
<C

1Pa,—s0ll72 () + P/E 9,0 |w - Vlda(w)dtl

holds true for for s > sa, p = pa(s). Here s1, p1, s2 and py depend only on Q, T and M > ||A||L<><>(Q)n-

+,w
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Proof. Without loss of generality we assume that v is real valued. We start with (3.4). For this purpose we
will first show that, for A = 0 and ¢ = 0, there exists ¢ depending only on €, s; depending on 2, T' such
that for any s > s; we can find p;(s) for which the estimate

||PA,+,SU||2LQ(Q) >p/ |0, v |w - v|do(z)dt — Sp/ 10,0} |w - v|do(z)dt + cs™! / |A v |2 dadt
Shw Yo w Q
(3.7)
+ sp/ [v|*(x, T)dx + sp2/ |v|2dxdt + 28/ |V 02 dzdt
Q Q Q

holds true when the condition p > p1(s) is fulfilled. Using this estimate, we will derive (3.4). We decompose
Py 4,5 into three terms

Pyt s=Pi++ Py + P3y,
with
Piy = —D40i04 | Vaor s PH 0001 oo Poy = 0—2Vap1 o Vo200, 5, Psy = AV+AVepp 4.
Note that
Oiprs =Py Vaprs=Ilp—s@+m0) ww, —Ap =s

and
Py v =—Av+ [2ps(x +x0) - w — $*((z + 20) - w)? — 3], (3.8)
Py v =00 —2[p—s(x+ x0) - w|(w - Vzv) + 250,
P vPy yv=— Azvdw 4+ 2A,0[p — s(x + o) - w](w - V) — 2s(Av)v
+ [2ps(x 4+ 20) - w — 82 ((x + 20) - w)? — 8]v[Ov — 2[p — s(x + ) - W](wW - V4v) + 250] (3:9)
For the first term on the right hand side of (3.9) we find
/(—Axvatv)dxdt :/ 0V v - Vyvdadt = 1/ 3t|va|2dxdt = 1/ |Vzv(x,T)|2dx.
Q Q 2Jq 2 Jo
It follows that
/Q (A, 00y)dadt > 0. (3.10)

We have also

2 /Q Agv[p — s(x + ) - w](w - Vyv)dzdt

=2 /z: Oyvlp — s(x + x0) - w](w - Vyv)do(z)dt + 25/

Q

=2 /2 Ovfp — s(x + x9) - w](w - Vyv)do(z)dt + 28/

Q

(w - Vyv)2dadt — 2 /Q[p —s(x + x0) - w][Vav - Vy(w - Vyov)|dedt

(w - Vyv)2dedt — / [p— s(z+x0) - wlw - V4 |V02dzdt
Q
and using the fact that vy, = 0, we get

2/ Auvlp — s(x + xg) - w](w - Vyv)dedt
Q
= 2/ [p— s(z + x0) - W]|0,v|*w - vdo(x)dt + 28/ (w - Vyv)2dadt
b Q
- / [p— s(x + 20) - w]|O,v|*w - vdo(z)dt — s/ |V |2 dxdt
Q Q

= / [p— s(x + x0) - w]|O,v|*w - vdo(z)dt — s/ |V v|*dxdt + 23/ (w - Vv)2dadt.
b)) Q Q
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Choosing p > 2s(1 + sup|z|), we obtain
z€Q

2 /Q Agv[p — s(x + o) - w](w - Vyv)dzdt

> p/ |0,v|?|w - v|do(z)dt — 4p/ |0,v|*|w - v|do(z)dt — s/ |V 0| dxdt.
Show b Q
Combining this with the fact that
—23/ (Av)vdxdt = 25/ |V 0|2 dzdt,
Q Q
we find
2/ Ayvlp = s(x + xg) - w](w - Vyv)dedt — 25/ (Av)vdzdt
Q Q
> p/ |0,v|*|w - v|do(z)dt — 4p/
E+,w

Now let us consider the last term on the right hand side of (3.9). Note first that

10, 0|2 |w - v|do(z)dt + s/ |V ,v|*dxdt.
Q

—w

/ [2ps(x + x0) - w — 82((x + o) - w)? — s|vdyvdadt
Q

= %/ [2ps(x + zg) - w — 82((l‘ + o) - w)Q _ 5]8t|’11|2d$dt
Q

2
> ps/ (z + xo) - wlv|*(z, T)dx — s* (3 + sup|z|) / |v|?(x, T)dz.
Q Q

zeQ

2
Combining this with (3.2) and choosing p > s (3 + sup|;v|) , we find
e

/ [2ps(z + m0) - w + 8%((z + m0) - w)? — s|vdvdrdt > 5,0/ |v]?(z, T)dx.
Q Q

In addition, integrating by parts with respect to x € €2, we get
fQ [2ps(x + z0) - w + $2((x + o) - w)? — s]v[—2[p — s(x + z0) - W](w - Vv)]dzdt

=— fQ[—ss((x + 0) - w)3 — ps?((x + z0) - w)% + (2p%s + 82)(z + 20) - w — splw - V. |v|>dzdt

= fQ[—Ss?’((m +9) - w)? = 2ps%((z + x0) - w) + (20%s + 52)]|v|?dxdt.
It follows that

/Q[st(x +20) - w — 82((x + x0) - w)* — s]v[-2[p — s(x + x0) - W](w - V4v) + 2sv]dxdt

= /Q[—583((33 +20) - w)? 4 2p82((x + 20) - w) + (2p%s — 8%)]|v|*dzdL.

Then, fixing

p> \/552(2 + suplz|)? + s,
€N

we obtain

(3.11)

(3.12)

/ [2ps(x + 20) - w + 82 ((x + x0) - w)? + sJv[—2[p — s(z + o) - w](w - Vo) + 2sv]dxdt > sp2/ [v|*dxdt.
Q Q
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Combining this estimate with (3.10)-(3.12), we find

||P1,+’U + P27+’U||iz(Q) 2 2/ P17+1}P27+1}d$dt + ||P17+U||2LQ(Q)
Q

> 20/
E‘FYW -

+ QSp/ |v|(z, T)dz + 2sp2/ |v|2dxdt + \|P17+v\|22(Q) .
Q Q

10,02 |w - v|do(2z)dt — Sp/ |0, 0|2 |w - v|do(z)dt + 25/ |V 0|2 dadt
w Q

(3.13)
Moreover, we have
2
1PL+vlgag) = [[=80v + Rps(a + 20) - w = s%((@ + w0) - @) + 8]0 g

14s0l172(q) ) 24 gl?
> — - H[st(x—l—mo) cw—s°((x + x0) - w)* + s]vHLz(Q)

1220]172 () :
> T IAQ) 36422 (o 2 .

el )

o -1
Fixing ¢ = <36 (2 + Sup|m|> ) , we deduce that
EASY)

-1
2 - 2 cs 2 2
HP17+UHL2(Q) >cs”! ||P1,+’U||L2(Q) Z o ||Aacv||L2(Q) —sp? ||”U||L2(Q)

and, combining this with (3.13), we obtain (3.7) by fixing

2
pi(s) > s (3 + supx|) + \/532(2 + sup|z|)? + s.
e e
Using (3.7), we will complete the proof of the lemma. For this purpose, we remark first that, for p > p;(s),
we have

2
[1PL1v+ Py yvll72g)

2 2
1Pt solagq) > : 1Pl
1Py v+ Poyol72 o) 2

=8 Al g [ [vfdet

Combining these estimates with (3.7), we deduce that for s; = 32M? and, for s > s1, p > pi(s), estimate
(3.4) holds true.

Now let us consider (3.6). We start by assuming that A = 0. For this purpose we fix v € C?(Q) satisfying
(3.5) and we consider w € C?(Q) defined by w(z,t) := v(z,T —t). Clearly w(zx,0) = 0. Moreover, fixing

((z +20) - w)?
2 )
which corresponds to ¢  with w replaced by —w, one can check that

P alat) = (P — o) — s

e P (9, — A)ePrew(x, t) = Py gv(x, T —1t), (x,t)€q,

with Py _ s = Pa,_ s for A = 0. Therefore, applying (3.4), with w replaced by —w, to w we deduce (3.6).
We can extend this result to the case A # 0 by repeating the arguments used at the end of the proof of
(3.4). O
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4. GO SOLUTIONS

Armed with the estimates (3.4)-(3.6) we will build suitable GO solutions for our problem. More precisely,

2

for j = 1,2, fixing the cofficient (A, Bj,q;) € L>®(Q)™ x L>(Q)™ x [L>=(0,T; LP(Q)) N C([0,T7; L= (2))]
with p > 2n/3 and w € S"~!, we look for u; solutions of

Opur — Agug + Ay - Vauy + (Vy - Br)ur + quug =0, (2,t) € Q, (4.1)
u(z,0) =0, x€Q, ’
—0ius — Agug — As - Vaus + (2 + Vo - (B2 — A2))us =0, (x,t) € Q, (4.2)

us(z, T)=0, x€Q, ’

taking the form
up (@, t) = e” PP by () +wrp(a,t)),  un(a,t) = e PP (by (@, t) +wa p(x,t)),  (z,1) € Q. (4.3)

In these expressions, the term b;,, j = 1,2, are the principal part of our GO solutions and they will be
suitably designed for the recovery of the coeflicients. The expression wj ,, 7 = 1,2, are the remainder term
in this expression that admits a decay with respect to the parameter p of the form

lim (p~* lwsopll 20,781 () + 1wsell 2 () = 0- (4.4)

p—++o00
We start by considering the principal parts of our GO solutions.
4.1. Principal part of the GO solutions. In this subsection we will introduce the form of the principal

part b; ,, j = 1,2, of our GO solutions given by (4.3). For this purpose, we consider A; € L>*(Q)", j =1,2
and we will consider b; ,, j = 1,2, to be an approximation of a solution b; of the transport equation

—2w - Vb + (A1(z,t) - w)by =0, 2w-Vzby+ (Aa(x,t) -w)be =0, (z,1) €Q. (4.5)

By replacing the functions by, by, whose regularity depends on the one of the coefficients A; and As,
with their approximation by ,, b ,, we can reduce the regularity of the coefficients A;, j = 1,2, from
L0, T; W2 (Q))™ N W (0, T; L>(Q))" to L>=(Q)"™. This approach, also considered in [4, 39, 45, 57],
remove also condition imposed to the coefficients A;, 7 = 1,2, on ¥. Indeed, if in our construction

we use the expression b; instead of b;,, 7 = 1,2, then we can prove Theorem 1.1 only for coefficients
Ay, Ay € L°(0, T; W2°(Q))" N HY(0,T; L>=())" satisfying

0S A1 (z,t) = 05 Ao (z,t), (z,8) €X, a €N, |a| <1,

where in our case we make no assumption on A; at ¥ for (1.7), and we only assume (1.9) for (1.10).
We start by considering a suitable approximation of the coefficients A;, j = 1,2. For all » > 0 we set
B, = {(z,t) € R™" : |(z,t)] < r} and we fix x € C§°(R'*™) such that x > 0, [pi.. x(, t)dtdz = 1,

supp(x) C By1. We introduce also x, given by x,(z,t) = p%x(p%x,p%t) and, for j = 1,2, we fix

Ajp(x,t) = /R1+ Xp(x —y,t —s)A;(y, s)dsdy.

Here, we assume that A; =0 on R*7\ Q. For j = 1,2, since Aj e L (RY*™)™ is supported in the compact
set ), we have
450 = Aillagoeny = 1470 = A5l aen) =0, (4.6)

and one can easily check the estimates
k
||Aj,P||Wk,oo(R1+n) < Cyps, (4.7)
with Cj independent of p. Note that

Ay(z,t) == /RlJr Xp(x —y,t — 5)A(y, s)dsdy = Ay p(x,t) — A (2, 1),
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with A = A; — Ay. Then, for £ € wh :={x € R": w-2 =0}, we fix

“+oo
) 1 Ay (x4 sw,t) - wds
bl,p(x;t) — o~ itT+z:E) <]_ _ epSt) exp ( 0 1,,0( . ) w ) ’ (4.8)
+oo
1 As ,(x + sw,t) - wds

ba p(z,t) = (1 — e_ps(T_t)> exp <f0 2 5 ) > . (4.9)

According to (4.6)-(4.7) and to the fact that, for j = 1,2, supp(A4;,) C [-1,T + 1] x Br41, we have

k
||b17p| LOO(O,T;W’C,OO(R")) + ||b2,P||LOO(O7T;Wk,oo(]Rn)) < Ck037 k 2 1 (410)
k41
”bl,p”Wl,w(o,T;Wk,OO(Rn)) + ||b27p||W1,oo(07T;Wk,oo(Rn)) SCyp 3, k=21 (4.11)
and

bip(x,0) =bop(z,T) =0, x€. (4.12)

Here Ck, k € N, denotes a constant independent of p > 0. Moreover, conditions (4.6)-(4.7) and (4.10) imply
that, for any open bounded subset Q of R” and for Q = Q2 x (0,7T), we have

pEI_POO 12w - Vo — (A 'W))bl,p”m(Q) = pgr_{_loc I[(A1,p — A1) 'W]bl,p||L2(Q) =0, (4.13)
i 2 Ve + (Aol = T (A — Azy) b lag) =0 (4.14)

4.2. Carleman estimates in negative order Sobolev space. In order to complete the construction of
the GO taking the form (4.1)-(4.2) we recall some preliminary tools and we derive two Carleman estimates
in Sobolev space of negative order. In a similar way to [39], for all m € R, we introduce the space H;”(R")
defined by

m n ny . 2 2\ 3 2 n
HP'(R") ={ueS'R"): (" +p°)2a € L*(R")},
with the norm

gy = [ (67 + o2l P

Here for all tempered distributions v € S’'(R™), we denote by @ the Fourier transform of u which, for
u € L*(R™), is defined by

(€)= Ful€) = (27)"% / =Ty (3)dx.

n

From now on, for m € R and £ € R”, we set

(€.p) = (&P + )2
and (D, p)" u defined by
(Dyyp)™ u=F (& )" Fu).
For m € R we define also the class of symbols
ST ={c, € C¥(R™ x R x R") 1 [9F020F cp(,1,)| < Crap (€,0)" 7, 0,8 € N", k € N}.
Following [28, Theorem 18.1.6], for any m € R and ¢, € S}, we define c,(x,t, D,.), with D, = —iV,, by

n

¢ (st Dy)2() = (27) / ¢ (@, 1, ©)3(E)eEdE, = € CT(RM).
For all m € R, we set also OpS}* := {c,(,t, D) : ¢, € S;'}. We fix

PaB g+ = 6I(F)QtJr’)gM})(Lj[ Aa+Ve B+ q)ei(P2t+Pz'W)

and we consider the following Carleman estimate.
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2n

Proposition 4.1. Let A,B € L>*(Q)" and ¢ € L*>(0,T; LP(2)) UC([0,T]; L= (Q)) with p > 2n/3. Then,
there exists py > pa, depending only on Q, T and M > [|Al|pwg)n + Bl p(qyn, such that for all v €
CH([0,T);C5°(92)) satisfying vigr = 0 we have

_1
(p2 HU”L2(0,T;H1(R")) + ”’UHL2(O7T;L2(R"))) <C ||PA,B,q,fU||L2(0)T;H;1(Rn)) P> P, (4.15)
with C > 0 depending on Q, T and M > || A|| o ()0 T Bl 1o (@yn 1l oo (0,710 (02))» when g € L(0,T5 LP(€2))
2n
and M > Al gy + |Bllqaye + Il g 7., 35 g, when q € C(0.T): L¥ ().

Proof. For ¢, s given by (3.1), we consider
PABg+s:= ef(pi’s(Li,A +q+ Vg - B)ef*s, Py_ o= S*Wi,sLiAe@i,s
and in a similar way to Proposition 3.1 we decompose P4 p 4, s into three terms
Papg—s=P,—+ P+ Ps_ aABg
with
P =N, +2ps((x+20) wt s> ((z+20) - w) =5, Po_=-0—2[p—s((x+mz0) w)w- Vs + 2s.
Py _apg=A-Vy—(p+s((x+x) w)A - w+V,-B+q.
We pick Q a bounded open and smooth set of R” such that Q@ C Q and we extend the function A, B, q
by zero to R™ x (0,T). In order to prove (4.15), we fix w € C*([0,T];C§°(€)) satisfying wjor = 0 and we
consider the quantity
(Das )~ (Pr,— + P2,2) (Day p) w0
Here for any z € C*°([0,T];C3°(©2)) we define
(Do, p)™ 2(2,t) = FLH ({6, )™ Fuz(, 1)) (2).

where the partial Fourier transform F, is defined by

Foz(t,€) = (277)_%/ e 1wy (z, t)dx.

In all the remaining parts of this proof C' > 0 denotes a generic constant depending on 2, T', M. Combining
the properties of composition of pseudoddifferential operators (e.g. [28, Theorem 18.1.8]) with the fact that
(D, p)~" commute with 9, we find

(D p) ™ (P~ + Py, ) (Da,p) = Pr— + P + Ry(, Dy), (4.16)
where R, is defined by

Ry(e.€) = Ve (6.p) ™ Dalpr-@. ) + (@) (€00 + 0 (1),

with
P (@,€) = €] + 205(5 + 20) - w + 52(@ + m0) - w)? — 5, pa(3,€) = —2ilp— s((x + o) - w)lew - € +25.
Therefore, we have
i[2ps + 25%(x + 20) - w + 2is(w - E)](w - &)

R,(z,€) = + 1
o(@:6) €2+ 2 enSioe

and it follows
IR (2, Da)wll 120 7yxny < O wll 20,7y ) - (4.17)
On the other hand, applying (3.6) to w with Q replaced by Q = (0,T) x €, we get

1PL—w + Po_w]l 2 (g, 1yxzny = C (3—1/2 120w L2 0.ryxgey + 5720 ||w||L2((0,T)><R")) . (4.18)
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Moreover, using the fact that supp(w) C Q and the elliptic regularity of the operator A we deduce that
[l 2 0,1; 12 (rn)) < C 1Al 20,7y xRm) 5

where in both of these estimates C' > 0 depends only on Q, and by interpolation, we deduce that

1
_ 2 2
st/? HwHL?(O,T;Hl(]R”)) < (5 12 Hw||L2(o,T;H2(Rn))) (53/2 ||wHL2(O,T;L2(R")))

<5 V2 wll oo,z gy + 570 0l 2 0 72 e -

Combining these two estimates with (4.18), we get
1PL—w + Po—wll 2 (o, 7y my 2 C (571/2 1wl 20 s o) + 512 ||w”L2<o,T;H;(R">>> '
Combining this estimate with (4.16)-(4.17), for % sufficiently large, we obtain

[(Pr,— + P2,—) (Da, p) wHL?(o,T;H;l(R"))

—lcp,, )t (PL_ + P, ) (D,, H
o N L R (4.19)

>C (571/2 lwll r2 (0,727 )) + st/2 ||w||L2(0,T;H;(Rn))) :

Moreover, we have

|1 P3,—,4,B,4 (Da, p) w”L?(O,T;H;l(]R”))

<A Ve (Daap) Wl oo gy + 10+ (2 + 20) - ) A - (Do p) Wl oo g ey (4:20)

+ [1(Va - B) (Da, p) wll 120 75171 )y + 114 (Daes ) Wl 20 71172 () -
For the first term on the right hand side of (4.20), we find
AV (Dq,p) w||L2(o,T;H;1(Rn)) < /’_1 AV (Dq,p) “’HLz(o,T;LZ(R"))

HAHLoo(Q) p~ " IVa (Da, p) w||L2(O,T;L2(R")) (4.21)

/

N

S ClAll () (Pfl lwll L2 0,7, 12 ny) + Hw”L?(o,T;Hl(Rn))) :
For the second term on the right hand side of (4.20), we get
[(p+ s((z +z0) w))A - w(Ds,p) w||L2(o,T;H;1(Rn)) <p Hl(p+ s((@ + m0) - w)A - w Dy, p) Wl 20,7512 (RnY)

< (1 + |zo| + SuP|33> [ ANl Lo (@) (D p) wll 20 7,120
e
<C ||A||Loo(Q) ||wHL2(o,T;H;(Rn)) :
(4.22)
For the third term on the right hand side of (4.20), we have

(Ve - B) (Dy,p) w||L2(07T;H;1(Rn)) < ||B(Dx, p) w||L2(O,T;L2(Rn)) + p_l |B -V (Dq, p) wllLZ(O,T;L2(R"))
< CUBl ) (07 10l ooz + 10l 2o,z o)
(4.23)

Finally, for the last term on the right hand side of (4.20), we will prove that there exists p{(s) > p1(s), with
p1(s) given by Proposition 3.1, such that the estimate

g (Dz, p) w||L2(0,T;H;1(Rn)) <Ot ||w||H2(]Rn) +p ||w||L2(Rn)] (4.24)

holds true for p > p(s). For this purpose, let us first assume that n > 3 and ¢ € C([0,T]; L% (€2)). We
consider

Rl

p(,t) == /RM pTh(pT(z — y))aly, t)dy, (4.25)
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with g extended by zero to R" x (0,T) and with h € C3°(R"; [0, +00)) satisfying supp(h) C {z € R : |z| < 1}

and
/ h(z)dz = 1.
We have the following result.
Lemma 4.1. Let ps € [1,+00), ¢ € C([0,T]; LP>(2)) and q, given by (4.25). Then, we have

EI_P HqP q||L°°(07T;L;D2(]Rn)) . (426)

We will prove this result when finished the present proof. For all ¢ € L?(0,T;CS°(R™)) we have

T
‘<q (Da, p) 'w7w>L2(0,T;H;1(R”))7L2(0,T;H},(R"))} S /0 /]R (I = apl + 19o])| (Da, p) w||¢)|dadt.
Applying the Holder inequality, for n > 3, we get

‘<‘1 (De, p) w, w)LZ(O,T;H;I(]R")) L2(0,T;H}(R™)) ‘

<10 = 9ol 738 gy Do ) 0] I (1.27)

L2(0,T; Ln noz (R™)) L2(0,T;L% (R™))
+ qu||L°°(Q) || <D”E7 p> w||L2(R"><(07T)) Hd)”Lz(R" X(O,T))
For the first term on the right hand side of (4.27), applying the Sobolev embedding theorem, we find

Il

< ||q - qp||Loo(07T;L2'Tn(Rn)) ||<DI7p> w||L2(O,T;H1(]R") Hw”LQ(QT;H%(R")) :

llg — quLOO(O,T;L%(R“)) (D=, p) wHLz(O,T;L%(R")) L2(0,T5L 7T (Rn)

Moreover, by interpolation, we obtain

H’L/)HL2(0TH2 (R™)) Hw” OTHZ(R"))

1 1
2 2
< (W eozmmy)* (IWlz sy )
_1
< Cp7 2 |19l L2 o,y )

and we deduce that

e P~ . 2 ISP 17 PP,
<Clla = aoll e g 2 ey (7 1(D220) w||L2<o,T;H1<R,L))) 100 220,75 @ny
<Clq- Qp”Lw(O,T;L%(Rn)) [P_% Hw||L2(o,T;H2(Rn)) + /)% ||wHL2(O,T;H1(R”)):| Hw”L?(O,T;H;(Rn))
<Cp 2 lg— ol oo 0,73 @ny) 19l 2200, 75020y

+Cla = ol e o 12 oy 87 F N0l 20 i) (520 [l 2 0.m0) F 19220 7y ey
<Cl = ol o 28 ey |57 10 im0 miarz @y + 520 10 om0 ) 190 2202303 o

In the same way, for the second term on the right hand side of (4.27), applying the Sobolev embedding
theorem, we obtain

1901l oo () (D5 ) Il L2 191l L2 ()

g C ||qp||L°°(O,T;W2’ZTn(R")) ||<D£D7 p> w”Lz(R”X(O,T)) H,(/}||L2(]R"><(O,T))
1 _
< Cp2 ||w||L2(o7T;H;(]Rn)) (p~! H¢||L2(0,T;H;(Rn)))

1 1 1
< Cp 2 [5 2 Hw||L2(O,T;H2(R”)) +520||w||L2(0,T;H1(Rn)) ||¢||L2(0,T;H;(Rn)))
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Combining these two estimates with (4.27), we obtain
<q <Dr7 p> w, w>L2(07T;H;1(Rn))’Lz(OyT;H}) (R™)) ‘

_1 _1 1
< Ol @oll o g 28 oy + 273 [ 0l 20,2y + 532 100 om0, | 1l 0, ey
and we deduce that
g (D, p) w”Lz(o,T;H;l(Rn))
_1 _1 1 .
<Ol = ol o o028 oy + 272 [ 0l 20 s ayy + 53010 o0,y
On the other hand, using the fact that

L e =gl oo o 1.2 @y +P7 21 =0

we can find p7(s) > p1(s) such that for p > p7(s) we have

S

_1
g = aoll e g s, 2 oy TP 21 S8

Thus, we obtain (4.24). In the same way we can deduce (4.24) for n = 2 and ¢ € C([0,T]; L= (Q)). Now let
us show (4.24) for n > 3 and g € L*°(0,T; LP(Q)), for p < n. In that case, applying the Holder inequality,
we get

‘<q (D P) w3 ) 20,711, (), L2 (0,71 (Rn))‘

< ||Q||L°°(0,T;LP(Q)) {Dz, p) wHLQ (O’T;L%(Rn)) ||7/’HL2 (0 T-Lni?ﬁ%il) (R")) ’

Using the Sobolev embedding theorem, we have

‘@ (Das p) s ¥) 120 11,7 (87), L2 (0,713 (Rn))‘
<C HQ||L°°(07T;LP(Q)) [{Dz, p) w”L?(o,T;Hl(Rn)) ”wHL?(O,T;H%*l(JR”)) :
On the other hand, by interpolation we find

n_q < n_q
190 2z < 180 7 oy

n n

< (Wleermey)”  (18]e0rce)

< Cp» 2 Wl pago,ramy rey)

p

and we deduce that

lg (D, p) wll 20,7117 ()

n_o

<C||Q||L°°(O,T;LP(Q)p; H<Dz7p>wHLZ(O,T;Hl(R"))

n 1 1
S Cllallpoo,msze@ PP 2[87 2 lwll gagny + 52 p Wl 2 ey
Using the fact that 3 > 2, we deduce (4.24), for n > 3 and ¢ € L>(0,T; LP((2)), from this estimate. We
prove in the same way, (4.24), for n = 2 and ¢ € L*°(0,T; LP(§2)). Combining (4.20)-(4.24) with (4.19), for
s = C([[Allp(q) T 1Bllz=(q)) + 1, for some constant C' > 0 depending only on €, 7' but suitably chosen,
we find

_3
2

1PA.B.g.~.s (Das P) Wil 120 711577 () = C <||wHL2(O,T;H2(R")) + ||w||L2(o,T;H;(Rn))) : (4.28)

We fix ¢ € C§° (Q) satisfying 1o = 1 on €, with Q; an open neighborhood of Q such that Q7 C . Then,
we fix w = tho(z) (D, p)~ " v(z, ) and for 1y € Cs° () satisfying vy = 1 on Q, we get (1—g) (Dy, p)” v =
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El — 10) (D, p)” " th1v. According to [28, Theorem 18.1.8], we have (1 — 1) (Dy,p) " ¢y € OpS, > and it
ollows

- —1
HU“L?((O,T)XR") - H(Dm,p> U’ L2(0,T;H}(R™))

—1
< Nwll g2, 1;m1 ey + H(l = %0) (D, p) ¢1v‘

L2(0,T;H}(R™))
C ||’UHL2((0,T)an)
2

S Nwllpa o,z )

In addition, by interpolation, we get
-1 2

p ”vHL?(O,T;Hl(]R"))

< H (Da, p) U‘

L2(0,T;HJ (R™))
2

2 2

+pH<Dz,p>_1v‘

+[[Da ) o]

L2(0,T;H2(R™))
2

L2(0,T;H! (R™))

H<Dw,p>_1v‘

< H<Dz,p>_1v‘

+ H<Dm,p>_1 v‘

Daup) o]
L2(0,T; H} (R™)) +pH< Py

2

L2(0,T;H?(R™))
2

L2(0,T;H?(R™)) L2(0,T;L>(R™))

< 2H<Dmp>*1v’

v

L2(0,T;HL(R™)) L2(0,T;H?(R™))
and it follows
1 ‘
v
L2(0,T;H(R™))

1](Das )™

_1
P2 ol 20,1 (mmyy < 4 H<Dw’p> L2(0,T;H2(R"))

-1
<Al gm0 = o) Do) e[ Lo

-1
oo gy || (0= 00) (Do) e L

¢ ||”||L2((0,T)xJRn)
2
Thus, applying (4.28) for a fixed value of s, we deduce that there exists p, > 0 such that (4.15) is
fulfilled. O

<4 ||wHL2(0,T;H;(Rn)) +4 Hw||L2(O,T;H2(]R”))

Now that the proof of Lemma 4.1 is completed, let us consider the proof of Lemma 4.1.
Proof of Lemma 4.1. We fix £; > 0 and we will prove that

limiup lgp — q||Loo(07T;Lp2(Rn) < 2e1. (4.29)

p—

For this purpose, using the fact that t — ¢,(-,t) € C([0,T]; LP*(R™)), there exists § > 0 such that for all
t,t' € [0, T] satistying |t — t'| < § we have

lg( )] = a5 )| Loz ey < E1- (4.30)

Using the fact that [0, 7] is compact, we can find ¢;,...,ty such that

N
0.7]c | J(t; — 6.t +6)

Jj=1
and, using the fact that
lim qu(at) - Q('at)HLpz(]Rn) = 07 te [O7T]7

p—+—+o00
we get
lim max |g,(-,t;) — q(-,tj)HLm(Rn) =0, j=1,...,N. (4.31)

p——+oo j=1,...,.N
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Thus, for all ¢t € [0,T] there exists k € {1,... N} such that |t — t;| < ¢ and, applying (4.30) and the Young
inequality, we get

||Qp( t) - Q("t)”LPQ(R")
< ||Q( ) - Q('vtk)”Ll’z(R") + ”qp(at) - Qp('atk)”[}’z(]R") + HQp(7tk) - Q('atk)”[}’z(]Rn)
< 2MlgCot) = aCtw)llra ey +  max oo t7) = g0 ) o oy

N

261+ max (o) = a0 ) o gy -
Therefore, we have

||‘IP_Q||Loo(0,T;Lm(Rn)) 2e1 +J_I?3XN||QP( i) _‘I('7tj)||Lp2(Rn)
and using (4.31), we obtain (4.29) from which we deduce (4.26). O
In a similar way to Proposition 4.1, combining estimate (3.7) with the arguments of Lemma 4.1, we
deduce the following estimate.

Proposition 4.2. There exzists p)y > p3 such that for p > ply and for any v € C*([0,T);CS°(2)) satisfying
vjqo = 0, we have

_1
(p2 HU||L2(0,T;H1(R7»)) + ”’UHL2(07T;L2(R"L))) <C HPA,B,q,+”||L2(07T;H;1(Rn)) . P>l (4.32)

with C > 0 depending on Q, T and M > || A|| o ()0 T Bl 1o (@yn 1l oo (0,710 (02))» when g € L(0,T5 LP(€2))

with p > 2n/3 and M > || Al e gyn + [|Bll Lo (gyn + ||q||LOC oT:L % (@) when q € C([0,T); L% (2)).

4.3. Remainder term. In this subsection we will complete the construction of exponentially growing solu-
tions u; € L2(0,T; HY(Q)) of the equation (4.1) and exponentially decaying solutions uy € L?(0,T; H*(Q))
of the equation (4.2) taking the form (4.3). We state these results in the following way.

Proposition 4.3. There exists p3 > pa such that for p > p3 we can find a solution uy; € L?(0,T; H(Q)) of
(4.1) taking the form (4.3) with wy , € H(0,T; H-Y(Q)) N L*(0,T; H'(Q)) satisfying

pgrf P (”wl,pHLz(o,T;Hl(Q)) t+p le,p||L2(Q)) =0, (4.33)
with C depending on Q, T and M > || A1 || e (gyn I Bill oo (gyn H a1l oo (0,710 () when a1 € L(0,T; LP(2))
with p > 2n/3 and M > [|A1|| g (gyn + 1Bl Lo (gyn + ||q1||Loo orsL % () when ¢, € C([0,T); L% ().

Proposition 4.4. There exists py > ps such that for p > ps we can find a solution uy € L2(0,T; H(Q)) of
(4.2) taking the form (4.3) with we,, € H'(0,T; H=1(Q)) N L*(0,T; H'(Q)) satisfying

pgrf P (”wlpHLZ(o,T;Hl(Q)) +p lep”m(Q)) =0, (4.34)

with C' depending on Q, T', M > || Azl ) + B2l oo () + 192l o (0,7,1.0 (1)), when g2 € L(0, T LP(€2))

with p > 2n/3 and M > || Az[| o g)n + 1B2ll e @yn + l92ll e g 11 2 () WhEN 2 € C([0,T; L% (2)).

The proof of these two propositions being similar, we will only consider the one of Proposition 4.3.
Proof of Proposition 4.3. Note first that the condition L4, g, u1 + giui = 0 is fulfilled if and only if wy ,
solves

P, By g1 +W1,p = —Pa, By g1, 401, = p(2w - Vb1, — A1 -wbi ) — (La, + Vg - B+ q1)bip.
Therefore, fixing ¢; € C5°(R™), such that ¢; =1 on Q, and
Fy(@,t) = o1(2)[p(2w - Vaby,p — A1 - wbyp)(@,t) — Lay,Byq: 01,0 (2 1)]
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we can consider wi , as a solution of
PA17Q7+w1,p(‘ra t) = Fp(xa t)7 (33, t) € Q (435)

In the expression of F,, we assume that A;, By and ¢; are extended by zero to a function of R™ x (0, 7).
Let us first show that, we have
lim
p——+o00

HFP”L?(QT;H;l(Rn)) =0. (436)

For this purpose, note first that, applying (4.10) and fixing Q = Q x (0,7T) with Q a bounded open set of
R™ such that supp(yp) C 2, we find

1ol 20,7111 )
<2w-Vab, — A ‘Wbl,p”L?(Q) +p! ||LA1b1,p||L2(Q) + (Ve - Bl)bl,p”Lz(o’T;H;l(Rn)) + H‘hbl,p||L2(0’T;H;1(Rn))

< 2w - Vb, — Ar ~wb1,p||Lz(Q) + CP7% +[[(Ve 'Bl)bLPHLZ(O,T;H,,_l(R")) + ”(hbl’f’”L2(0,T;H;71(R")) ’
(4.37)
with C' > 0 independent of p. Let us first consider the second term on the right hand side of this inequality.
We fix By, given by

Buo(e.t)i= [ o uit = 9)Bily.s)dsdy
R1+n
with B; extended by zero to a function defined on R'*™. Then, for any v; € L?(0,T;C°(R™)), we obtain
‘<(vx : Bl)bl,pv 1/)1>L2(0’T;H;1(R7z))7L2(O’T;H; (R™)) ‘
< )<(Bl : vajbl,paw1>L2(Q)‘ + ’<b1,p7 (B1 — Bi,) - vwwl>L2(Rnx(07T))‘ + )<b17p;Bl,p : Va:¢1>Lz(]Rnx(o,T))‘
< |«

Bl : vzbl,pv 1/11>L2(Q)‘ + ’<b1,pa (Bl - Bl,p) : v1¢1>L2(R"X(O,T))‘ + ‘<vx : (bl,pBl,p)a 1’/]1>L2(R"><(0,T))‘
(4.38)
For the first term on the right hand side of this inequality, applying (4.10), we find

1 2
(By - Vabip 1) 12| < C B0 2% 102y < O F 1l oo,y amy (4.39)

with C independent of p. For the second term on the right hand side of (4.38), we obtain

’<b1,p’ (B1— Bl,p) ’ vww1>L2(]R"><(O,T))‘ < Hbl,pHLm(Rnx(o,T)) [(B1 — Bl,p)||L2(R1+n) ”leL?(O,T;H},(]R"))
< OB — BlaP)HL2(]R1+") ‘7/)1||L2(0,T;H;(Rn))
(4.40)
For the last term on the right hand side of (4.38), we get
‘<vz ! (bl,pBl,p)a7/}1>L2(]Rn><(o’T))’ < HbLPHLoo(o,T;Wl‘oo(]Rn) ”BPHL’Z(O,T;HI(]Rn)) ”leLZ(JR"x(O,T))
1
< Cp73 19l 20 s gy -
Combining this estimate with (4.37)-(4.40), we obtain
‘((Vw ’ Bl)bl,pv z/Jl>L2(0,T;H;1(Rn)),L‘Z(O,T;H;(Rn))
1
<Clp 3 + (B - Bl,p)||L2(R1+n)] ||1/J1||L2(0,T;H;(R"))
and, using the fact that
pEI_POO 1(B1 — BLP)||L2(R1+") =0,
we obtain
A (Ve Bb1ll Lo,z ey =0 (4.41)
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For the last term on the right hand side of (4.37), fixing 11 € L2(0,T;C5°(R™)), we find

‘ {01b1.05 1) 20,7117 @)y, L2 (0,73 3 (R ‘

< ||b1’p||Loo(Q) (/Q Q1||1/}1|d:cdt) < C (/Q q1||¢1|da:dt) .

| izt < Ol 1y 20255y

For n = 2, we find

Applying the Sobolev embedding theorem, we get

1 1 1
H%”LQ(O,T;H(R") sC H‘/’1||L2(0,T;H%(Rn)) <C le”iz(O,T;Hl(R")) le”zz(O,T;Lz(R")) <Cp2 ||7/’1HL2(0,T;H;(R”)) :
It follows,
_1
\/Q |ql‘|w1|d:ﬂdt < Cp 2 ||q1HL°°(O,T;L2:Tn(Q)) ||1/}1‘|L2(O,T;H;(]R")) . (442)

In the same way, for n > 3, we have

/Q larller|dwdt < Cllanllpaq) 191l raomizz@ny < C7 aill oo 2 ) 11 20,7303 )y
Combining these estimates with (4.41)-(4.42), we obtain
A g1bapll o,z ey = 0- (4.43)

Putting conditions (4.13), (4.14), (4.37), (4.41) and (4.43) together, we deduce (4.36).

We will now apply estimate (4.15) to build a solution wy , € L*(0,7; H'(Q)) N H'(0,T; H~*(Q)) to
(4.35) satisfying w; ,(0,-) = 0 and (4.33). We fix Q a smooth bounded open set of R” such that Q C
Q. Applying the Carleman estimate (4.15), we define the linear form K, on {P_a, B, 4, .2 : 2 €
C>([0,T);C3°(2)), zgr = 0}, considered as a subspace of L?(0,T; H, ' (R™)) by

’Cp(P—Al,B1—A1,q1,—Z) = <}71p7 Z>L2(O,T;H;1(R"L)),LZ(O,T;H;(R")) B A COO([O,T],C(()XJ(Q))’ Z‘QT - O
Then, (4.15) implies that, for all z € C*([0, T]; C§° (Q)) satisfying zgr =0, we have

(Ko(P-a1,Bi-Ay,q1,-2)| < p HFp”Lz(o,T;H;l(Rn)) (p~! ”Z”L?(O,T;H;(R")))

<Cp ||Fp||L2(o,T;H;1(Rn)) ||P*A1731*A1,Q1,*Z||L2(07T;H;1(R"))’

Thus, by the Hahn Banach theorem we can extend K, to a continuous linear form on L?(0, T’ Hp_l(R")) still
denoted by K, and satisfying ||, || < Cp|Fpll 2 (o 1. 5r-1 (rny)- Therefore, there exists wy,, € L*(0,T; H)(R™))
such that
2 . -1 n
<h7 wle>L2(O,T;H;1(R")),LQ(O,T;H;(R")) = Kp(h), helL (O, T, Hp (R ))

Choosing h = P_4, B,—a,,q,—% With z € C§°(Q) proves that w , satisfies Pa, B,.q1,+W1,, = F, in Q. In par-
ticular, we deduce that wy , € H*(0,T; H=1(Q)) N L?(0,T; H'(Q)). Moreover, fixing h = P_4, B,— A, ,q1,— 2
with z € C>([0,T];C5°(92)), 2ar = 0 and allowing 2o to be arbitrary proves that wy, = 0 on Q0 In
addition, applying (4.36), we get

limsup p71 ||w1,p||L2(0 T'Hl(]R")) § limsup p71 ||’Cp|| § Chmsup ||Fp||L2(O T~H71(R”)) = O
p——+00 e p——+o00 p—>—+o00 e

Therefore, w; , fulfills (4.35), w1 ,(-,0) = 0 and (4.33). This completes the proof of the proposition. O
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5. RECOVERY FROM THE DN MAP
In this section we will prove Theorem 1.1. For this purpose, applying Proposition 4.3 and 4.4, we fix a
solution u; € L?(0,T; HY(Q)) of (4.1) of the form (4.3) and a solution uy € L2(0,T; H(Q)) of (4.2) given
by (4.3), with wj ,, j = 1,2, satisfying the decay property (4.4)
5.1. Recovery of the first order coefficient. According to (1.6) and (2.8), we have

/ A -V uiusdrdt — / B -V (ujug)dxdt + / quiusdxdt = 0,
Q Q Q
with A = A1 — Ay, B= B — By and ¢ = ¢1 — ¢q2. On the other hand, we find
/ A -V uguadadt —/ B- Vi(uluz)dxdt—i—/ quiusdxdt = p/ (A'w)blypbgﬁpdxdt—l—/ Zy(z,t)dadt (5.1)
Q Q Q Q Q
with
Zp = A-Vibi p(b2ptw2,)+B-Vy[(b1p+wi,p)(be,ptwa,,) |+ A-Vawr p(be,p+ws,p) +q(b1p+wi ) (be,p+ws2,p).
In view of (4.4) and (4.10)-(4.11), we have

li [z =0. 2
i p ‘/Q p(:c,t)dxdt‘ 0 (5.2)
Moreover, we deduce that
/Q(A -w)bi,pba pdadt :/R/n((A —Ap) - w)by pbo pdadt — /0 /n(Ap cw)e PPty ,dadt
T 1
—/ / (A, - w)by e ?* TV dgat

“+o0
, A 1) - wd
+// e T A (2,1) - wexp (— 0 p(x—;sw ) v S) dxdt.
R n

Combining this with (4.6) and applying Lebesgue dominate convergence theorem, we deduce that

+oo
, Az + sw,t) - wd
// e T A (2,t) - wexp (— 9 pl@tswt) w S) dxdt
R n

lim sup
p—r+00

2

= lim sup ‘/ (A- w)bl,pbgﬁpdxdt‘ .
Q

p—+00

In addition, applying (5.1)-(5.2), we obtain
+oo
. Ay(x + sw, t) - wd
// eI (A (2,1) - w) exp <— 0 pletswt) w s) dxdt
R JR® 2

On the other hand, decomposing R™ into the direct sum R” = Rw @ w' and applying the Fubini’s theorem

we get
+oo
. A + sw,t) - wd
/R/n e TS (A, (2,1) - w) exp (— oA 5 s t) - 8) dadt

“+oo
A (y+ s1w,t) - wds L
= / / /(Ap(y + Sow, t) - w) exp (— f52 oy 5 1,1) 1) dSQ] e T Y gyt
RJwt R

lim sup =0 (5.3)

p—-+o00

(5.4)
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Moreover, for all ¢ € (0,7) and all y € w' we have

+o0 too
Ap(y + s10,1) - wds A,y + s1w,t) - wds
/Ap(y+32w,t)~wexp (f” Py + 5109 1>d322/5526xp< Jo Ayt o). 1>d32
® R

2 2

=2 (1o (e Al et )

Combining this with (5.4), we find

. +oo so.t)-wds
Jg Jan 6_’(t7+$'5)Ap(x,t)exp (-fo Ap(x; ,t) ds)dxdt

— 2f]R wa (]_ — exp ( IR y+821w ) wdm)) e—ig.y,ih-dydt.

Now let us introduce the Fourier transform Fg, .+ on R x w' defined by

Fexosf61) = a8 [ [ e vy, feriwt xR), ek gewt.

We fix

(t d
GPCWLxRB(yvt)'—)<1—€‘Xp( fR y+51w> LUS1>)

2
and we remark that for
R = sup [z|
zeQ
we have supp(G,) C {z € wt: |z| < R+ 1} x [-1,T +1]. We fix also

Ay + s1w,t) - wdsy )>
5 .

G:wt xR>(y,t) — <1exp <fR

Using this and applying the mean value theorem and (4.7), for a.e (2/,t) € w' x R, we obtain
Gp(a',t) — G(a',1)]

< exp ( / A(r' + 51w, t) - wds; )
R

< exp |:2(R + 1>(||A||L°°(R1+n)" + HAP||L°°(R1+")"):| /R|A(J,'/ —|— 81w7t) — Ap(a',‘/ + 81W7t>|d81

+ /Ap(x' + s1w,t) - wds
R

/ A,(2' 4 s1w,t) - wdsy — / Az + s1w,t) - wdsy
R R

C (/ |A(z" + sqw, t) — Ap(z" + slw,t)|d51) ,
R

with C' > 0 independent of p. Thus, integrating this expression with respect to 2’ € w' and t € R and
applying the Fubini theorem, we obtain

/ / |G, (2, 6)—G(2', t)|dx’dt < C/ / / [A(y+s1w,1)—A,(y+s1w,1)|ds1dz’dt < C"[[A = Ap|l 1 gy -
RJwt RJwt JR

Then, applying (4.6) we get

16 = Gl ey = O

)
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Combining this with (5.3)-(5.5), we find

2/ Gz, e =" Cdpdt = lim 2// G (2 t)e T da! dt
RJwt R

p—>+o0 wi
+oo
; . Ay(x+ sw,t) - wds
= lim // e T A () exp <— 0 o ) )dwdt
p—r+o00 R n 2
=0.

Allowing ¢ € w' and 7 € R to be arbitrary, we deduce that Fp, .G = 0. Using the injectivity of Fy L,
for a.e (2/,t) € wt x R, we deduce that

exp (_ Jp Aly + s1w,1) 'Wd81) _

2

and, using the fact that A takes value in R™, we obtain
/ Az + s1w,t) -wds; = 0. (5.6)
R

We recall that, here w can be arbitrary chosen.
Now fixing (¢,7) € R™ x R with & # 0, we deduce from (5.6), that, for w € £&- N S"~1, we have

/ / / A(r' + syw, t) - we T E s da’ dt = 0.
RJwt JR

Applying Fubini theorem and a change of variable, we get

/ Az, t) - we T g dt = / / / A(@' + s1w, t) - we™ T E gy da’ dt = 0.
R1+n RJut JR

This proves that
FA)&T) w=0, TER, (€R"\ {0}, wectns (5.7)

Let j,k € {1,...,n} be such that j # k and consider the set Z; := {{ = (&1,...,6n) € R™ ¢ & # 0}. Let
£€Z, TcRandlet

Ewe; — Eex

Jera’

withe; =(0,...,0, 1 ,0,...0),e,=(0,...,0, 1 ,0,...0). Then, for A= (ai,...,a,) we have

position j position k

F (O, a5 = Op;a) (&, 7) = i/ EF + GF(A)(E,7) - w.
Thus, condition (5.7) implies that
F(Oppaj — Oz;a)(&,7) =0, €T, TER.

w =

In the same way, we prove that
F(Op,05 — Oz;ar)(§,7) =0, €Ly, TER
and it is clear that
F(Onaj — On;an)(§,7) = i€ F (a;)(€,7) — & F (ar)(§,7)) =0, £ €R"\ (L UT), T €R.

Therefore, we have F (0, a; —0,,ax) = 0 which implies 0., a; —0;,ar = 0 and by the same way that dA = 0.
This proves (1.7).



DETERMINATION OF CONVECTION TERMS AND QUASI-LINEARITIES 31

5.2. Recovery of the zero order coefficients. In this subsection we assume that (1.7)-(1.9) are fulfilled.
Our goal is to prove that (1.6) implies (1.10). In this subsection, we denote by A, B and ¢ the functions
Ay — Ay, By — By and ¢q; — ¢2 extended by zeo to R!*™. We start, with the following intermediate result.

Lemma 5.1. Let A € L= (R™™)" be compactly supported and assume that dA = 0 in the sense of distribu-
tions taking value in 2-forms. Then, for

1 .
ola, t) = —/ Wd& (z,t) e R* x R, (5.8)
0

we have p € L®(Ry; WH(R?)) and V,p = —%,

We refer to [40, Lemma 4.2] for the proof of this result. From now on we fix ¢ € L (R"*!) given

loc

by (5.8), with A = A, and applying Lemma 5.1 we deduce that V¢ = —% and ¢ € L™ (Ry; WHo°(R?)).
Moreover, since A € WHee(0,T; LP1(2))", by the Sobolev embedding theorem, we deduce that for any open
bounded set 2 C R™ we have

o € W0, T; WP () € WH(0,T; L= ().
Thus, we have ¢ € L>®(0,T; WL (R™)) N W1ee(0,T; LS (R™)). Since R™ \ Q is connected and A = 0 on

loc

[R™\ Q] x (0,T), there exists a function h € W>°(0,T) such that
e(z,t) = h(t), (z,t) € (R"\Q)x(0,T).
Therefore, by replacing (z,t) with ¢(x,t) — h(t), we may assume without lost of generality that ¢ = 0 on
(R™\ ©2) x (0,T). In particular, we have |z = 0. Therefore, we can apply the gauge invariance of the DN
map to get
AAhBh‘h = AA1+2VIW7BI+VIW1q178t§97|V29@|27A1'Vz<P = AA21B1+VI¢7q178tW+AzS@7‘VIWP*AI'VIW'
Then, condition (1.6) implies that

AA2aB1+V:cLP7q178t§07|V:‘c§9|27Al'vm(P =Aa,.B.05- (5-9)
We will prove that this condition implies
Ve Ba+q2 =V (Bi+ Vap) + @1 — 0o — [Vap|* — A1 - Vo (5.10)

For this purpose we fix a solution u; € L?(0,T; H*(Q)) of (4.1), with (A1, B1,q1) replaced by (Ag, By +
Ve, q1 — Oup — [Vapl? — A1 - Vi), of the form (4.3) and a solution ug € L2(0,T; H(Q)) of (4.2) given by
(4.3), with w; ,, j = 1,2, satisfying the decay property (4.33)-(4.34). In light of (2.8), we have

/ (B1 + Vo — Ba) - Vi (uyug)dadt + / (q1 — s — |Vaopl? — A1 - Voo — g2)ugusdadt = 0. (5.11)
Q Q
For the first term on left hand side of (5.11), applying (1.8)-(1.9) and the Green formula, we get

/ (B1 + Vo — Ba) - Vi (ugug)dadt
Q
A
= / (B1 — = — Bs) - Vi (ujus)dzdt
Q 2
(Al — Ag) -V

A
= —/ V$(Bl ——BQ)U1UQd$dt+<[(Bl —Bg)~V— ]ul,u2> X .
Q 2 2 L2(0,T;H ™ 2(99)),L2(0,T;H2 (8%))

A
= —/ V;E . (Bl — 5 — Bg)bl,pbgmdxdt —/ Zpdxdt
Q Q

= / (By + Vo — By) - Va(by pba ) dwdt — / Z,dudt,
Q Q
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with Z, =V, - (B — %)(bl,pwzp + bo pw1 p, + Wi pwa ). In view of (4.33), it is clear that

lim [ Z,dzdt = 0.
p——+o00 Q

Moreover, one can easily check that

/ (Bl + Vm(p — BQ) . Vx(prbg,p)dacdt
Q

1 1 .
- [/ (1 - ep”) (1 e (Tt)> e~ (By Vo~ By)(a, t)dadt] - €.
Q

Sending p — 400 and applying the Lebesgue dominate convergence theorem, we find

i | (B4 Vo) Valbpbo,pdedt = @m) T [F(B + Vap)(€,7)] - (—if)

— (2m)"F FIV, - (B+ Va9)l(€,7)

Therefore, we have

i | (B + Vi) Va(urua)dadt = (2m) 5 FIV. - (B + Vag)) (€. 7).
*JQ

In the same way, we can prove that

lim | (g1 — 8o — |[Vaipl? — A1 - Vg — @)urusdadt = (2m)°F Fl(q — dip — |Vapl? — A1 - Vo) (€, 7).

p=too J o
Combining this with (5.11), we obtain
FVo - (B+Vap) +q— 0o = |[Voil* = A1 - Vap)(§,7) =0, (§,7) e RTT™.
This proves (5.10) and the proof of (1.10) is completed.

5.3. Proof of Corollary 1.1. This subsection is devoted to the proof of Corollary 1.1. For this purpose,
we assume that Aa, g4 = Aa, B¢ Then Theorem 1.1 implies that there exists ¢ € W*°(Q)) such that

AQ = A1 + 2Vzg0, in Q,
Ve B+q=V, (B+V.p)+q—0ip— |Vap]? — A1 - Vo, in Q,
Y = 07 on 3.

Thus, fixing A3 = 41 + V. € L>®(Q), we deduce that ¢ satisfies

Orp — Agp+ Az - Vo =0, in Q,
Y = 07 on 3.

Note that since ¢ € L>(0,T; W1>°(Q)) and Ap = M € L>=(Q) we can define J, ¢ as an element of
L>(0,T; H2(052)). Moreover, the conditions @z = 0 and (Az — A1) - vy = 0 imply that px, = d,¢n = 0.
Thus, fixing O a set with not empty interior such that Q = O U () is an open bounded connected set of R"
with Lipschitz boundary, we can see that ¢ extended by zero to Q x (0,7T) solves

O — Ao+ As-Vep =0, inQx(0,7),
v =0, on O x (0,T),

with Az extended by zero to Q x (0,T). Then the unique continuation properties for parabolic equations
(e.g. [56, Theorem 1.1]) implies that ¢ = 0. Note that such results of unique continuation are stated for
solutions of parabolic equations lying H'(0,T; L?(Q))NL?(0,T; H%(R)), but since they follow from Carleman
estimates like [56, Theorem 1.2|, they can be extended to solutions lying in H'(Q) and we can apply this
result to . This proves that A; = Ay and the proof of Corollary 1.1 is completed.
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5.4. Proof of Corollary 1.2. In this section we will prove Corollary 1.2. For this purpose, we first recall
that Ay, = AA 4, voap, j = 1,2. Therefore, Theorem 1.1 implies that there exists ¢ € W1>°(Q) such
A3 Yeldy)

J
that

i3

A2 = Al + QVIQO, in Q,
Vi (A2) =V, (A1) — 0o+ App — |Vaep|? — A1 - Vo, in Q,
Y = 07 on 3.

Then, fixing A3 = —A; — V.9 € L*°(Q) and applying the fact that (Ay — A1) - 5, = 0, we deduce that ¢
satisfies
—O0ip — Ay + As - Vyp =0, in Q,
{cp:&,go:Q on Y.
Therefore, applying again the unique continuation properties for parabolic equations we deduce that ¢ = 0
and the proof of Corollary 1.2 is completed.

5.5. Proof of Corollary 1.3. In this subsection we will show Corollary 1.3. Let us first consider the
following intermediate result.

Lemma 5.2. Let Q be a bounded open set of R™ with Lipschitz boundary. Then, for every F € L*(Q), the
problem
—0w — Agv = F, mn Q,
v(-,T) =0, in Q, (5.12)
v =0, on .
admits a unique solution v € H*(0,T; L*(2)) N L2(0,T; H()).

Proof. This result is classical but we prove it for sake of completeness. Applying [51, Theorem 4.1, Chapter
3] we know that (5.12) admits a unique solution v € L?(0,7; H*(Q))NH(0,T; H=(Q)). So the proof of the
lemma will be completed if we show that v € H'(0,T; L*(Q2)). Let (A,)n>1 be the non-decreasing sequence
of eigenvalues for the operator H = —A with Dirichlet boundary condition and (¢,),>1 an associated
orthonormal basis of eigenfunctions. We will prove that actually v € L(0,T; D(H)) which will complete the
proof of the lemma. We fix v,,(t) = (v(+,1), on) 12(q), Fu(t) = (F(-,1), ¢n) 12(q) and we remark that v, solves

_atvn + )\nv = Fn7
vp(T) = 0.

Therefore, we have

T—t
on(t) = / e M=) (5)ds = (€7 o,y oo)  (Fu o) (T = 1),

with * the convolution product and, for any interval I, 1; the characteristic function of I. An application
of Young inequality yields

= - ||Fn||L2 0.7
lonllz20.1) < (/O ¢ Mdt) | Fallzzom) € —5—2

Thus, we have

T G 2 2 - T 2 2
/0 (Z 22 |, (1)) )dt > (/O A2 |, ()] >dt

n=1 n=1

oo T ) T 00 ) )
<> (/0 |Fa(1)] >dt—/0 (Z [Fa(t)] )dt = 1Fl2q) -

n=1 n=1

This proves that v = > v,¢, € L*(0,T;D(H)) and using the fact that 9,v = Hv — F we deduce that
neN
v € HY(0,T; L*(Q)). This completes the proof of the lemma. O
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Let us observe that for Q a C''! bounded domain, by the elliptic regularity, the result of Lemma 5.2
would correspond to existence of a strong solution v € L?(0,T; H2(Q))NH(0,T; L*(Q)) of (5.12). However,
we do not want to assume such regularity for 0€2.

From now on, we assume that the conditions of Corollary 1.3 are fulfilled and, for A, B € L>*(Q)"
satisfying V, - A, V, - B € L*°(Q) and ¢q € L*°(0,T; LP*(Q)), we consider the following spaces

Sy apg:={ucL?*0,T;H(Q): du—Au+A-Vyu+V, Bu+qu=0, ujgo = 0},
S_apq:={uel?*0,T;H (Q): —du—Au—A-Vou+(q+ V- (B—A)u=0, ugr =0},
St,4,B,qm ={u€ St apq: supp(yx) C [0,T] x 1},
S_ABgre = U € S_ A B, supp(uxs) C [0,T] X ya}.
Fixing Q1 := (2 \ Q) x (0,T), we can consider the following density result.

Lemma 5.3. Assume that Vy-(B),Vy-(A) € L>(0,T; LP*()). Then the space S A,B,q, (T€SP. S— A,B,q,72)
is dense in the space Si a.p.q (resp. S— a B.q) with respect to the norm L*(Q1).

Proof. Since the proof of these two results are similar, we prove only the density of S_ 4. B.q,y, in St 4.B.q-
For this purpose, we assume the contrary. Then, an application of Hahn Banach theorem implies that there
exist h € L*(Q1) and ug € Sy, 4 B, such that

/ hudzdt =0, w € St A B,qg> (5.13)

/ hugdzdt = 1. (5.14)
1

Now let us extend h by zero to h € L?(Q). According to [51, Theorem 4.1, Chapter 3] there exists a unique
solution w € L?(0,T; H*(Q)) N H*(0,T; H~(£2)) to the IBVP

—Ow —Agw—A-Vyw+ (q+ Vg - (B—A)w = h, in @,
w(-,T) =0, in 0,
w =0, on 3.

Moreover, fixing F = A-V,w — (¢+ V- (B — A))w + h € L?(Q), we deduce that w solves

—Oiw — Ayzw = F, in Q,
w(,T) =0, in €,
w =0, on %

and from Lemma 5.2, we deduce that w € H'(Q). In particular, we have Aw € L?(0,T;L?*(Q2)) which
implies that d,w € L2(0,T; H~2(9%2)). In view of (5.13), choosing u € St A,B,qy We get

(004} Lo o 4 000, 120711 (090)

:/ Awudzdt +/ Vzw - Vyudxdt + / (A - v)uwdo (z)dt
Q Q bY

= <8tu7w)L?(O_’T;H—l(Q)),L2(07T;Hé(g)) + /Q Vew - Vyudzdt — /Q[—atw — Aw|udzdt + /Q Vo - (vwA)dzdt
= <atu — Axu =+ A . VIU + (VI . B =+ q)u7 w>L2(O,T;H71(Q)),Lz(O,T;Hé(Q))

- / u[—0iw — Ayw — A-Vow+ (g + Vi (B — A))wludzdt
Q

= f/ hudzxdt = 0.
1
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Allowing u € Sy A B¢, to be arbitrary, we deduce that d,w),, x,7) = 0. Thus, fixing ©; a set with
nonempty interior such that Q; N9IQ C 1 and Qy = Q, U is a connected open set of R™, we have
—dw — Apyw — A-Vew+ (¢ — divyA)w =0, in Qg x (0,7),
{ w =0, on  x (0,7).
Then the unique continuation properties for parabolic equations implies that w)q, 0,7y = 0 which implies
that wq, x,7) = 0. Note that here we consider an application of unique continuation to solutions of
parabolic equations lying in H'(Q) and with a zero order coefficient (¢+ V.- (B — A)) € L>(0,T; LP*(£s)).
For this purpose one needs to extend by density Carleman estimates like [56, Theorem 1.2] to such solutions
and use Sobolev embedding theorem in order to absorb the multiplication by (¢ + V, - (B — A)) which
corresponds to a bounded operator from L?(0,7; H(22)) to L*(Q2 x (0,7)). In particular, we have

W9, x (0,7) = ObW)aq, x(0,1) = 0
and it follows that
Wia@\Q.)x (0,7) = OvWja\Q.)x(0,1) = 0.
Therefore, we have

/ Awugdzdt + / Vaew - Vaugdadt = 0,
1 1

0 Vew - Vayuodrdt = — (Auo, w) 20 0o m-1 (@\0.),L2 (0,75 HE (00 -
1

o Oywuodrdt = (Do, w) 120 1.1 (2\2.), L2 (0T HI Q) -
1

Thus, we find
/ u[—Ow — Agw — A-Vaw+ (¢g+ Vy - (B — A))w|dxdt

1

= / ug[—0w — Azw — A-Vyw+ (¢+ Vy - (B — A))w]dzdt

1

- / [atuO — Agug+A-Vaug + (q + V- (B))Uo]’wdl'dt

1
=0

According to this last formula, we have
/ uphdzdt = / ug[—0w — Azw — A-Vyw+ (¢+ Vg - (B— A))w]dedt =0
1 1

which contradicts (5.14). This proves the required density result. O
Armed with this lemma we are now in position to complete the proof of Corollary 1.3.

Proof of Corollary 1.3. Using arguments similar to those used for the derivation of (2.8), we can prove

that, for any w1 € S+ 4,,B1,q1,7: and U2 € S_ 4, B, .gs,42> We have

<(AA1,31,(J17"/17"/2 - AA27327Q2771,72)9+7 g—>’H’j,H_

= / (Al — Ag) . VxUNLdedt - /
Q Q

with g4 = w; and g— = up on X. Then, (1.13) implies that, for any w1 € St 4, By .givis U2 € S— 45.Bs.q0.72>
we get

(B1 — BQ) . Vx(uluQ)dxdt + / (q1 — QQ)U1UQd$dt.
Q

/ (A1 — AQ) . Vmu1u2dxdt - / (Bl - Bg) . Vm(uluQ)dxdt + / (fh - QQ)Ul’U,QdZEdt =0. (515)
Q Q Q



36 PEDRO CARO AND YAVAR KIAN

In view of (1.12), we can rewrite (5.15) as

/ (Al — AQ) . unlugdxdt — / (Bl — Bz) . Vx(u1u2)dxdt + / (q1 - QQ)’U,1UQd.Tdt =0.

1 1 1

Then, using (5.15) and integrating by parts in € Q\ Q,, for any w1 € St 4, By .qiyi> U2 € S— 45.Bs.99,725
we find

/ (A1 - A2) . VZ’LHUQdedt + Vz . (Bl - BQ)Ul’LLQd.’Edt +/ ((h - QQ)Ul'LLQd(Edt = 0. (516)

1 Q1 1

Applying the density result of Lemma 5.3, we deduce that (5.16) holds true for any w1 € Sy 4, .Bi.qi.m>
Uz € S_ A;,By,q.- Then, using (5.15) and integrating by parts in o € Q\ Q,, for any w1 € Sy 4,.Bi.q1.91>
Uy € S_ A, By.qns We Obtain

- Vo [(A1 — A2)ug] urdadt + Vs - (B1 — Ba)ujugdzdt —|—/ (g1 — g2)urusdzdt = 0. (5.17)
Q1 Q1 1

Applying again Lemma 5.3, we deduce that (5.17) holds for any u1 € Sy a,.B,,q1» U2 € S— 4,.B,.,q,- I0tegrat-

ing again by parts, we deduce that (5.15) holds for any w1 € S4 A,,B,,q15 U2 € S— 4,,B,,q,- Finally, allowing

Ut € Sy A,,Bi,q1» U2 € S— 4,,B,,q, t0 correspond to the exponentially growing and decaying GO solutions

used in Theorem 1.1, we can complete the proof of the corollary. O

6. APPLICATION TO THE RECOVERY OF NONLINEAR TERMS

In this section © is of class C*T and we denote by X, the parts of dQ given by ¥, = X U (Q x {0}).
Consider the quasilinear IBVP (1.14). Following [50], we start by fixing the condition for the well posedness
of this problem. We consider, functions F' € C'(Q x R x R") satisfying the following conditions:

There exist three non-negative constants cg, ¢; and ¢ so that

uF(z,t,u,v) = —colv)* —crul* — 2, (x,t,u,v) € Q x R x R™. (6.1)
F(z,0,u,v) =0, (z,u,v)€ 90 xR xR". (6.2)
Moreover, we assume that for |u| < M; and (z,t) € Q there exists a constant c3(M;) > 0, depending only
on T, Q and M7, such that
|F(a,t,u,0)] < es(My)(1+ o). (6.3)
Here M; +— c3(My) is assumed to be monotonically increasing.
Now, for G € C?t1+2/2(Q) consider the compatibility condition
0G(x,0) = AG(z,0), z € . (6.4)
We consider the set X = {G|5 ; for some G € C?resl+a/2(Q) such that (6.4) is fulfilled} with the norm
1G]l x = ||G|E||c2+a,1+a/2(§) + ||G|Q><{0}H02+a(§)-

According to [50, Theorem 6.1, pp. 452], for any G € X and for any F € C*(Q x R x R") satisfying (6.1)-
(6.3), problem (1.14) admits a unique solution up g € C***1+/2(Q). Moreover, according to [50, Theorem
2.2, pp. 429], [50, Theorem 4.1, pp. 443| and [50, Theorem 5.4, pp. 448|, for any » > 0 and for any G € X
satisfying

1Gllx <,
there exists a constant M,., depending on €2, T, cg, ¢1, ¢, c3 and r such that

HUF,G||C<>~@/2(§) + ||VIUF,G||Ca,a/2(§) < M, (65)
We associate to (1.14) the DN map
NF X>5G— 8qu,G‘Z S LQ(E).

Since (1.14) is not linear, clearly Mg is also nonlinear. Therefore, in a similar way to [16, 31, 32, 33|, we will
start by linearizing this operator by considering the Fréchet derivative of Nr.



DETERMINATION OF CONVECTION TERMS AND QUASI-LINEARITIES 37

6.1. Linearization procedure. We fix F' € C*(Q x R™ x R) satisfying (6.1)-(6.3) such that 9, F € C?(Q x
R” x R;R) and 9, F € C?(Q x R® x R;R"). Then, for H € X, we consider the IBVP

{ (0w — Aw + Apg(z,t) - Vow + qre(z, )w =0 inQ,

w=H on EP? (6'6)

with
Apg(z,t) = 0 F(z,t, upc(z,t), Voura(z, t), (z,t) €Q,
qgr.c(x,t) == 0 F(z, t,upc(x,t), Voura(z, t), (z,t) € Q.
In light of [50, Theorem 5.4, pp. 322] the IBVP (6.6) has a unique solution w = wp g g € C*T1+2/2(Q)
satisfying
HU’F,G,H||Cz+a,1+a/2(§) < C|H|x

for some constant C' depending only on @), F and G. From now on, for X = Q or X = 9Q and r,s > 0 we
consider the Sobolev spaces

H™ (X x (0,T)) = H*(0,T; L*(X)) N L*(0, T; H"(X)).
Using solutions of (6.6), we will consider the linearization of N in the following way.

Proposition 6.1. F € C'(Q x R™ x R) satisfying (6.1)-(6.3) such that O, F € C*(Q x R" x R;R) and
0, F € CH(Q x R™ x R;R™). Then, N is Fréchet continuously differentiable and

Np(G)H = d,wpc.u, G, HeEX.
Proof. Since u € H*1(Q) — d,u € L?(X) is a bounded linear operator, we only need to show that
Mp:GEX = upg € H'(Q)

is differentiable with M’ (G)(H) = wr,¢,u, G, H € X. For this purpose, we fix G, H € X with |[H|, <1
and we consider

2 lta)/2( A
Z=upgim —Uurg —wrgn € C2TOTe/2(Q)
and set

Az, t) = 0, F (z,t, up,c(z,t), Viur gz, t)),
Q(I7t) = auF(zvtqu,G(x7t)aquF,G(zyt));

1
Aq(z,t) = / (1- T)@SF(QC,Lqu(x?t), Veura(z,t) + 7(Vourpcen — Vaupg)(z,t))dr,
0
1
Ag(x,t) = / (1= 1)0y0uF (z,t,urc(z,t), Vourc(x,t) + 7(Veurcra — Veurg)(z,t))dr,
0

1
q1(z,t) = / (1- T)agF(x, t,upc(z,t) + T(urgrr —urc)(z,t), Vouperu(z, t))dr
0

Applying Taylor’s formula, we get
F(z,t,upc(z,t), Vourcyu(z,t)) — F(z,t,upc(z, t), Vource(z, t))
= A(z,t) - (Vourg+u(z,t) — Vyupa(z,t))
+ Ai(z,t)(Vyuperr(z,t) — Viurpg(x,t), Vourp g (x,t) — Vaupg(z,t)).

F(:I;7 t; uF,G+H<x7 t), va:uF,G+H(x7 t)) - F(Ia ta U/F,G(:L‘7 t)) VI”F,G#»H(xa t))
= q(z,t)(upgru(z,t) —urc(z,t) + @ (2, ) (urcru(z,t) — upc(z,t)?
+ As(z, ) (upcrm(x,t) —upc(x,t)(Veurgru(z,t) — Vaupa(z,1)).
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Thus, fixing
Ky (z,t)
=q1(z,t)(urgru(z,t) —urc(z, )2 + As(z,t)(ur,cyu(z,t) —upa(z,t)(Veuragru(z, t) — Voura(z, t))
+ A1 (2, 0)(Vyupgru(z,t) — Voupa(z,t), Vourp gy (z,t) — Veup g, t))
we deduce that z is the solution of the IBVP

Oz —Apz+A-Vyz+qz= Ky in Q,
z=0 on X,.

Combining this with (6.5), [51, Theorem 4.1, Chapter 3], [52, Theorem 3.2, Chapter 4| and the fact that
| H||» < 1, we deduce that this last problem admits a unique solution z € H?1(Q) satisfying

12l z21q) < CIIKH L2(g) < CIKH L~ (q) (6.7)

with C' depending on Q, T', cg, c1, ¢2, ¢3 and |G| ,,. Moreover, applying again (6.5), we obtain

2
1K m o) < C <||Va:UF,G+H —Vaurcllpeg) + lurcss — UF,G||Loo(Q)) :

with C depending on €, T', cg, c1, 2, c3 and ||G||,,. Combining this with (6.7), we get

2
12l 21y < C (||VzuF,G+H = Vourll gy + Iurc+u — UF,GHLoc(Q)) (6.8)

with C' depending on Q, T, ¢, c1, ¢2, ¢3 and ||G|| 5. On the other hand, fixing y = up,c+m — ur,G, one can
check that y solves ~
{ Oy — Doy + Az, t) - Voy + gz, t)y =0 inQ,
y=H on Xy,

with
1
Az, t) = / OpF(z,t,upgru(x,t), Voura(z,t) + 7(Veurgin(z, t) — Voupa(z, t)))dr,
0

1
G(z,t) = / O F (z,t,upg(z,t) + T(up,gin(z,t) —urg(x,t)), Veurg(z,t))dr.
0

4]

with C' depending on 2, T', ¢y, c1, ¢2, ¢ and |G| . Therefore, applying [50, Theorem 5.3, pp. 320-321] we
obtain

Applying again (6.5), we deduce that

q = <
Caar2(Q) + HQHCQ,Q/‘Z(Q) <C

192l @y + 19l =) < C I1H Lz (6.9)
with C' depending on 2, T', g, c1, ¢2, ¢3 and ||G|| . Combining (6.7)-(6.9), we find

lurg+r —ure —wrenllg2ag) <C IH % -

From this last estimate one can easily check that My is differentiable at G and Mp(G)(H) = wr,e.H,
H € X. To complete the proof of the proposition, we only need to check the continuity of X 5 G —
M(G) € (X, H>'(Q)). For this purpose, we fix G, K,H € X, we consider S := WrgiK,H — WFG.H,
with |||, < 1, and we observe that S solves
{ S — NS+ Ay(x,t) VoS4 G (x,t)S =Ry nQ,
S=0 on X,

where

Ay (z,t) == 0,F (z,t,urgr i (2,1), Vaurarx (z,1), (2,t) € Q,

G1(z,t) == 0, F(x,t,up ik (z,t), Vourar i (z,t), (z,t) € Q,

Ry = A3(Vyurpg — Vauraik, VaWrem) + q3(Upc — UF.G+K)WF.GH
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with

1
As(z,t) = / @%F(x,tup,GJrK(x,t), Vaurc+k(x,t) + T(Veurp ek (x,t) — Veurg(x,t)))dr,
0

1
q;;(lL',t) = / 83F(x,t, UF,G+K(x,t) -+ T(UF’G_;,_K((E,t) — ’U,F7g((£,t)), V$UF7G+K(£L',t))dT.
0
Repeating the above arguments, we find
151 20y < C IR L2y < C K]l

with C depending on Q, T, cg, ¢1, ¢2, c3 and |G|y + ||[H|| . This proves the continuity of G — M’%(G) €
PB(X, H>'(Q)) and it completes the proof of the proposition. O

We will apply this property of the DN map Nr in order to complete the proof of Theorem 1.3, 1.2 and
Corollary 1.4, 1.5.

6.2. Proof of Theorem 1.3 and Corollary 1.5. This subsection is devoted to the proof of Theorem 1.3,
1.2 and Corollary 1.4, 1.5. We start by considering the following intermediate result.

Lemma 6.1. Let G € {K|z, : K €C>®(Q), 0K =0, V. K is constant} and assume that
OLF(x,0,u,v) =0, z€0Q ueR, veR" LN, [ <2 (6.10)

Then the problem (1.14) admits a unique solution up g € C*T1T%(Q) satisfying Oyur.c € C*H 412 (Q).
Proof. Let upg € C22(Q) be the solution of (1.14). We start by fixing z = dyur g,

Az, t) == 0,F(z,t,upc(z,t), Voura(z,t), qlz,t) =0, F(z, t,upc(z,t), Voura(z,t))
and Z defined on ¥, by

Z(z,0) := A,G(z,0) — F(z,0,G(z,0),V,G(x,0)) = —F(z,0,G(z,0),V,G(z,0)), z€Q,

Z(x,t) = 0G(x,t) :=0, (x,t) €X.

Applying (6.10), one can check that Z € X, and z solves the IBVP

Oz — Dz + A(x,t) - Vyz + q(z,t)z = R(z,t), in Q,
(6.11)
z2=21, on X,
with R : (2,t) = —0:F(z,t,urqg(z,t), Vourg(z,t)) € C*%(Q). Using the fact that A, ¢, R € C*%(Q), we
deduce from [50, Theorem 5.3, pp. 320-321] that dyup g € C2T41T%(Q). O

Armed with this lemma we will complete the proof of Theorem 1.2 and 1.3.

Proof of Theorem 1.2. For j =1,2, a € R, v € R", (z,t) € Q, we fix
Aj vz, t) = 0,Fj(z,t, qu,hM(z,t),Vzulsj,hw (x,1), Gjan(z,t):= 8qu(x,t,uF].7hM (:c,t),Vg:qu,hw(x,t))
and B 4, = 0. According to (1.16) and Proposition 6.1, we have
AayoBrvan Hs =My, By go Hy, a€R, veR", HeAX.
Combining this with the density of {H|s : H € Ap} in H,, we obtain
AAy o Biaoition = Moo, Brawvaze. @E€ER, vER" (6.12)
and, in view of (1.15) and Lemma 6.1, we have
Ajarw €CHQ), GaweL™®(Q), j=1,2, acR, veR™

Note that, due to (1.15), the fact that d,h,,, = 0 and the fact that V, h,, = v, here we are actually in
position to apply Lemma 6.1. Moreover, according to [33, Lemma 8.2], (6.12) implies

A gp(x,t) = Az g0z, t), (z,t) €X, a € R,v € R". (6.13)
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Therefore, Theorem 1.1 implies that, for A, , = A1 4, — A2,a,0 extended by zero to R” x (0,T) and for

1

A £

Pa(z,t) == —/ st, (z,t) € R" x R, (a,0) € R x R",
0

we have
A2,a,v(x; t) == Al,a,v(xa t) + QVzwa,v(xa t)a (1’, t) € Rn X (Oa T) (614)

In view of (6.13), the fact that F; € C?F** 2 (Q;C3(R x R")) and the definition of A4; 4., j = 1,2, one can
easily check that (z,t,a,v) — A, € CH(Q;C(R x R™)). Therefore, we have

@ (x,t,a,0) = pau(r,t) € CH0,T;C(QA x R x R™)) NC3(Q;C([0,T] x R x R™)).
In a similar way to the end of the proof of Theorem 1.1, by eventually subtracting to ¢ a function y depending
only on (t,a,v) € (0,T) x R x R, we may assume that
o(z,t,a,v) =0, (z,t) €X, (a,v) € RxR™ (6.15)

Therefore, we can apply the gauge invariance of the DN map A4, , , Bi . ..¢1.0., tO get

AAl,a,'v7Bl,a,v7q1,a,'u = AA2,a,vgBl,a,'u“sz@("a»v)uQI,a,u“r[*atLP(afv’+Az<P7‘vzlp‘27Al,a,v'VIW}("G"'U)'
Combining this with (6.12), we get

AAz,a,u,Bl,a,u,qz,aw = AA2,a,v1B1,a,v+vm§0('vavv)7QI,a,qr+[_at¢(01717+AmW_‘vzw‘2_Al,a,v'vz¢]('7a7U)'

Using (6.13) and repeating the arguments used at the end of the proof of Theorem 1.1 we deduce that, for
all (a,v) € R x R", we have

A2,a,v(x7t) = Al,a,v(xvt) + QVIQO($,t7a,U), (xat) € Q»
q2,a,v(x7t) = Ch,a,v(ﬁ?»t) + —Gtcp(a,v, +Aw§0 - |vz§0|2 - Al,a,'u : VIQP](.'IT,t, a,v), (SC,t) S Q7
o(z,t,a,v) =0, (x,t) € %.
Sending ¢t — 0 in the first two above equality, for all (a,v) € R x R", we obtain
Ou(Fy — F1)(2,0,2 - v+ a,v) = 20,¢(x,0,a,v), x € Q,
Ou(Fy — F1)(2,0,2 - v+ a,v) = —(0p — |Vup|? — 0, F1 (2,0, - v + a,v)050)(2,0,a,v), x €L,
<p(x7taaav):07 (.T,t) €.

Finally, fixing @ = u — z - v in the two first above equalities, we obtain (1.17). This completes the proof of
the theorem. (]

Proof of Theorem 1.3. For j = 1,2, v € R", (z,t) € Q, we fix
Ajo(w,t) == 0 Fy(x,t,up, i, (2,1), Vour, k, (2,1),  qjo(w,t) = 0uFj(2,t,up; p, (x,t), Vour, &, (7,1))
and Bj, = 0. In a similar way to Theorem 1.2, applying (1.23) and Proposition 6.1, we obtain
Aay . Brvgro =My Brvge.s VE R™ (6.16)
and, in view of (1.15) and Lemma 6.1, we have
Ajo €WHS(Q), ¢j0 € L%(Q), j=1,2, veR™"

Note that, due to (1.15), the fact that d;k, = 0 and the fact that Vk, = v, here we are actually in position
to apply Lemma 6.1. Moreover, according to [33, Lemma 8.2], (6.16) implies

Aqp(z,t) = Ao (s, t), (z,t) € X, veR™

In addition, from (1.24)-(1.25), we deduce (z,t,u,v) — 0, F;(x,t,u,v), j = 1,2, is a function independent of
u and v with

OuF1(2,1,0,0) = 0, Fy(x, t,u,v) = Oy Fa(z,t,u,v) = 0, Fs(x,t,0,0), (z,t) €@, ueR, veR"
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It follows
Q10(x,t) = O F1(z, bt up, i, (2,1), Voup, i, (2,1))
= 0y F1(x,t,0,0)
= 0, Fo(2,t,0,0) = Oy, Fa(x, t,up, i, (T,t), Vour, i, (2,1) = q20(z,t), (z,t) €Q, veR"™.

(6.17)
Thus, applying Corollary 1.1, we deduce that

Aqy(z,t) = Ao p(z,t), (x,t) €Q, veR™
Sending ¢ — 0 in this formula, we obtain
Fi(z,0,2 - v,v) = Fo(x,0,2 - v,v), z€Q, veR"™ (6.18)
On the other hand, according to (1.24)-(1.25) we have
Fj(z,t,u,v) = Fj(z,t,0,v) + 0, Fj(x,t,0,v)u = Fj(z,t,0,v) + 0, Fi(x,t,0,v)u

and (6.18) clearly implies (1.19). Assuming that (1.20) is fulfilled, we can easily deduce (1.21) from (1.19).
This completes the proof of the theorem. O
Now let us consider Corollary 1.4 and 1.5 which follow from Theorem 1.2 and 1.3.

Proof of Corollary 1.4. Let condition (1.16) be fulfilled. Then Theorem 1.2 implies that there exists
©:QXRXR" 3 (z,t,u,v) = @(z,t,u,v) € C[0,T]);C(2 x R x R*)) NC3(;C([0,T] x R x R™)) such that,
for all (u,v) € R x R™, conditions (1.17) are fulfilled. Note that, for all z € Q, (u,v) € R x R", we have

20,0(2,0,u —x - v,v) = V- [2050(2,0,u — 2 - v, )] + 20,0;0(x,0,u — T - v, v)v.
Then, (1.17) implies
n
2A1§0($7 Oa U—x-v, U) = Z [8wjavj (FQ - Fl)('r7 07U7U) + 8u8vj (F2 - Fl)('xa 0; U,U)Uj] :

j=1
Applying (1.18), we get
App(z,0,u—x-v,0)=0, z€, (u,v) e RxR"
and, replacing v by u + z - v and applying (1.17), we find
App(z,0,u,v) =0, x€Q, (u,v) eRxR"
{ o(z,0,u,v) =0, x€dQ, (u,v) € RxR".
From the uniqueness of this boundary value problem, we obtain
p(z,0,u,v) =0, z€Q, (u,v) € RxR",
which, combined with (1.17), imply (1.19). In addition, assuming that (1.20) is fulfilled, we can easily deduce
(1.21) from (1.19). |
Proof of Corollary 1.5. In a similar way to Theorem 1.3, for j = 1,2, v € R", (z,t) € Q, we fix
Ajo(x,t) == 0 Fj(x,t,up, , (x,1), Vour; &, (2,1)),  qjo(z,t) = 0uFj(x,t,up; p,(7,t), Voup, i, (2,1)).
Applying (1.24) we deduce (6.17) and from (1.27) we obtain that
Az, t) =0=Ag,(x,t), (z,t) €Qx(0,T), veR™

Combining this with Corollary 1.3, we deduce that there exists o, € L (0, T; W2 (Q))NW (0, T; L>=(Q2))
such that

AZ,U = Al,v + 2sz0m in Q7

q2,v = q1,v - 8153011 + Am@v - |vz§0v|2 - Al,'u : V:L’(va in Q7

Pov = 61/901) =0, on X.
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Then, using (6.17), we deduce that ¢, satisfies

atSDv - Ar@v + AB,U . VISDU = Oa in Qv
Py = auspv = 07 on E,

with Az, = A1, + Vo, € L(Q). Thus, from the unique continuation properties for parabolic equations,
we deduce that ¢, =0 and

Az, t) = Ao (,t), (z,t) €Q, veR™

Then in a similar way to the end of the proof of Theorem 1.3 we deduce (1.19). g

ACKNOWLEDGEMENTS

The second author would like to thank Luc Robbiano for helpfull remarks about unique continuation

properties of solutions of parabolic equations that allow to improve several results of this paper. The work
of the second author is supported by the French National Research Agency ANR (project MultiOnde) grant
ANR-17-CE40-0029.

(1
2l
8]
[4]
(5]
[6]
7]
(8]
[l
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]
(18]

[19]

REFERENCES

K. AstaLA AND L. PAIVARINTA, Calderon’s inverse conductivity problem in the plane, Annals of Mathematics, 163 (2006),
265-299.

H. Ammarl AND G. UHLMANN, Reconstuction from partial Cauchy data for the Schrodinger equation, Indiana University
Math J., 53 (2004), 169-184.

M. BELLASSOUED AND I. BEN AicHA, Stable determination outside a cloaking region of two time-dependent coefficients
in an hyperbolic equation from Dirichlet to Neumann map, Jour. Math. Anal. Appl. 446 (2017), 46-76.

M. BeLLASSOUED, Y. KiaNn, E. Soccorsi, An inverse problem for the magnetic Schrodinger equation in infinite cylindrical
domains, PRIMS, 54 (2018), 679-728.

I. BEN AicHA, Stability estimate for hyperbolic inverse problem with time-dependent coefficient, Inverse Problems, 31
(2015), 125010.

P. Caro, D. Dos SanTos FERREIRA, A. Ruiz, Stability estimates for the Radon transform with restricted data and
applications, Advances in Math., 267 (2014), 523-564.

P. Caro, D. Dos SanTos FERREIRA, A. Ruiz, Stability estimates for the Calderon problem with partial data, J. Diff.
Equat., 260 (2016), 2457-2489.

P. Caro anp K. MaRrINov, Stability of inverse problems in an infinite slab with partial data, Commun. Partial Diff.
Eqns., 41 (2016), 683-704.

P. Caro V. PoHnioLa, Stability Estimates for an Inverse Problem for the Magnetic Schrédinger Operator, IMRN, 2015
(2015), 11083-11116.

P. Caro anp K. M. Rocers, Global Uniqueness for The Calderén Problem with Lipschitz Conductivities, Forum of
Mathematics, Pi, 4 (2016), p. e2. Cambridge University Press.

J. CHENG AND M. Yamamoto, The global uniqueness for determining two convection coefficients from Dirichlet to
Neumann map in two dimensions, Inverse Problems, 16 (2000), L25.

J. CHENG AND M. Yamamoro, Identification of convection term in a parabolic equation with a single measurement,
Nonlinear Analysis, 50 (2002), 163-171.

J. CHENG AND M. Yamamorto, Determination of Two Convection Coefficients from Dirichlet to Neumann Map in the
Two-Dimensional Case, SIAM J. Math. Anal., 35 (2004), 1371-1393.

M. CuouLLl, Une introduction aux problémes inverses elliptiques et paraboliques, Mathématiques et Applications, Vol. 65,
Springer-Verlag, Berlin, 2009.

M. CuourLl AND Y. KiaN, Stability of the determination of a time-dependent coefficient in parabolic equations, MCRF,
3 (2) (2013), 143-160.

M. CuourLl AND Y. KiaN, Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic
equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term, J. Math. Pures
Appl., 114 (2018), 235-261.

M. CuoutLl, Y. KiaN, E. Soccorsi, Determining the time dependent external potential from the DN map in a periodic
quantum waveguide, STAM J.Math. Anal., 47 (6) (2015), 4536-4558.

M. Cnourri, E. M. OunaBaz, M. YamamoTo, Stable determination of a semilinear term in a parabolic equation,
Commun. Pure Appl. Anal. 5 (3) (2006), 447-462.

Z-C. DENg, J-N. Yu, L. YaNg, Identifying the coefficient of first-order in parabolic equation from final measurement
data, Mathematics and Computers in Simulation, 77 (2008), 421-435.



[20]
21]
[22]

(23]
[24]

[25]
[26]
[27]

[28]
[29]

[30]
31]

32]
[33]

[34]
(35]

[36]

[37]
[38]

[39]
[40]

[41]
[42]

j43]
j44]
j45]
j46]
471
48]
[49]
[50]

[51]
[52]

DETERMINATION OF CONVECTION TERMS AND QUASI-LINEARITIES 43

D. Dos SanTos FeErRrEIRA, C. E. KENIG, J. S10STRAND, G. UHLMANN, Determining a magnetic Schrodinger operator
from partial Cauchy data, Comm. Math. Phys., 271 (2) (2007), 467-488.

D. Dos Santos FERREIRA, Y. KURYLEV, M. Lassas, M. SaroThe Calderén problem in transversally anisotropic
geometries, J. Eur. Math. Soc., 18 (2016), 2579-2626.

P. Garran anD Y. KiaN, A stability result for a time-dependent potential in a cylindrical domain, Inverse Problems, 29
(6) (2013), 065006.

P. Grisvarp, Elliptic problems in nonsmooth domains, Pitman, London, 1985.

B. HaBERMAN, Unique determination of a magnetic SchrAddinger operator with unbounded magnetic potential from
boundary data, Int. Math. Res. Not., (2018), no. 4,, 1080-1128.

B. HABERMAN, Uniqueness in Calderon’s problem for conductivities with unbounded gradient, Comm. Math. Phys., 340
(2015), 639-659.

B. HaBerMAN AND D. Tataru, Uniqueness in Calderén’s problem with Lipschitz conductivities, Duke Math. Journal,
162 (3) (2013), 497-516.

M. DE Hoop, G. UHLMANN, Y. WaNG, Nonlinear responses from the interaction of two progressing waves at an interface,
to appear in Annales de 'IHP (C) Anal. Non Linéaire, https://doi.org/10.1016/j.anihpc.2018.04.005.

L. HOrRMANDER, The Analysis of linear partial differential operators, Vol 111, Springer-Verlag, Berlin, Heidelberg, 1983.
G. Hu, Y. Kian, Determination of singular time-dependent coefficients for wave equations from full and partial data,
Inverse Probl. Imaging, 12 (2018), 745-772.

V. Isakov, Completness of products of solutions and some inverse problems for PDE, J. Diff. Equat., 92 (1991), 305-316.
V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rat. Mech. Anal., 124 (1993),
1-12.

V. Isakov, Uniqueness of recovery of some systems of semilinear partial differential equations, Inverse Problems, 17
(2001), 607-618.

V. Isakov, Uniqueness of recovery of some quasilinear Partial differential equations, Commun. Partial Diff. Eqns., 26
(2001), 1947-1973.

V. Isakov, Inverse Problems for Partial Differential Equations, Volume 127, Springer-Verlag, Berlin, Heidelberg, 2006.
V. Isakov AND A. NacHMAN, Global Uniqueness for a two-dimensional elliptic inverse problem, Trans. of AMS, 347
(1995), 3375-3391.

A. KarcuaLov, Y. KUrYLEV, AND M. Lassas, Equivalence of time-domain inverse problems and boundary spectral
problem, Inverse problems, 20 (2004), 419-436.

C.E. KenNig, J. S16STRAND, G. UHLMANN, The Calderon problem with partial data, Ann. of Math., 165 (2007), 567-591.
Y. Kian, Unique determination of a time-dependent potential for wave equations from partial data, Ann. Inst. H. Poincaré
(C) Anal. Non Linéaire, 34 (2017), 973-990.

Y. KiaN, Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data,
SIAM J. Math. Anal., 48 (6), 4021-4046.

Y. Kian, Determination of non-compactly supported and non-smooth electromagnetic potentials appearing in an elliptic
equation on a general unbounded closed waveguide, preprint, arXiv:1802.04185.

Y. Kian, On the determination of nonlinear terms appearing in semilinear hyperbolic equations, preprint, arXiv:1807.02165.
Y. Kian anD L. OKSANEN, Recovery of time-dependent coefficient on Riemanian manifold for hyperbolic equations, to
appear in IMRN, https://doi.org/10.1093/imrn/rnx263.

Y. Kian, E. Soccorsi, Hélder stably determining the time-dependent electromagnetic potential of the Schrodinger equa-
tion, to appear in STAM J. Math. Anal., arXiv:1705.01322.

M. KriBanov, Global uniqueness of a multidimensional inverse problem for a nonlinear parabolic equation by a Carleman
estimate, Inverse Problems, 20 (2004), 1003.

K. KrupcHYk AND G. UHLMANN, Uniqueness in an inverse boundary problem for a magnetic Schrodinger operator with
a bounded magnetic potential, Comm. Math. Phys., 327 (2014), 993-1009.

K. Krupcuyk AND G. UHLMANN, Inverse problems for advection diffusion equations in admissible geometries, Comm.
Partial Differential Equations, https://doi.org/10.1080/03605302.2018.1446163.

Y. KuryLEv, M. Lassas, G. UHLMANN, Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations,
Inventiones mathematicae, 212 (2018), 781-857.

Y. KuryLEv, M. Lassas, L. OksanNeEN, G. UHLMANN, Inverse problem for FEinstein-scalar field equations, preprint,
arXiv:1406.4776.

M. Lassas, G. UnLMmaNnN, Y. WaNa, Inverse problems for semilinear wave equations on Lorentzian manifolds, Commu-
nications in Mathematical Physics, 360 (2018), 555-609.

O. A. LaDYZHENSKAJA, V. A. SoronNiKov, N. N. UrRAL'TZEVA, Linear and quasilinear equations of parabolic type,
Nauka, Moscow, 1967 in Russian ; English translation : American Math. Soc., Providence, RI, 1968.

J-L. Lions aAND E. MAGENES, Non-Homogeneous Boundary Value Problems and Applications, Vol. I, Dunod, Paris, 1968.
J-L. Lions aAND E. MAGENES, Non-Homogeneous Boundary Value Problems and Applications, Vol. II, Dunod, Paris,
1968.



44

[53]
[54]
[55]

[56]
[57]

[58]
[59]

[60]
[61]
[62]

[63]

FOR

PEDRO CARO AND YAVAR KIAN

V. Poniora, A uniqueness result for an inverse problem of the steady state convection-diffusion equation, SIAM J. Math.
Anal., 47 (2015), 2084-2103.

L. PoteENnciaNno-MacHADO, Optimal stability estimates for a Magnetic Schrodinger operator with local data, Inverse
Problems, 33 (2017), 095001.

L. PorEnciaNo-MacHADO, A. Ruiz, Stability estimates for a Magnetic Schrodinger operator with partial data, Inverse
Probl. Imaging, 12 (2018), 1309-1342.

J. C. Saut AND B. SCHEURER, Unique continuation for some evolution equations, J. Diff. Equat., 66 (1987), 118-139.
M. Savro, Inverse problems for nonsmooth first order perturbations of the Laplacian, Ann. Acad. Scient. Fenn. Math.
Dissertations, Vol. 139, 2004.

M. Savo, L. Tzou, Carleman estimates and inverse problems for Dirac operators, Math. Ann., 344 (2009), no. 1, 161-184.
Z. SuN, An inverse boundary value problem for the Schrédinger operator with vector potentials, Trans. Amer. Math. Soc.,
338 No. 2 (1992), 953-969.

Z. SuN AND G. UHLMANN, Inverse problems in quasilinear anisotropic media, Amer. J. Math., 119 (1997), 771-799.

T. STOCKER, Introduction to Climate Modelling, Springer Science & Business Media, 2011.

J. SYVESTER AND G. UHLMANN, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math.,
125 (1987), 153-169.

G. Zuanc anDp P. Li, An Inverse Problem of Derivative Security Pricing, Proceedings of the International Conference
on Inverse Problems, 2003, pp. 411-419.

BCAM - BasQuUE CENTER FOR APPLIED MATHEMATICS, 48009 BILBAO, SPAIN AND IKERBASQUE, BAsQUE FouNDATION
ScIiENCE, 48011 BILBAO, SPAIN.
E-mail address: pcaro@bcamath.org

A1x MARsEILLE UN1v, UNIVERSITE DE TouLoN, CNRS, CPT, MARSEILLE, FRANCE.
E-mail address: yavar.kian@univ-amu.fr



