M. A. Baltanas and G. F. Froment, Computer-generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins, Comput. Chem. Eng, vol.9, pp.71-81, 1985.

M. A. Baltanas, K. K. Van-raemdock, G. F. Froment, and S. R. Mohedas, Fundamental kinetic modeling of hydroisomerization and hydrocracking on Noble metal loaded faujasites-1. rate parameters for Hydroisomerization, Ind. Eng. Chem. Res, vol.28, pp.899-910, 1989.

H. C. Beirnaert, J. R. Alleman, and G. B. Marin, A fundamental kinetic model for the catalytic cracking of alkanes on a USY zeolite in the presence of coke formation, Ind. Eng. Chem. Res, vol.40, pp.1337-1347, 2001.

L. J. Broadbelt, S. M. Stark, and M. T. Klein, Computer-generated Pyrolysis Modeling-on-the-fly Generation of Species, Reactions, and Rates, Ind. Eng. Chem. Res, vol.33, pp.790-799, 1994.

F. Buda, B. Heyberger, R. Fournet, P. A. Glaude, V. Warth et al., Modeling of the gas-phase oxidation of cyclohexane, Energ. Fuel, vol.20, pp.1450-1459, 2006.

C. Chevalier, J. Warnatz, and H. Melenk, Automatic generation of Reaction-mechanism for the Oxidation of higher Hydrocarbons, Ber. Bunsen-Gesellsch, vol.94, pp.1362-1367, 1990.

K. Geem, Challenges of Modeling Steam Cracking of Heavy Feedstocks
URL : https://hal.archives-ouvertes.fr/hal-02001985

S. J. Chinnick, D. L. Baulch, and P. B. Aysough, An expert System for Hydrocarbon Pyrolysis, Chemometr. Intell. Lab, vol.5, pp.39-52, 1988.

J. Dalluge, J. Beens, and U. A. Brinkman, Comprehensive twodimensional gas chromatography: a powerful and versatile analytical tool, J. Chromatogr. A, vol.1000, pp.69-108, 2003.

M. Dente and E. Ranzi, Detailed Prediction of Olefin Yields from Hydrocarbon Pyrolysis through a Fundamental Simulation Program SPYRO, Comput. Chem. Eng, vol.3, p.61, 1979.

M. Dente, E. Ranzi, G. Bozzano, T. Faravelli, and P. J. Valkenburg, Heavy Component Description in the Kinetic Modelling of Hydrocarbon Pyrolysis, AIChE Spring National Meeting, 2001.

M. Dente, G. Bozzano, T. Faravelli, A. Marongiu, and E. Ranzi, Kinetic Modeling of Pyrolysis processes in Gas and Condensed Phase, Adv. Chem. Eng, vol.32, 2007.

I. Dhuyvetter, M. F. Reyniers, G. F. Froment, and G. B. Marin, The Influence of Dimethyl Disulfide on Naphtha Steam Cracking, Ind. Eng. Chem. Res, vol.40, pp.4353-4362, 2001.

W. A. Dietz, Response Factors for Gas Chromatographic Analyses, J. Gas Chromatogr, vol.5, p.68, 1967.

J. L. Dierickx, P. M. Plehiers, G. F. Froment, F. P. Dimaio, and P. G. Lignola, Online GasChromatographic Analysis of Hydrocarbon Effluents-Calibration Factors and their Correlation, Polym. Eng. Sci, vol.362, p.147, 1974.

W. Feng, E. Vynckier, and G. F. Froment, Single-event kinetics of catalytic cracking, Ind. Eng. Chem. Res, vol.32, pp.2997-3005, 1993.

C. A. Floudas and P. M. Pardalos, State of the art in global optimization: Computational methods and Applications, 1996.

G. F. Froment, Kinetics and Reactor Design in the Thermal Cracking for Olefin Production, Chem. Eng. Sci, vol.47, p.2163, 1992.

S. Guiasu and A. Shenitzer, The principle of maximum entropy, Math. Intell, vol.7, pp.42-48, 1985.

D. Guillaume, K. Surla, and P. Galtier, From single events theory to molecular kinetics-application to industrial process modeling, Chem. Eng. Sci, vol.21, pp.4861-4869, 2003.

L. P. Hillewaert, J. L. Dierickx, and G. F. Froment, ComputerGeneration of Reaction Schemes and Rate-Equations for ThermalCracking, AIChE J, vol.34, pp.17-25, 1988.

D. Hudebine, Reconstruction Moléculaire de Coupes Pétrolières, 2003.

D. Hudebine, C. Vera, F. Wahl, and J. J. Verstraete, Molecular Representation of Hydrocarbon Mixtures from Overall Petroleum Analyses, AIChE 2002 Spring Meeting, pp.10-14, 2002.

D. Hudebine and J. J. Verstraete, Molecular Reconstruction of LCO Gasoils from overall Petroleum Analyses, Chem. Eng. Sci, vol.59, pp.4755-4763, 2004.

C. A. Hughey, R. P. Rodgers, and A. G. Marshall, Resolution of 11 000 compositionally distinct components in a single Electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil, Anal. Chem, vol.74, pp.4145-4149, 2002.

E. Joo, S. Park, and M. Lee, Pyrolysis Reaction Mechanism for Industrial Naphtha Cracking Furnaces, Ind. Eng. Chem. Res, vol.40, pp.2409-2415, 2001.

J. N. Kapur and H. K. Kesavan, Entropy Optimization Principles with Applications, 1992.

J. C. Kuo and J. Wei, A Lumping Analysis in Monomolecular Reaction Systems-Analysis of Approximately Lumpable System, Ind. Eng. Chem. Fund, vol.8, p.124, 1969.

S. Li and L. R. Petzold, Design of New DASPK for Sensitivity Analysis, 1999.

D. K. Liguras and D. T. Allen, Structural Models for Catalytic Cracking. 1. Model Compound Reactions, Ind. Eng. Chem. Res, vol.28, p.665, 1989.

D. K. Liguras, D. T. Allen, G. Lozano-blanco, J. W. Thybaut, K. Surla et al., Fischer-Tropsch synthesis: Development of a microkinetic model for metal catalysis, Oil Gas Sci. Technol, vol.28, pp.489-496, 1989.

M. J. Marrero, F. E. Pardillo, and B. S. Fernandez, Estimation of Hydrocarbon Properties from Group-Interaction Contributions, Chem. Eng. Commun, vol.176, p.161, 1999.

G. G. Martens, J. W. Thybaut, and G. B. Marin, Single-event rate parameters for the hydrocracking of cycloalkanes on Pt/US-Y zeolites, Ind. Eng. Chem. Res, vol.40, pp.1832-1844, 2001.

D. M. Matheu, A. M. Dean, J. M. Grenda, and W. H. Green, Mechanism Generation with Integrated Pressure dependence: A New Model for Methane Pyrolysis, J. Phys. Chem. A, vol.107, pp.8552-8565, 2003.

I. Merdrignac and D. Espinat, Physicochemical characterization of petroleum fractions: the State of the Art, Oil Gas Sci. Technol, vol.62, pp.7-32, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02005619

O. C. Mullins, R. P. Rodgers, P. Weinheber, G. C. Klein, L. Venkataramanan et al., Oil reservoir characterization via crude oil analysis by downhole fluid analysis in oil wells with visible-near-infrared spectroscopy and by laboratory analysis with electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Energ. Fuel, vol.20, pp.2448-2456, 2006.

M. Neurock, A. Nigam, D. Trauth, and M. T. Klein, Molecular Representation of Complex Hydrocarbon Feedstocks through Efficient Characterization and Stochastic Algorithms, J. Chromatogr. A, vol.49, pp.327-334, 1994.

S. E. Prickett and M. L. Mavrovouniotis, Construction of Complex Reaction Systems, Comput. Chem. Eng, vol.21, pp.1219-1235, 1997.

R. J. Quann, S. B. Jaffe, E. Ranzi, M. Dente, S. Plerucci et al., Initial Product Distribution from Pyrolysis of Normal and Branched Paraffins, Ind. Eng. Chem. Fund, vol.51, pp.132-139, 1983.

E. Ranzi, M. Dente, A. Goldaniga, G. Bozzano, and T. Faravelli, Lumping procedures in Detailed Kinetic Modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures, Prog. Energ. Combust, vol.27, pp.99-139, 2001.

E. Ranzi, T. Faravelli, P. Gaffuri, and A. Sogaro, Low Temperature Combustion-Automatic-Generation of Oxidation Reactions and Lumping procedures, Combust. Flame, vol.102, pp.179-192, 1995.

M. F. Reyniers and G. F. Froment, Influence of Metal Surface and Sulfur Addition on Coke Deposition in the Thermal Cracking of Hydrocarbons, Ind. Eng. Chem. Res, vol.34, pp.773-785, 1995.

M. R. Riazi, Characterization and properties of petroleum fractions, 2005.

F. O. Rice, The Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals, J. Am. Chem. Soc, vol.53, 1931.

F. O. Rice and K. F. Herzfeld, The Thermal Decomposition of Organic Compounds from the Standpoint of Free Radica1s. VI. The Mechanism of Some Chain Reactions, J. Am. Chem. Soc, vol.56, p.284, 1934.

M. Saeys, M. Saeys, M. F. Reyniers, G. B. Marin, V. Van-speybroeck et al., Ab initio Modelling as a Tool for the Sustainable Development of Chemical processes, PhD Dissertation, AIChE J, vol.50, pp.426-444, 2003.

M. Saeys, M. F. Reyniers, V. Van-speybroeck, M. Waroquier, and G. B. Marin, Ab initio group contribution method for activation energies of hydrogen abstraction reactions, Chem. Phys. Chem, vol.7, pp.188-199, 2006.

C. E. Shannon, J. Singh, M. M. Kumar, A. K. Saxena, and S. Kumar, Reaction pathways and product yields in mild thermal cracking of vacuum residues: A multi-lump kinetic model, Bell System Tech. J, vol.27, pp.239-248, 1948.

D. M. Trauth, Structure of complex mixtures through characterization, reaction, and modeling, 1993.

D. M. Trauth, S. M. Stark, T. F. Petti, M. Neurock, and M. T. Klein, Representation of the molecular structure of petroleum resid through characterization and Monte Carlo modeling, Energ. Fuel, vol.8, pp.576-580, 1994.

K. M. Van-geem, M. F. Reyniers, and G. B. Marin, Two Severity Indices for Scale-Up of Steam Cracking Coils, Ind. Eng. Chem. Res, vol.44, pp.3402-3411, 2005.

K. M. Van-geem, M. F. Reyniers, G. B. Marin, J. Song, D. M. Mattheu et al., Automatic Network generation using RMG for Steam Cracking of n-Hexane, AIChE J, vol.52, pp.718-730, 2006.

K. M. Van-geem, B. Hudebine, M. F. Reyniers, F. Whal, J. J. Verstraete et al., Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices, Comput. Chem. Eng, vol.31, pp.1020-1034, 2007.

C. Vendeuvre, R. Ruiz-guerrero, F. Bertoncini, L. Duval, and D. Thiebaut, Comprehensive two-dimensional Gas chromatography for Detailed Characterisation of Petroleum products, Oil Gas Sci. Technol, vol.62, pp.43-55, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00617264

J. J. Verstraete, N. Revellin, H. Dulot, and D. Hudebine, Molecular Reconstruction of Vacuum Gas Oils, Prepr. Pap.-Am, 2004.

, Chem. Soc., Div. Fuel Chem, vol.49, pp.20-21

V. Warth, F. Battin-leclerc, R. Fournet, P. A. Glaude, G. M. Come et al., Computer based generation of reaction mechanisms for gas-phase oxidation, Comput. Chem, vol.24, pp.541-560, 2000.

J. Wei and J. C. Kuo, A Lumping Analysis in Monomolecular Reaction Systems-Analysis of the Exactly Lumpable System, Ind. Eng. Chem. Fund, vol.8, p.114, 1969.

P. A. Willems and G. F. Froment, Kinetic modelling of the Thermal Cracking of Hydrocarbons. 1. Calculation of frequency factors, Ind. Eng. Chem. Res, vol.27, pp.1959-1966, 1988.

, 3-dimethyl-pentane, 2-methyl-hexane, 3-methyl-hexane, 4-methyl-hexane, heptane, 1,3-dimethyl-cyclopentane, ethyl-cyclopentane, methyl-cyclohexane, 1,2-dimethyl-cyclopentane, 1,1-dimethylcyclopentane, toluene C9 2-methyl-octane, 3-methyl-octane, 4-methyl-octane, 2,6-dimethyl-heptane, 3,3-dimethyl-heptane, 3-ethyl-heptane, nonane, n-butyl-cyclopentane, 1,1,3-trimethyl-cyclohexane, (1-methylethyl)cyclohexane, n-propyl-cyclohexane, 1,2,3-trimethylbenzene, n-propyl-benzene, 1,3,5-trimethyl-benzene, 2-ethyl-1-methyl-benzene C11 2-undecene, 2-methyl-decane, 3-methyl-decane, 4-methyl-decane, 3,5-dimethyl-nonane, 2,6-dimethyl-nonane, undecane, n-pentylcyclohexane, 1-methyl-naphthalene C13 2,6-dimethyl-undecane,3-methyl-dodecane, 4-methyl-dodecane, tridecane C15 3-methyl-tetradecane, 4-methyl-tetradecane, pentadecane C17 3-methyl-hexadecane, heptadecane C19 3-methyl-octadecane, nonadecane C4 isobutane, butane C6 2-methyl-pentane, 3-methyl pentane, 2,3-dimethylbutane, 2,2-dimethyl-butane, hexane, methyl-cyclopentane, cyclohexane, benzene C8 2-methyl-heptane, 3-methyl-heptane, 4-methylheptane, 2,4-dimethyl-hexane, 2,5-dimethyl-hexane, 3,3-dimethyl-hexane, 2,3,4-trimethyl-pentane, 3-ethyl-hexane, octane, iso-propyl-cyclopentane, 1,4-dimethyl-cyclohexane, (1-methyletyl)cyclopentane, 1,3-dimethyl-cyclohexane, ethyl-cyclohexane, ethyl-benzene, o-xylene, p-xylene, m-xylene C10 2-methyl-nonane, 3-methyl-nonane, 4-methylnonane, vol.3