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Abstract

Error-correcting codes are efficient methods for handling noisy com-
munication channels in the context of technological networks. However,
such elaborate methods differ a lot from the unsophisticated way bio-
logical entities are supposed to communicate. Yet, it has been recently
shown by Feinerman, Haeupler, and Korman [PODC 2014] that complex
coordination tasks such as rumor spreading and majority consensus can
plausibly be achieved in biological systems subject to noisy communica-
tion channels, where every message transferred through a channel remains
intact with small probability 1

2
+ε, without using coding techniques. This

result is a considerable step towards a better understanding of the way bi-
ological entities may cooperate. It has nevertheless been established only
in the case of 2-valued opinions: rumor spreading aims at broadcasting
a single-bit opinion to all nodes, and majority consensus aims at leading
all nodes to adopt the single-bit opinion that was initially present in the
system with (relative) majority. In this paper, we extend this previous
work to k-valued opinions, for any constant k ≥ 2.

Our extension requires to address a series of important issues, some
conceptual, others technical. We had to entirely revisit the notion of noise,
for handling channels carrying k-valued messages. In fact, we precisely
characterize the type of noise patterns for which plurality consensus is
solvable. Also, a key result employed in the bivalued case by Feinerman
et al. is an estimate of the probability of observing the most frequent
opinion from observing the mode of a small sample. We generalize this
result to the multivalued case by providing a new analytical proof for the
bivalued case that is amenable to be extended, by induction, and that is
of independent interest.
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1 Introduction

1.1 Context and Objective
To guarantee reliable communication over a network in the presence of noise
is the main goal of Network Information Theory [24]. Thanks to the achieve-
ments of this theory, the impact of noise can often be drastically reduced to
almost zero by employing error-correcting codes, which are practical methods
whenever dealing with artificial entities. However, as observed in [27], the situ-
ation is radically different for scenarios in which the computational entities are
biological. Indeed, from a biological perspective, a computational process can
be considered “simple” only if it consists of very basic primitive operations, and
is extremely lightweight. As a consequence, it is unlikely that biological enti-
ties are employing techniques like error-correcting codes to reduce the impact
of noise in communications between them. Yet, biological signals are subject
to noise, when generated, transmitted, and received. This rises the intriguing
question of how entities in biological ensembles can cooperate in presence of
noisy communications, but in absence of mechanisms such as error-correcting
codes.

An important step toward understanding communications in biological en-
sembles has been achieved recently in [27], which showed how it is possible to
cope with noisy communications in absence of coding mechanisms for solving
complex tasks such as rumor-spreading and majority consensus. Such a result
provides highly valuable hints on how complex tasks can be achieved in frame-
works such as the immune system, bacteria populations, or super-organisms of
social insects, despite the presence of noisy communications.

In the case of rumor-spreading, [27] assumes that a source-node initially
handles a bit, set to some binary value, called the correct opinion. This opinion
has to be transmitted to all nodes, in a noisy environment, modeled as a com-
plete network with unreliable links. More precisely, messages are transmitted in
the network according to the classical uniform push model [19, 32, 38] where,
at each round, every node can send one binary opinion to a neighbor chosen
uniformly and independently at random and, before reaching the receiver, that
opinion is flipped with probability at most 1

2 − ε with ε > 0. It is proved that,
even in this very noisy setting, the rumor-spreading problem can be solved quite
efficiently. Specifically, [27] provides an algorithm that solves the noisy rumor-
spreading problem in O( 1

ε2 log n) communication rounds, with high probability1

(w.h.p.) in n-node networks, using O(log log n + log(1/ε)) bits of memory per
node2. Again, this algorithm exchanges solely opinions between nodes.

In the case of majority consensus, [27] assumes that some nodes are sup-
porting opinion 0, some nodes are supporting opinion 1, and some other nodes

1A series of events En, n ≥ 1, hold w.h.p. if Pr(En) ≥ 1−O(1/nc) for some c > 0.
2We remark that, while it would be more appropriate to measure the space complexity by

the number of states here (in accordance with other work which is concerned with minimizing
it, such as population protocols [4] or cellular automata [35]), we make use of the memory
bits for consistency with the main related work [27].
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are supporting no opinion. The objective is that all nodes eventually support
the initially most frequent opinion (0 or 1). More precisely, let A be the set
of nodes with opinion, and let b ∈ {0, 1} be the majority opinion in A. The
majority bias of A is defined as 1

2 (|Ab| − |Ab̄|)/|A| where Ai is the set of nodes
with opinion i ∈ {0, 1}. In the very same noisy communication model as above,
[27] provides an algorithm that solves the noisy majority consensus problem
for |A| = Ω( 1

ε2 log n) with majority-bias Ω(
√

log n/|A|). The algorithm runs
in O( 1

ε2 log n) rounds, w.h.p., in n-node networks, using O(log log n+ log(1/ε))
bits of memory per node. As for the case of rumor spreading, the algorithm
exchanges solely opinions between nodes. In fact, the latter algorithm for major-
ity consensus is used as a subroutine for solving the rumor-spreading problem.
Note that the majority consensus algorithm of [27] requires that the nodes are
initially aware of the size of A.

According to [27], both algorithms are optimal, since both rumor-spreading
and majority consensus require Ω( 1

ε2 log n) rounds w.h.p. in n-node networks.
Our objective is to extend the work of [27] to the natural case of an arbitrary

number of opinions, to go beyond a proof of concept. The problem that results
from this extension is an instance of the plurality consensus problem in the
presence of noise, i.e., the problem of making the system converging to the
initially most frequent opinion (i.e., the plurality opinion). Indeed, the plurality
consensus problem naturally arises in several biological settings, typically for
choosing between different directions for a flock of birds [11], different speeds
for a school of fish [42], or different nesting sites for ants [30]. The computation
of the most frequent value has also been observed in biological cells [15].

1.2 Our Contribution
1.2.1 Our Results

We generalize the results in [27] to the setting in which an arbitrary large number
k of opinions is present in the system. In the context of rumor spreading, the
correct opinion is a value i ∈ {1, . . . , k}, for any constant k ≥ 2. Initially,
one node supports this opinion i, and the other nodes have no opinions. The
nodes must exchange opinions so that, eventually, all nodes support the correct
opinion i. In the context of (relative) majority consensus, also known as plurality
consensus, each node u initially supports one opinion iu ∈ {1, . . . , k}, or has no
opinion. The objective is that all nodes eventually adopt the plurality opinion
(i.e., the opinion initially held by more nodes than any other, but not necessarily
by an overall majority of nodes). As in [27], we restrict ourselves to “natural”
algorithms [16], that is, algorithms in which nodes only exchange opinions in a
straightforward manner (i.e., they do not use the opinions to encode, e.g., part
of their internal state). For both problems, the difficulty comes from the fact
that every opinion can be modified during its traversal of any link, and switched
at random to any other opinion. In short, we prove that there are algorithms
solving the noisy rumor spreading problem and the noisy plurality consensus
problem for multiple opinions, with the same performances and probabilistic
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guarantees as the algorithms for binary opinions in [27].

1.2.2 The Technical Challenges

Generalizing noisy rumor spreading and noisy majority consensus to more than
just two opinions requires to address a series of issues, some conceptual, others
technical.

Conceptually, one needs first to redefine the notion of noise. In the case of
binary opinions, the noise can just flip an opinion to its complement. In the
case of multiple opinions, an opinion i subject to a modification is switched to
another opinion i′, but there are many ways of picking i′. For instance, i′ can
be picked uniformly at random (u.a.r.) among all opinions. Or, i′ could be
picked as one of the “close opinions”, say, either i+ 1 or i− 1 modulo k. Or, i′
could be “reset” to, say, i = 1. In fact, there are very many alternatives, and
not all enable rumor spreading and plurality consensus to be solved. One of
our contributions is to characterize noise matrices P = (pi,j), where pi,j is the
probability that opinion i is switched to opinion j, for which these two problems
are efficiently solvable. Similar issues arise for, e.g., redefining the majority bias
into a plurality bias.

The technical difficulties are manifold. A key ingredient of the analysis in [27]
is a fine estimate of how nodes can mitigate the impact of noise by observing the
opinions of many other nodes, and then considering the mode of such sample.
Their proof relies on the fact that for the binary opinion case, given a sample
of size γ, the number of 1s and 0s in the sample sum up to γ. Even for the
ternary opinion case, the additional degree of freedom in the sample radically
changes the nature of the problem, and the impact of noise is statistically far
more difficult to handle.

Also, to address the multivalued case, we had to cope with the fact that,
in the uniform push model, the messages received by nodes at every round are
correlated. To see why, consider an instance of the system in which a certain
opinion b is held by one node only, and there is no noise at all. In one round, only
one other node can receive b. It follows that if a certain node u has received b, no
other nodes have received it. Thus, the messages each node receives are not in-
dependent. In [26] (conference version of [27]), probability concentration results
are claimed for random variables (r.v.) that depend on such messages, using
Chernoff bounds. However, Chernoff bounds have been proved to hold only for
random variables whose stochastic dependence belongs to a very limited class
(see for example [22]). In [27], it is pointed out that the binary random variables
on which the Chernoff bound is applied satisfy the property of being negatively
1-correlated (see Section 1.7 in [27] for a formal definition). In our analysis,
we show instead how to obtain concentration of probability in this dependent
setting by leveraging Poisson approximation techniques. Our approach has the
following advantage: instead of showing that the Chernoff bound can be directly
applied to the specific involved random variables, we show that the execution
of the given protocol, on the uniform push model, can be tightly approximated
with the execution of the same protocol on a another suitable communication
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model, that is not affected by the stochastic correlation that affects the uniform
push model.

1.3 Other Related Work
By extending the work of [27], we contribute to the theoretical understanding of
how communications and interactions function in biological distributed systems,
from an algorithmic perspective [5, 7, 3, 2, 4, 34, 13, 14]. We refer the reader
to [27] for a discussion on the computational aspects of biological distributed
systems, an overview of the rumor spreading problem in distributed computing,
as well as its biological significance in the presence of noise. In this section, we
mainly discuss the previous technical contributions from the literature related
to the novelty of our work, that is the extension to the case of several different
opinions.

We remark that, in the following, we say that a protocol solves a problem
within a given time if a correct solution is achieved with high probability within
said time. In the context of population protocol, the problem of achieving ma-
jority consensus in the binary case has been solved by employing a simple pro-
tocol called undecided-state dynamic [4]. In the uniform push model, the binary
majority consensus problem can be solved very efficiently as a consequence of
a more general result about computing the median of the initial opinions [20].
Still in the uniform push model, the undecided state dynamic has been ana-
lyzed in the case of an arbitrarily large number of opinions, which may even
be a function of the number of agents in the system [9]. A similar result has
been obtained for another elementary protocol, so-called 3-majority dynamics,
in which, at each round, each node samples the opinion of three random nodes,
and adopts the most frequent opinion among these three [10]. The 3-majority
dynamics has also been shown to be fault-tolerant against an adversary that can
change up to O(

√
n) agents at each round [20, 10]. Other work has analyzed

the undecided-state dynamics in asynchronous models with a constant number
of opinions [21, 31, 37], and the h-majority dynamics (or slight variations of it)
on different graph classes in the uniform push model [17, 1]. The analysis of
the undecided-state dynamics in [9] has been followed by a series of work which
have used it to design optimal plurality consensus algorithms in the uniform
pull model [28, 29].

A general result by Kempe et al. [33] shows how to compute a large class
of functions in the uniform push model. However, their protocol requires the
nodes to send slightly more complex messages than their sole current opinion,
and its effectiveness heavily relies on a potential function argument that does
not hold in the presence of noise.

To the best of our knowledge, we are the first considering the plurality
consensus problem in the presence of noise.

5



2 Model and Formal Statement of our Results
In this section we formally define the communication model, the main defini-
tions, the investigated problems and our contribution to them.

As discussed in Section 1.1, intuitively we look for protocols that are simple
enough to be plausible communication strategies for primitive biological system.
We believe that the computational investigation regarding biologically-feasible
protocols is still too premature for a reasonable attempt to provide a general
formal definition of what constitutes a biologically feasible computation. Hence,
in the following we restrict our attention solely on the biological significance of
the rumor-spreading and plurality consensus problems and the corresponding
protocols that we consider.

Regarding the problems of multivalued rumor spreading and plurality con-
sensus, while for practical reasons many experiments on collective behavior have
been designed to investigate the binary-decision setting, the considered natural
phenomena usually involve a decision among a large number of different options
[18]: famous examples in the literature include cockroaches aggregating in a
common site [8], and the house-hunting process of ant colonies when seeking a
new site to relocate their nest [25] or of honeybee swarms when a portion of a
strong colony branches from it in order to start a new one [40, 41]. Therefore, it
is natural to ask what trade-offs and constraints are required by the extension
of the results in [27] to the multivalued case.

Regarding the solution we consider, as illustrated in sections 2.3 and 3.1, we
consider a natural generalization of the protocol given in [27], which is essen-
tially an elementary combination of sampling and majority operations. These
elementary operations have extensively been observed in the aforementioned
experimental settings [18].

2.1 Communication Model and Definition of the Problems
The communication model we consider is essentially the uniform push model [19,
32, 38], where in each (synchronous) round each agent can send (push) a message
to another agent chosen uniformly at random. This occurs without having the
sender or the receiver learning about each other’s identity. Note that it may
happen that several agents push a message to the same node u at the same
round. In the latter case we assume that the nodes receive them in a random
order; we discuss this assumption in detail in Section 2.1.1.

We study the problems of rumor-spreading and plurality consensus. In both
cases, we assume that nodes can support opinions represented by an integer
in [k] = {1, . . . , k}. Additionally, there may be undecided nodes that do not
support any opinion, which represents nodes that are not actively aware that
the system has started to solve the problem; thus, undecided nodes are not
allowed to send any message before receiving any of them.

• In rumor spreading, initially, one node, called the source, has an opinion
m ∈ {1, . . . , k}, called the correct opinion. All the other nodes have no
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opinion. The objective is to design a protocol insuring that, after a certain
number of communication rounds, every node has the correct opinion m.

• In plurality consensus, initially, for every i ∈ {1, . . . , k}, a set Ai of nodes
have opinion i. The sets Ai, i = 1, . . . , k, are pairwise disjoint, and their
union does not need to cover all nodes, i.e., there may be some undecided
nodes with no opinion initially. The objective is to design a protocol
insuring that, after a certain number of communication rounds, every node
has the plurality opinion, that is, the opinion m with relative majority in
the initial setting (i.e., |Am| > |Aj | for any j 6= m).

Observe that the rumor-spreading problem is a special case of the plurality
consensus problem with |Am| = 1 and |Aj | = 0 for any j 6= m.

Following the guidelines of [27], we work under two constraints:

1. We restrict ourselves to protocols in which each node can only transmit
opinions, i.e., every message is an integer in {1, . . . , k}.

2. Transmissions are subject to noise, that is, for every round, and for every
node u, if an opinion i ∈ {1, . . . , k} is transmitted to node u during that
round, then node u will receive message j ∈ {1, . . . , k} with probability
pi,j ≥ 0, where

∑k
j=1 pi,j = 1.

The noisy push model is the uniform push model together with the previous two
constraints. The probabilities {pi,j}i,j∈[k] can be seen as a transition matrix,
called the noise matrix, and denoted by P = (pi,j)i,j∈[k]. The noise matrix in
[27] is simply

P =

(
1
2 + ε 1

2 − ε
1
2 − ε

1
2 + ε

)
. (1)

2.1.1 The Reception of Simultaneous Messages

In the uniform push model, it may happen that several agents push a message
to the same node u at the same round. In such cases, the model should specify
whether the node receives all such messages, only one of them or neither of
them. Which choice is better depends on the biological setting that is being
modeled: if the communication between the agents of the system is an auditory
or tactile signal, it could be more realistic to assume that simultaneous messages
to the same node would “collide”, and the node would not be able to grasp any
of them. If, on the other hand, the messages represent visual or chemical signals
(see e.g. [42, 30, 11, 10]), then it may be unrealistic to assume that nodes cannot
receive more than one of such messages at the same round and besides, by a
standard balls-into-bins argument (e.g. by applying Lemma 3), it follows that
in the uniform push model at each round no node receives more than O(log n)
messages w.h.p. In this work we thus consider the model in which all messages
are received, also because such assumption allows us to obtain simpler proofs
than the other variants. We finally note that our protocol does not strictly
need such assumption, since it only requires the nodes to collect a small random
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sample of the received messages. However, since we look at the latter feature as
a consequence of active choices of the nodes rather than some inherent property
of the environment, we avoid to weaken the model to the point that it matches
the requirements of the protocol.

2.1.2 On the Role of Synchronicity in the Result

An important aspect of many natural biological computations is their tolerance
with respect to a high level of asynchrony. Following [27], in this work we tackle
the noisy rumor-spreading and plurality consensus problems by assuming that
agents are provided a shared clock, which they can employ to synchronize their
behavior across different phases of a protocol. In [27, Section 3], it is shown
how substantially relax the previous assumption by assuming, instead, that a
source agent can broadcast a starting signal to the rest of the system to initiate
the execution of the protocol. That is, a simple rumor-spreading procedure is
employed to awake the agents which join the system asynchronously, and it is
shown that with high probability the level of asynchrony (i.e. the largest dif-
ference among the agents’ estimates of the time since the start of the execution
of the protocol), is logarithmically bounded with high probability. It thus fol-
lows that their results can be generalized to the setting in which source agents
initiate the execution of the protocol by waking up the rest of the system, with
only a logarithmic overhead factor in the running time. We defer the reader
to [27, Section 3] for formal details regarding this synchronization procedure.
Our generalization of the results in [27] is independent from any aspect which
concerns the aforementioned procedure. Hence, their relaxation holds for our
results as well, with the same log n additional factor in the running time. It
is an open problem to obtain a simple procedure to wake up the system while
incurring a smaller overhead than the logarithmic one given by [27]. Finally,
we remark that, more generally, the research on solving fundamental coordina-
tion problems such as plurality consensus in fully-asynchronous communication
models such as population protocols is an active research area [23, 6]. We be-
lieve that obtaining analogous results to those provided here in a noisy version
of population protocols is an interesting direction for future research.

2.2 Plurality Bias, and Majority Preservation
When time proceeds, our protocols will result in the proportion of nodes with
a given opinion to evolve. Note that there might be nodes who do not support
any opinion at time t. As mentioned in the previous section, we call such nodes
undecided. We denote by a(t) the fraction of nodes supporting any opinion at
time t and we call the nodes contributing to a(t) opinionated. Consequently,
the fraction of undecided nodes at time t is 1− a(t). Let c(t)i be the fraction of
opinionated nodes in the system that support opinion i ∈ [k] at the beginning
of round t, so that

∑
i∈[k] c

(t)
i = a(t). Let ĉ(t)i be the fraction of opinionated

nodes which receive at least one message at time t − 1 and support opinion
i ∈ [k] at the beginning of round t. We write c(t) = (c

(t)
1 , ..., c

(t)
k ) to denote the
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opinion distribution of the opinions at time t. Similarly, let ĉ(t) = (ĉ
(t)
1 , ..., ĉ

(t)
k ).

In particular, if every node would simply switch to the last opinion it received,
then

E[ĉ
(t+1)
i | c(t)]

=
∑
j∈[k]

Pr[received i | original message is j] · Pr[original message is j]

=
∑
j∈[k]

c
(t)
j · pj,i.

That is,
E[ĉ(t+1) | c(t)] = c(t) · P, (2)

where P is the noise matrix. In particular, in the absence of noise, we have P = I
(the identity matrix), and if every node would simply copy the opinion that it
just received, we had E[ĉ(t+1) | c(t)] = c(t). So, given the opinion distribution at
round t, from the definition of the model it follows that the messages each node
receives at round t + 1 can equivalently be seen as being sent from a system
without noise, but whose opinion distribution at round t is c(t) · P .

Recall that m denotes the initially correct opinion, that is, the source’s
opinion in the rumor-spreading problem, and the initial plurality opinion in
the plurality consensus problem. The following definition naturally extends the
concept of majority bias in [27] to plurality bias.

Definition 1. Let δ > 0. An opinion distribution c is said to be δ-biased toward
opinion m if cm − ci ≥ δ for all i 6= m.

In [27], each binary opinion that is transmitted between two nodes is flipped
with probability at most 1

2 − ε, with
3 ε = n−

1
4 +η for an arbitrarily small η > 0.

Thus, the noise is parametrized by ε. The smaller ε, the more noisy are the
communications. We generalize the role of this parameter with the following
definition.

Definition 2. Let ε = ε(n) and δ = δ(n) be positive. A noise matrix P is
said to be (ε, δ)-majority-preserving ((ε, δ)-m.p.) with respect to opinion m if,
for every opinion distribution c that is δ-biased toward opinion m, we have
(c · P )m − (c · P ) i > ε δ for all i 6= m.

In the rumor-spreading problem, as well as in the plurality consensus prob-
lem, when we say that a noise matrix is (ε, δ)-m.p., we implicitly mean that it
is (ε, δ)-m.p. with respect to the initially correct opinion. Because of the space
constraints, we defer the discussion on the class of (ε, δ)-m.p. noise matrices in
Section 4 (including its tightness w.r.t. theorems 1 and 2).

3For a discussion on what happens for other values of ε, see Appendix C.
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2.3 Our Formal Results
We show that a natural generalization of the protocol in [27] solves the ru-
mor spreading problem and the plurality consensus problem for an arbitrary
number of opinions k. More precisely, using the protocol which we describe in
Section 3.1, we can establish the following two results, whose proof can be found
in Section 3.

Theorem 1. Assume that the noise matrix P is (ε, δ)-m.p. with ε = Ω(n−
1
4 +η)

for an arbitrarily small constant η > 0 and δ = Ω(
√

log n/n). The noisy
rumor-spreading problem with k opinions can be solved in O( logn

ε2 ) communi-
cation rounds, w.h.p., by a protocol using O(log log n+ log 1

ε ) bits of memory at
each node.

Theorem 2. Let S with |S| = Ω( 1
ε2 log n) be an initial set of nodes with opinions

in [k], the rest of the nodes having no opinions. Assume that the noise matrix
P is (ε, δ)-m.p. for some ε > 0, and that S is Ω(

√
log n/|S|)-majority-biased.

The noisy plurality consensus problem with k opinions can be solved in O( logn
ε2 )

communication rounds, w.h.p., by a protocol using O(log log n + log 1
ε ) bits of

memory at each node.

For k = 2, we get the theorems in [27] from the above two theorems. Indeed,
the simple 2-dimensional noise matrix of Eq. (1) is ε-majority-biased. Note that,
as in [27], the plurality consensus algorithm requires the nodes to known the
size |S| of the set S of opinionated nodes.

3 The Analysis
In this section we prove Theorem 1 and Theorem 2 by generalizing the analysis
of Stage 1 given in [27] and by providing a new analysis of Stage 2. Note that
the proof techniques required for the generalization to arbitrary k significantly
depart from those in [27] for the case k = 2. In particular, our approach provides
a general framework to rigorously deal with many kind of stochastic dependences
among messages in the uniform push model.

3.1 Definition of the Protocol
We describe a rumor spreading protocol performing in two stages. Each stage
is decomposed into a number of phases, each one decomposed into a number of
rounds. During each phase of the two stages, the nodes apply the simple rules
given below.

3.1.1 The rule during each phase of Stage 1.

Nodes that already support some opinion at the beginning of the phase push
their opinion at each round of the phase. Nodes that do not support any opinion
at the beginning of the phase but receive at least one opinion during the phase
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Lemma 9: binary
bias amplification

Lemma 10: domination
of bias amplification

Lemma 3: push model
approximation

Lemma 1: distribution
of conditioned poisson

Lemma 12: plurality
at the end of Stage 2

Theorem 1: noisy
rumor-spreading

Theorem 2: noisy
plurality consensus

Lemma 8: Beta
vs Binomial

Lemma 11: multi-valued
bias amplification

Proposition 1:
bias amplification

Lemma 4: bias at
the end of Stage 1

Lemma 2: balls-into-bins
approximation

Lemma 7: bias at
the end of Phase j

Lemma 6:
#opinionated in Stage 1

Lemma 5:
#opinionated in Phase T

Figure 1: Diagrams of dependencies among the different parts of the analysis.
Each box represents a statement proven in the analysis, and an arrow between
two boxes u and v signifies that the statement of box u is employed in the proof
of box v.

start supporting an opinion at the end of the phase, chosen u.a.r. (counting
multiplicities) from the received opinions4. In other words, each node tries to
acquire an opinion during each phase of Stage 1, and, as it eventually receives
some opinions, it starts supporting one of them (chosen u.a.r.) from the be-
ginning of the next phase. In particular, opinionated nodes never change their
opinion during the entire stage.

More formally, let φ, β, and s be three constants satisfying φ > β > s. The
rounds of Stage 1 are grouped in T+2 phases with T = blog(n/(2s/ε2 log n))/ log(β/ε2+
1)c. Phase 0 takes s/ε2 log n rounds, phase T + 1 takes φ/ε2 log n rounds, and
each phase j with 1 ≤ j ≤ T takes β/ε2 rounds. We denote with τj the end of
the last round of phase j.

Let tu be the first time in which u receives any opinion since the beginning
of the protocol (with tu = 0 for the source). Let ju be the phase of tu, and
let val(u) be an opinion chosen u.a.r. by u among those that it receives during
phase ju5. During the first stage of the protocol each node applies the following
rule.

4Note that, in the protocol considered in [27], the choice of each node’s new opinion in
both stages is based on the first messages received. In [27], in order to relax the synchronicity
assumption that nodes share a common clock, they adopt the same sample-based variant of
the rule that we adopt here.

5Note that, in order to sample u.a.r. one of them, u does not need to collect all the opinions
it receives. A natural sampling strategy such as reservoir sampling can be used.
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Rule of Stage 1. Each opinionated node u pushes opinion val(u)
during each round of every phase j = ju + 1, ..., T + 1.

3.1.2 The rule during each phase of Stage 2.

During each phase of Stage 2, every node pushes its opinion at each round of the
phase. At the end of the phase, each node that received “enough” opinions takes
a random sample4 of them, and starts supporting the most frequent opinion in
that sample (breaking ties u.a.r.).

More formally, the rounds of stage 2 are divided in T ′ + 1 phases with
T ′ = dlog(

√
n/ log n)e. Each phase j, 0 ≤ j ≤ T ′ − 1, has length 2` with

` = dc/ε2e for some large-enough constant c > 0, and phase T ′ has length 2`′

with `′ = O(ε−2 log n). For any finite multiset A of elements in {1, . . . , k}, and
any i ∈ {1, . . . , k}, let occ(i, A) be the number of occurrences of i in A, and
let mode(A) = {i ∈ {1, . . . , k} | occ(i, A) ≥ occ(j, A) for every j ∈ {1, . . . , k}}.
We then define maj(A) as the most frequent value in A (breaking ties u.a.r.), i.e.,
maj(A) is the r.v. on {1, . . . , k} such that Pr(maj(A) = i) = 1{i∈mode(A)}/|mode(A)|.
Let Rj(u) be the multiset of messages received by node u during phase j. During
the second stage of the protocol each node applies the following rule.

Rule of Stage 2. During each phase j of length 2L of Stage 2 (L = `
or `′), each node u pushes its current opinion at each round of the phase,
and starts drawing a random uniform sample S(u) of size L from Rj(u).
Provided |Rj(u)| ≥ L, at the end of the phase u changes its opinion to
maj(S(u)).

Let us remark that the reason we require the use of sampling in the previous
rule is that at a given round a node may receive much more messages than 2L.
Thus, if the nodes were to collect all the messages they receive, some of them
would need much more memory than our protocol does. Finally, observe that
overall both stages 1 and 2 take O( 1

ε2 log n) rounds.

3.2 Pushing Colored Balls-into-Bins
Before delving into the analysis of the protocol, we provide a framework to
rigorously deal with the stochastic dependence that arises between messages in
the uniform push model. Let process O be the process that results from the
execution of the protocol of Section 3.1 in the uniform push model. In order
to apply concentration of probability results that requires the involved random
variables to be independent, we view the messages as balls, and the nodes as
bins, and employ Poisson approximation techniques. More specifically, during
each phase j of the protocol, let Mj be the set of messages that are sent to
random nodes, and Nj be the set of messages sent after the noise has acted on
them. (In other words, Nj =

⋃
uRj(u)). We prove that, at the end of phase j,

we can equivalently assume that all the messages Mj have been sent to the
nodes according to the following process.

12



Definition 3. The balls-into-bins process B associated to phase j is the two-
step process in which the nodes represent bins and all messages sent in the
phase represent colored balls, with each color corresponding to some opinion.
Initially, balls are colored according to Mj. At the first step, each ball of color
i ∈ {1, . . . , k} is re-colored with color j ∈ {1, . . . , k} with probability pi,j, inde-
pendently of the other balls. At the second step all balls are thrown into the bins
u.a.r. as in a balls-into-bins experiment.

Claim 1. Given the opinion distribution and the number of active nodes at the
beginning of phase j, the probability distribution of the opinion distribution and
the number of active nodes at the end of phase j in process O is the same as if
the messages were sent according to process B.

It is not hard to see that Claim 1 holds in the case of a single round. For
more than one round, it is crucial to observe that the way each node u acts
in the protocol depends only on the received messages Rj(u), regardless of the
order in which these messages are received. As an example, consider the opinion
distribution in which one node has opinion 1, one other node has opinion 2, and
all other nodes have opinion 3. Suppose that each node pushes its opinion for
two consecutive rounds. Since, at each round, exactly one opinion 1 and exactly
one opinion 2 are pushed, no node can receive two 1s during the first round
and then two 2s during the second round, i.e. no node can possibly receive the
sequence of messages “1,1,2,2” in this exact order. Instead, in process B such a
sequence is possible.

Proof of Claim 1. In both process B and process O, at each round, the noise
acts independently on each ball/message of a given color/opinion, according to
the same probability distribution for that color/opinion. Then, in both pro-
cesses, each ball/message is sent to some bin/node chosen u.a.r. and indepen-
dently of the other balls/messages. Indeed, we can couple process B and process
O by requiring that:

1. each ball/message is changed by the noise to the same color/value, and

2. each ball/message ends up in the same bin/node.

Thus, the joint probability distribution of the sets {Rj(u)}u∈[n] in process O is
the same as the one given by process B.

Observe also that, from the definition of the protocol (see the rule of Stage
1 and Stage 2 in Section 3.1), it follows that each node’s action depends only
on the set Rj(u) of received messages at the end of each phase j, and does
not depend on any further information such as the actual order in which the
messages are received during the phase.

Summing up the two previous observations, we get that if, at the end of each
phase j, we generate the Rj(u)s according to process B, and we let the protocol
execute according to them, then we indeed get the same stochastic process as
process O.
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Now, one key ingredient in our proof is to approximate process B using the
following process P.

Definition 4. Given Nj, process P associated to phase j is the one-shot process
in which each node receives a number of opinions i that is a random variable with
distribution Poisson(hi/n), where hi is the number of messages in Nj carrying
opinion i, and each Poisson random variable is independent of the others.

Now we provide some results from the theory of Poisson approximation for
balls-into-bins experiments that are used in Section 3.2. For a nice introduction
to the topic, we refer to [36].

Lemma 1. Let {Xj}j∈[ñ] be independent r.v. such that Xj ∼Poisson(λj). The
vector (X1, ..., Xñ) conditional on

∑
j X = m̃ follows a multinomial distribution

with m̃ trials and probabilities ( λ1∑
j λj

, ..., λñ∑
j λj

).

Lemma 2. Consider a balls-into-bins experiment in which h colored balls are
thrown in n bins, where hi balls have color i with i ∈ {1, ..., k} and

∑
i hi = h.

Let {Xu,i}u∈{1,...,n},i∈{1,...,k} be the number of i-colored balls that end up in bin
u, let f(x1,1, ..., xn,1, xn,2, ..., xn,k, z1, ..., zn) be a non-negative function with pos-
itive integer arguments x1,1, ..., xn,1,xn,2, ..., xn,k,z1, ..., zn, let {Yu,i}u∈{1,...,n},i∈{1,...,k}
be independent r.v. such that Yu,i ∼Poisson(hi/n) and let Z1, ..., Zn be integer
valued r.v. independent from the Xu,is and Yu,is. Then

E [f (X1,1, ..., Xn,1, Xn,2, ..., Xn,k, Z1, ..., Zn)]

≤ ek
√∏

i

hi E [f (Y1,1, ..., Yn,1, Yn,2, ..., Yn,k, Z1, ..., Zn)] .

Proof. To simplify notation, let Z̄ = (Z1, ..., Zn), X̄ = (X1,1, ..., Xn,1, Xn,2, ..., Xn,n),
Ȳ = (Y1,1, ..., Yn,1, Yn,2, ..., Yn,n), Ȳ∑ = (

∑n
u=1 Yu,1, ...,

∑n
u=1 Yu,k), λi = hi/n,

λ̄ = (λ1, ..., λk) and finally x̄ = (x1, ..., xk) for any x1, ..., xk. Observe that, while
Xu,i and Xv,i are clearly dependent, Xu,i and Xv,j with i 6= j are stochastically
independent (even if u = v). Indeed, the distribution of the r.v. {Xu,i}u∈{1,...,n}
for each fixed i is multinomial with λi trials and uniform distribution on the
bins. Thus, from Lemma 1 we have that {Xu,i}u∈{1,...,n}are distributed as
{Yu,i}u∈{1,...,n} conditional on

∑n
u=1 Yu,i = λi, that is

E

[
f
(
Ȳ , Z̄

)∣∣∣∣∣
n∑
u=1

Yu,1 = λ1, ...,

n∑
u=1

Yu,k = λk

]
= E

[
f
(
X̄, Z̄

)]
.

Therefore, we have

E
[
f
(
Ȳ , Z̄

)]
=

∑
x̄:x1,...,xk≥0

E
[
f
(
Ȳ , Z̄

)∣∣ Ȳ∑ = x̄
]

Pr
(
Ȳ∑ = x̄

)
≥ E

[
f
(
Ȳ , Z̄

)∣∣ Ȳ∑ = λ̄
]

Pr
(
Ȳ∑ = λ̄

)
= E

[
f
(
X̄, Z̄

)]
Pr
(
Ȳ∑ = λ̄

)
= E

[
f
(
X̄, Z̄

)]∏
i

hhii
hi!

e−hi ≥ E
[
f
(
X̄, Z̄

)] e−k√∏
i hi

,
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where, in the last inequality, we use that, by Stirling’s approximation, a! ≤
e
√
a(ae )a for any a > 0.

From Lemma 1 and Lemma 2, we get the following general result which says
that if a generic event E holds w.h.p in process P, it also holds w.h.p. in process
O.

Lemma 3. Given the opinion distribution and the number of active nodes at the
beginning of a fixed phase j, let E be an event that, at the end of that phase, holds
with probability at least 1 − n−b in process P, for some b > (k log h)/(2 log n)
with h =

∑
i hi.

6 Then, at the end of phase j, E holds w.h.p. also in process O.

Proof. Thanks to Claim 1, it suffices to prove that, at the end of phase j, E
holds w.h.p. in process B.

Let Ē be the complementary event of E . Let h = |Mj | be the number of
balls that are thrown in process B associated to phase j, where hi balls have
color i with i ∈ {1, ..., k} and

∑
i hi = h. Let {Xu,i}u∈{1,...,n},i∈{1,...,k} be

the number of i-colored balls that end up in bin u, let {Yu,i}u∈{1,...,n},i∈{1,...,k}
be the independent r.v. of process P such that Yu,i ∼Poisson(hi/n) and let
Z1, ..., Zn be integer valued r.v. independent from the Xu,is and Yu,is.

Fix any realization of Nj , i.e. any re-coloring of the balls in the first
step of process B. By choosing f in Lemma 2 as the binary r.v. indicating
whether event Ē has occurred, where Ē is a function of the r.v. X1,1, ..., Xn,1,
Xn,2, ..., Xn,k, Z1, ..., Zn, we get

Pr
(
Ē (X1,1, ..., Xn,k, Z1, ..., Zn)

∣∣Nj)
≤ ek

√∏
i

hi Pr
(
Ē (Y1,1, ..., Yn,k, Z1, ..., Zn)

∣∣Nj) . (3)

Thus, from Eq. (3), the Inequality of arithmetic and geometric means and
the hypotheses on the probability of E , we get

Pr
(
Ē (X1,1, ..., Xn,k, Z1, ..., Zn)

∣∣Nj)
≤ ek

√∏
i

hi Pr
(
Ē (Y1,1, ..., Yn,k, Z1, ..., Zn)

∣∣Nj)
≤ ek

(
h

k

) k
2

Pr
(
Ē (Y1,1, ..., Yn,k, Z1, ..., Zn)

∣∣Nj)
Finally, let N be the set of all possible realizations of Nj . By the law of total

6 Note that, if Nj is not yet fixed, the parameters hi of process P associated to phase j
are random variables. However, if the opinion distribution and the number of active nodes at
the beginning of phase j are given, then h =

∑
i hi = |Nj | = |Mj | is fixed.
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probability over N , we get that∑
s∈N

Pr
(
Ē (X1,1, ..., Xn,k, Z1, ..., Zn)

∣∣Nj = s
)

Pr (Nj = s)

≤ ek
(
h

k

) k
2 ∑
s∈N

Pr
(
Ē (Y1,1, ..., Yn,k, Z1, ..., Zn)

∣∣Nj = s
)

Pr (Nj = s)

≤ ek
(
h

k

) k
2

Pr
(
Ē (Y1,1, ..., Yn,k, Z1, ..., Zn)

)
≤ ek

k
k
2

h
k
2 n−b ≤ ek

e
k
2 log k

e
k
2 log he−b logn ≤ ek− k2 log k+ k

2 log h−b logn ≤ n−Θ(1),

where in the last line we used the hypotheses on the probability of Ē .

We now analyze the two stages of our protocol, starting with Stage 1. Note
that, in the following two sections, the statements about the evolution of the
process refer to process O.

3.3 Stage 1
The rule of Stage 1 is aimed at guaranteeing that, w.h.p., the system reaches
a target opinion distribution from which the rumor-spreading problem becomes
an instance of the plurality consensus problem. More precisely, we have the
following.

Lemma 4. Stage 1 takes O( 1
ε2 log n) rounds, after which w.h.p. all nodes are

active and c(τT+1) is δ-biased toward the correct opinion, with δ = Ω(
√

log n/n).

Proof. The fact that an undecided node becomes opinionated during a phase
only depends on whether it gets a message during that phase, regardless of the
value of such messages. Hence, the proof that, w.h.p., a(τT+1) = 1 is reduced to
the analysis of the rule of Stage 1 as an information spreading process. First, by
carefully exploiting the Chernoff bound and Lemma 3, we can establish Claim 2
and Claim 3 below:

Claim 2. W.h.p., at the end of phase 0, we have s/ε2 log n/3n ≤ a(τ0) ≤
s/ε2 log n/n.

Claim 3. W.h.p., at the end of phase j, 1 ≤ j ≤ T , we have

(β/ε2 + 1)ja(τ0)/8 ≤ a(τj) ≤ (β/ε2 + 1)ja(τ0).

Proof of Claim 2 and Claim 3. The probability that, in the process O, an un-
decided node becomes opinionated at the end of phase j is 1− (1− 1

n )h where
h is the number of messages sent during that phase. In process P, this prob-
ability is 1 − e− hn . By using that e

x
1+x ≤ 1 + x ≤ ex for |x| < 1 we see that

1−e− hn ≤ 1− (1−1/n)h ≤ 1−e−
h
n−1 . Thus, we can prove Claim 2 and Claim 3
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for process P by repeating essentially the same calculations as in the proofs
of Claim 2.2 and 2.4 in [27]. Since the Poisson distributions in process P are
independent, we can apply the Chernoff bound as claimed in [27]. Finally, we
can prove that the statements hold also for process O thanks to Lemma 2.

From the previous two claims, and by the definition of T we get the following.

Lemma 5. W.h.p., at the end of phase T , we have a(τT+1) = Ω((β/ε2 +
1)Ta(τ0)) = Ω(ε2).

Finally, from Lemma 5, an application of the Chernoff bound gives us the
following.

Lemma 6. W.h.p., at the end of Stage 1, all nodes are opinionated.

As for the fact that, w.h.p., c(τ+1) is a δ-biased opinion distribution with
δ = Ω(

√
log n/n), we can prove the following.

Lemma 7. W.h.p., at the end of each phase j of Stage 1, we have an (ε/2)j-
biased opinion distribution.

Proof. We prove the lemma by induction on the phase number. The case j = 1

is a direct application of Lemma 16 to c(τ1)
m −c(τ1)

i (i 6= m), where the number of
opinionated nodes is given by Claim 2, and, where the independence of the r.v.
follows from the fact that each node that becomes opinionated in the first phase
has necessarily received the messages from the source-node. Now, suppose that
the lemma holds up to phase j−1 ≤ T . Let Sj = {u| ju = j} be the set of nodes
that become opinionated during phase j. Recall the definition of Mj and Nj
from Section 3.2, and observe that |Mj | = |Nj | = (τj − τj−1)n ·a(τj−1), and that
the number of times opinion i occurs in Mj is |Mj | c

(τj−1)
i . Let us identify each

message inMj with a distinct number in 1, ..., |Mj |, and let {Xw(i)}w∈{1,...,|Mj |}
be the binary r.v. such that Xw(i) = 1 if and only if w is i after the action of
the noise. The frequency of opinion i in Nj is 1

|Nj |
∑|Nj |
w=1Xw(i).

Thanks to Lemma 3, it suffices to prove the lemma for process P. By
definition, in process P, for each i, the number of messages with opinion i

that each node receives conditional on Nj follows a Poisson( 1
n

∑|Nj |
w=1Xw (i))

distribution. Each node u that becomes opinionated during phase j gets at
least one message during the phase. Thus, from Lemma 1, the probability that
u gets opinion i conditional on Nj is∑|Nj |

w=1Xw (i)∑k
i=1

∑|Nj |
w=1Xw (i)

=
1

|Nj |

|Nj |∑
w=1

Xw (i) .

Since opinionated nodes never change opinion during Stage 1, the bias of c(τj) is
at least the minimum between the bias of c(τj−1) and the bias among the newly
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opinionated nodes in Sj . Hence, we can apply the Chernoff bound to the nodes
in Sj to prove that the bias at the end of phase j is, w.h.p.7,

Pr
(
c(τj)m − c(τj)i

∣∣∣Nj)
≥

 1

|Nj |

|Nj |∑
w=1

Xw (m)− 1

|Nj |

|Nj |∑
w=1

Xw (i)

(1− δ̃j
)
, (4)

where δ̃j = O(
√

log n/|Sj |).
Moreover, note that

E

 1

|Nj |

|Nj |∑
w=1

Xw (i)

∣∣∣∣∣∣ c(τj−1), a(τj−1)

 =
(
c(τj−1) · P

)
i
.

Furthermore, (conditional on c(τj−1) and a(τj−1)) the r.v. {Xw(i)}w∈{1,...,|Nj |}
are independent. Thus, for each i 6= m, from Claim 3, and by applying the
Chernoff bound on

∑|Nj |
w=1Xw(m), and on

∑|Nj |
w=1Xw(i), we get that w.h.p.

1

|Nj |

|Nj |∑
w=1

Xw (m)− 1

|Nj |

|Nj |∑
w=1

Xw (i) ≥ (1− δj) 2−j+1εj , (5)

where δj = O(
√

log n/|Nj |).
From Claim 2 and Claim 3, it follows that δ̃j , δj ≤ 1

4 w.h.p. Thus by putting
together Eq. (4) and (5) via the chain rule, we get that, w.h.p.,

c(τj)m − c(τj)i ≥
(

1− δ̃j
)

(1− δj) 2−j+1εj ≥
( ε

2

)j
.

Lemma 7 implies that, w.h.p., we get a bias εT+2 = Ω(
√

log n/n) at the end
of Stage 1, which completes the proof of Lemma 4.

3.4 Stage 2
As proved in the previous section, w.h.p., all nodes are opinionated at the end
of Stage 1, and the final opinion distribution is Ω(

√
log n/n)-biased. Now, we

have that the rumor-spreading problem is reduced to an instance of the plurality
consensus problem. The purpose of Stage 2 is to progressively amplify the initial
bias until all nodes support the plurality opinion, i.e. the opinion originally held
by the source node.

During the first T ′ phases, it is not hard to see that, by taking c large enough,
a fraction arbitrarily close to 1 of the nodes receives at least ` messages, w.h.p.

7We remark that Eq. (4) concerns the value of Pr(c(
τj)
m − c(τj)i |Nj), which is a random

variable.
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Each node u in such fraction changes its opinion at the end of the phase. With a
slight abuse of notation, let maj`(u) = maj (S(u)) be u’s new opinion based on
the ` = |S(u)| randomly sampled received messages. We show that, w.h.p., these
new opinions increase the bias of the opinion distribution toward the plurality
opinion by a constant factor > 1.

For the sake of simplicity, we assume that ` is odd (see Appendix B for
details on how to remove this assumption).

Proposition 1. Suppose that, at the beginning of phase j of Stage 2 with 0 ≤
j ≤ T ′ − 1, the opinion distribution is δ-biased toward m. In process P, if a
node u changes its opinion at the end of the phase, then, for any i 6= m, we
have

Pr (maj`(u) = m)− Pr (maj`(u) = i) ≥
√

2`

π

g(δ, `)

e(k−2) ln 4
, (6)

where

g (δ, `) =

{
δ(1− δ2)

`−1
2 if δ< 1√

`
,√

1/` (1−
√

1/`)
`−1
2 if δ ≥ 1√

`
.

First, we prove Eq. (6) for k = 2. We then obtain the general case by induc-
tion. The proof for k = 2 is based on a known relation between the cumulative
distribution function of the binomial distribution, and the cumulative distribu-
tion function of the beta distribution. This relation is given by the following
lemma.

Lemma 8. Given p ∈ (0, 1) and 0 ≤ j ≤ ` it holds∑
j<i≤`

(
`

i

)
pi (1− p)`−i =

(
`

j + 1

)
(j + 1)

ˆ p

0

zj (1− z)`−j−1
dz.

Proof. By integrating by parts, for j < `− 1 we have(
`

j + 1

)
(j + 1)

ˆ p

0

zj (1− z)`−j−1
dz

=

(
`

j + 1

)
pj+1 (1− p)`−j−1

−
(

`

j + 1

)
(`− j − 1)

ˆ p

0

zj+1 (1− z)`−j−2
dz

=

(
`

j + 1

)
pj+1 (1− p)`−j−1 −

(
`

j + 2

)
(j + 2)

ˆ p

0

zj+1 (1− z)`−j−2
dz, (7)

where, in the last equality, we used the identity(
`

j

)
(`− j) =

(
`

j + 1

)
(j + 1) .

Note that when j = `− 1, Eq. (6) becomes

p` = `

ˆ p

0

z`−1dz.
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Hence, we can unroll the recurrence given by Eq. (7) to obtain(
`

j + 1

)
(j + 1)

ˆ p

0

zj (1− z)`−j−1
dz

=
∑

j<i≤`−1

(
`

i

)
pi (1− p)`−i + `

ˆ p

0

z`−1dz

=
∑
j<i≤`

(
`

i

)
pi (1− p)`−i

concluding the proof.

Lemma 8 allows us to express the survival function of a binomial sample as
an integral. Thanks to it, we can prove Proposition 1 when k = 2.

Lemma 9. Let c = (c1, c2) be a δ-biased opinion distribution during Stage 2. In
process P, for any node u, we have Pr (maj`(u) = m)−Pr (maj`(u) = 3−m) ≥√

2`/π · g (δ, `) .

Proof. Without loss of generality, letm = 1. LetX(`)
1 be a r.v. with distribution

Bin(`, p1), and let X(`)
2 = `−X(`)

1 . By using Lemma 8, we get

Pr (maj`(u) = 1)− Pr (maj`(u) = 2)

= Pr
(
X

(`)
1 > X

(`)
2

)
− Pr

(
X

(`)
2 > X

(`)
1

)
=

∑
d `2e≤i≤`

(
`

i

)
pi1p

`−i
2 −

∑
d `2e≤i≤`

(
`

i

)
p`−i1 pi2

=
∑
d `2e≤i≤`

(
`

i

)
pi1 (1− p1)

`−i −
∑
d `2e≤i≤`

(
`

i

)
p`−i1 (1− p1)

i

=

(
`⌈
`
2

⌉)⌈ `
2

⌉(ˆ p1

0

zb
`
2c (1− z)b

`
2c dz −

ˆ p2

0

zb
`
2c (1− z)b

`
2c dz

)
.

By setting t = z − 1
2 , and rewriting p1 = p1−p2

2 + 1
2 and p2 = p2−p1

2 + 1
2 we

obtain

Pr (maj`(u) = 1)− Pr (maj`(u) = 2)

=

(
`⌈
`
2

⌉)⌈ `
2

⌉(ˆ p1

0

zb
`
2c (1− z)b

`
2c dz −

ˆ p2

0

zb
`
2c (1− z)b

`
2c dz

)

=

(
`⌈
`
2

⌉)⌈ `
2

⌉(ˆ p1−p2
2

− 1
2

(
1

4
− t2

)b `2c
dt−

ˆ − p1−p22

− 1
2

(
1

4
− t2

)b `2c
dt

)

=

(
`⌈
`
2

⌉)⌈ `
2

⌉ ˆ p1−p2
2

− p1−p22

(
1

4
− t2

)b `2c
dt.
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For any t ∈ (−y2 ,
y
2 ) ⊆ (−p1−p22 , p1−p22 ), it holds(

1

4
− t2

)b `2c
≥
(

1− y2

4

)b `2c
.

Thus, for any y ∈ (−p1 + p2, p1 − p2) we have

ˆ p1−p2
2

− p1−p22

(
1

4
− t2

)b `2c
dt ≥ y

(
1− y2

4

)b `2c
. (8)

The r.h.s. of Eq. (8) is maximized w.r.t. y ∈ (−p1 + p2, p1 − p2) when

y = min

p1 − p2,
1√

2
⌊
`
2

⌋
+ 1

 = min

{
p1 − p2,

1√
`

}
.

Hence, for p1 − p2 <
1√
`
, we get

ˆ p1−p2
2

− p1−p22

(
1

4
− t2

)b `2c
dt ≥ (p1 − p2)

(
1− (p1 − p2)

2

4

)b `2c
= 2−`+1 (p1 − p2)

(
1− (p1 − p2)

2
) `−1

2

= 2−`+1g (p1 − p2, `) .

For p1 − p2 ≥ 1√
`
we get

ˆ p1−p2
2

− p1−p22

(
1

4
− t2

)b `2c
dt ≥ 2−`+1

√
`

(
1− 1

`

) `−1
2

= 2−`+1g (p1 − p2, `) .

By using the fact that g is a non-decreasing function w.r.t. its first argument,
we obtain

Pr (maj`(u) = 1)− Pr (maj`(u) = 2) =

(
`⌈
`
2

⌉)⌈ `
2

⌉ ˆ p1−p2
2

− p1−p22

(
1

4
− t2

)b `2c
dt

≥
(

`⌈
`
2

⌉)⌈ `
2

⌉
2−`+1g (p1 − p2, `)

≥
(

`⌈
`
2

⌉)⌈ `
2

⌉
2−`+1g (δ, `) .

Finally, by using the bounds
(

2r
r

)
≥ 22r
√
πr
e

1
9r (see Lemma 13), and ex ≥ 1 − x

together with the identity8(
`⌈
`
2

⌉)⌈ `
2

⌉
=

(
`
`+1

2

)
`+ 1

2
=

(
`− 1
`−1

2

)
`,

8Recall that we are assuming that ` is odd.
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we get

Pr (maj`(u) = 1)− Pr (maj`(u) = 2)

≥
(

`⌈
`
2

⌉)⌈ `
2

⌉
2−`+1g (δ, `)

≥ 2`−1√
π `−1

2

e
2

9(`−1) ` · 2−`+1g (δ, `)

≥
√

2`

π

(
1− 2

9 (`− 1)

)(
1− 1

`

)− 1
2

· g (δ, `)

≥
√

2`

π
· g (δ, `) ,

concluding the proof.

Next we show how to lower bound the above difference with a much simpler
expression.

Lemma 10. In process P, during Stage 2, for any node u, Pr(maj`(u) =

m) − Pr(maj`(u) = 3 − m) is at least Pr(X
(`)
1 > X

(`)
2 , ..., X

(`)
k ) − Pr(X

(`)
i >

X
(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
k ), where X̄(`) = (X

(`)
1 , ..., X

(`)
k ) follows a multino-

mial distribution with ` trials and probability distribution c · P .

Proof. Without loss of generality, let m = 1. Let x = (x1, ..., xk) denote a
generic vector with positive integer entries such that

∑k
j=1 xj = `, let W (x) be

the set of the greatest entries of x, and, for j ∈ {1, i}, let

• A(!)
j = {x |W (x) = {j}},

• A(=)
j = {x | 1, i ∈W (x)},

• A(6=)
1 = {x | 1 ∈W (x) ∧ i 6∈W (x) ∧ |W (x)| > 1} and

• A(6=)
i = {x | i ∈W (x) ∧ 1 6∈W (x) ∧ |W (x)| > 1}.
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It holds

Pr (maj`(u) = j) =
∑

x∈A(!)
j

Pr
(
X̄(`) = x

)
Pr
(

maj`(u) = j
∣∣∣ X̄(`) = x

)
+

∑
x∈A(=)

j

Pr
(
X̄(`) = x

)
Pr
(

maj`(u) = j
∣∣∣ X̄(`) = x

)
+

∑
x∈A(6=)

j

Pr
(
X̄(`) = x

)
Pr
(

maj`(u) = j
∣∣∣ X̄(`) = x

)

=
∑

x∈A(!)
j

Pr
(
X̄(`) = x

)
+

∑
x∈A(=)

j

Pr
(
X̄(`) = x

)
|W (x)|

+
∑

x∈A(6=)
j

Pr
(
X̄(`) = x

)
|W (x)|

(9)

Let
σ (x) = (xi, ..., xi−1, x1, xi+1, ..., xk)

be the vector function that swaps the entries x1 and xi in x. σ is clearly a
bijection between the sets A(!)

1 ,A(=)
1 ,A(6=)

1 and A
(!)
i , A(=)

i , A(6=)
i , respectively,

namely
σ : A

(!)
1 ↪→→ A

(!)
i , σ : A

(=)
1 ↪→→ A

(=)
i , σ : A

(6=)
1 ↪→→ A

(6=)
i

where ↪→→ denotes a bijection.
Moreover, for all x ∈ A(=)

j , it holds

Pr
(
X̄(`) = x

)
= Pr

(
X̄(`) = σ (x)

)
.

Therefore∑
x∈A(=)

1

Pr
(
X̄(`) = x

)
=

∑
σ(x)∈A(=)

1

Pr
(
X̄(`) = σ (x)

)
=

∑
x∈A(=)

i

Pr
(
X̄(`) = x

)
.

(10)
Furthermore, for all x ∈ A(6=)

1 , we have

Pr
(
X̄(`) = x

)
=

(
`

x1 ... xk

)
px1

1 . . . pxii . . . pxkk

>

(
`

x1 ... xk

)
pxi1 . . . px1

i . . . pxkk

= Pr
(
X̄

(`)
1 = σ (x)

)
, (11)
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where σ(x) ∈ A(6=)
i . From Eq. (11) we thus have that

∑
x∈A(6=)

1

Pr
(
X̄(`) = x

)
>

∑
σ(x)∈A(6=)

1

Pr
(
X̄(`) = σ (x)

)
=

∑
x∈A(6=)

i

Pr
(
X̄(`) = x

)
. (12)

From Eq. (9), (10) and (12) we finally get

Pr (maj`(u) = 1)− Pr (maj`(u) = i)

=
∑

x∈A(!)
1

Pr
(
X̄(`) = x

)
+

∑
x∈A(=)

1

Pr
(
X̄(`) = x

)
|W (x)|

+
∑

x∈A(6=)
1

Pr
(
X̄(l) = x

)
|W (x)|

−
∑

x∈A(!)
i

Pr
(
X̄(`) = x

)

−
∑

x∈A(=)
i

Pr
(
X̄(`) = x

)
|W (x)|

−
∑

x∈A(6=)
i

Pr
(
X̄(`) = x

)
|W (x)|

≥
∑

x∈A(!)
1

Pr
(
X̄(`) = x

)
−
∑

x∈A(!)
i

Pr
(
X̄(`) = x

)
= Pr

(
W (X̄(`)) = {X(`)

1 }
)
− Pr

(
W (X̄(`)) = {X(`)

i }
)
,

concluding the proof of Lemma 10.

Intuitively, Lemma 10 says that the set of events in which a tie occurs among
the most frequent opinions in the node’s sample of observed messages does
not favor the probability that the node picks the wrong opinion. Thus, by
avoiding considering those events, we get a lower bound on Pr(maj`(u) = 1)−
Pr(maj`(u) = i).

Thanks to Lemma 10, the proof of Eq. (6) reduces to proving the following.

Lemma 11. For any fixed k, and with X̄ defined as in Lemma 10, we have

Pr(X
(`)
1 > X

(`)
2 , ..., X

(`)
k )− Pr(X

(`)
i > X

(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
k )

≥
√

2`/π
g (δ, `)

4k−2
. (13)

Proof. We prove Eq. (13) by induction. Lemma 9 provides us with the base
case for k = 2. Let us assume that, for k ≤ κ, Eq. (13) holds. For k = κ+ 1, by
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using the law of total probability, we have

Pr
(
X

(`)
1 > X

(`)
2 , ..., X

(`)
κ+1

)
− Pr

(
X

(`)
i > X

(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
κ+1

)
≥
b `
κ+1c∑
h=0

Pr
(
X

(`)
1 > X

(`)
2 , ..., X

(`)
κ+1

∣∣∣X(`)
κ+1 = h

)
Pr
(
X

(`)
κ+1 = h

)

−
b `
κ+1c∑
h=0

Pr
(
X

(`)
i > X

(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
κ+1

∣∣∣X(`)
κ+1 = h

)
Pr
(
X

(`)
κ+1 = h

)
.

(14)

Now, arg maxj{X(`)
j } = X

(`)
i and X(`)

κ+1 ≤
⌊

`
κ+1

⌋
together imply X(`)

i > X
(`)
κ+1.

Thus, in the r.h.s. of Eq. (14), we have

Pr
(
X

(`)
1 > X

(`)
2 , ..., X

(`)
κ+1

∣∣∣X(`)
κ+1 = h

)
= Pr

(
X

(l)
1 > X

(`)
2 , ..., X(`)

κ

∣∣∣X(`)
κ+1 = h

)
and

Pr
(
X

(`)
i > X

(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
κ+1

∣∣∣X(`)
κ+1 = h

)
= Pr

(
X

(`)
i > X

(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
κ

∣∣∣X(`)
κ+1 = h

)
.

Moreover, X(`) follows a multinomial distribution with parameters p and
`. Thus X(`)

k = h implies that the remaining entries X(`)
1 , ..., X

(`)
k−1 follow a

multinomial distribution with l−h trials, and distribution ( p1
1−pk , ...,

pk−1

1−pk ). Let

Y (`−h) = (Y
(`−h)
1 , ..., Y

(`−h)
k−1 ) be the distribution of X(`)

1 , ..., X
(`)
k−1 conditional

on X(`)
k = h. From Eq. (14) we get

Pr
(
X

(`)
1 > X

(`)
2 , ..., X

(`)
κ+1

)
− Pr

(
X

(`)
i > X

(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
κ+1

)
≥
b `
κ+1c∑
h=0

Pr
(
X

(`)
1 > X

(`)
2 , ..., X(l)

κ

∣∣∣X(`)
κ+1 = h

)
Pr
(
X

(`)
κ+1 = h

)

−
b `
κ+1c∑
h=0

Pr
(
X

(`)
i > X

(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
κ

∣∣∣X(`)
κ+1 = h

)
Pr
(
X

(`)
κ+1 = h

)

≥
b `
κ+1c∑
h=0

(
Pr
(
Y

(`−h)
1 > Y

(`−h)
2 , ..., Y (`−h)

κ

)
−

−Pr
(
Y

(l−h)
i > Y

(l−h)
1 , ..., Y

(l−h)
i−1 , Y

(l−h)
i+1 , ..., Y (l−h)

κ

))
Pr
(
X

(l)
κ+1 = h

)
. (15)
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Now, using the inductive hypothesis on the r.h.s. of Eq. (15) we get

b `
κ+1c∑
h=0

(
Pr
(
Y

(`−h)
1 > Y

(`−h)
2 , ..., Y (`−h)

κ

)
−Pr

(
Y

(`−h)
i > Y

(`−h)
1 , ..., Y

(`−h)
i−1 , Y

(`−h)
i+1 , ..., Y (`−h)

κ

))
Pr
(
X

(`)
κ+1 = h

)
≥
b `
κ+1c∑
h=0

(√
2`− 2h

π

g (δ, `− h)

4κ−2

)
Pr
(
X

(`)
κ+1 = h

)

≥
√

2`

π

g (δ, `)

4κ−2
·
b `
κ+1c∑
h=0

√
1− h

`
Pr
(
X

(`)
κ+1 = h

)
,

where, in the last inequality, we used the fact that g is a non-increasing function
w.r.t. the second argument (see Lemma 15).

It remains to show that

b `
κ+1c∑
h=0

√
1− h

l
Pr
(
X

(`)
κ+1 = h

)
≥ 1

4
.

Let W (`)
κ+1 be a r.v. with probability distribution Bin(`, 1

κ+1 ). Since X(`)
κ+1 ∼

Bin(`, pκ+1) with pκ+1 ≤ 1
κ+1 , a standard coupling argument (see for example

[22, Exercise 1.1.]), enables to show that

Pr
(
X

(`)
κ+1 ≤ h

)
≥ Pr

(
W

(`)
κ+1 ≤ h

)
.

Hence, we can apply the central limit theorem (Lemma 14) on W (`)
κ+1, and get

that, for any ε̃ ≤ 2−
√

3
4 , there exists some fixed constant `0 such that, for ` ≥ `0,

we have

Pr

(
X

(`)
κ+1 ≤

`

κ+ 1

)
≥ Pr

(
W

(`)
κ+1 ≤

`

κ+ 1

)
≥
(

1

2
− ε̃
)
. (16)

By using Eq. (16), for ` ≥ `0 we finally get that

b `
κ+1c∑
h=0

√
1− h

`
Pr
(
X

(`)
κ+1 = h

)
≥

√√√√
1−

⌊
`

κ+1

⌋
`
·
b `
κ+1c∑
h=0

Pr
(
X

(`)
κ+1 = h

)
≥
√

1− 2

κ+ 1
· Pr

(
X

(`)
κ+1 ≤

`

κ+ 1

)
≥
√
κ− 1

κ+ 1
·
(

1

2
− ε̃
)
≥
√

1

3
·
(

1

2
− ε̃
)
≥ 1

4
,
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concluding the proof that

Pr (maj`(u) = 1)− Pr (maj`(u) = i) ≥
√

2`

π

g (δ, `)

e(k−2) ln 4
.

By using Proposition 1, we can then prove Lemma 12.

Lemma 12. W.h.p., at the end of Stage 2, all nodes support the initial plurality
opinion.

Proof. Let δ = Ω(
√

log n/n) be the bias of the opinion distribution at the
beginning of a generic phase j < T ′ of Stage 2. Thanks to Proposition 1,
by choosing the constant c of the phase length large enough, in process P we
get that Pr (maj`(u) = m) − Pr (maj`(u) = i) ≥ αδ for some constant α > 1
(provided that δ ≤ 1/2). Hence, by applying Lemma 16 in Appendix A with
θ = α

4 δ, we get Pr(c
(τj)
m − c(τj)i ≤ αδ/2) ≤ exp(−(αδ)2n/16) ≤ n−α̃ for some

constant α̃ that is large enough to apply Lemma 2. Therefore, until δ ≥ 1/2,
in process P we have that c(τj)m − c(τj)i ≥ αδ/2 holds w.h.p. From the previous
equation it follows that, after T ′ phases, the protocol has reached an opinion
distribution with a bias greater than 1/2. Thus, by a direct application of
Lemma 16 and Lemma 2 to c(τT ′ )m −c(τT ′ )i , we get that, w.h.p., c(τT ′ )m −c(τT ′ )i = 1,
concluding the proof.

Finally, the time efficiency claimed in Theorem 1 and Theorem 2 directly
follows from Lemma 12, while the required memory follows from the fact that
in each phase each node needs only to count how many times it has received
each opinion, i.e. to count up to at most O( 1

ε2 log n) w.h.p.

4 On the Notion of (ε, δ)-Majority-Preserving Ma-
trix

In this section we discuss the notion of (ε, δ)-m.p. noise matrix introduced
by Definition 2. Let us consider Eq. (2). The matrix P represents the “per-
turbation” introduced by the noise, and so (c · P )m − (c · P )i measures how
much information the system is losing about the correct opinion m, in a single
communication round. An (ε, δ)-m.p. noise matrix is a noise matrix that pre-
serves at least an ε fraction of bias, provided the initial bias is at least δ. The
(ε, δ)-m.p. property essentially characterizes the amount of noise beyond which
some coordination problems cannot be solved without further hypotheses on
the nodes’ knowledge of the matrix P . To see why this is the case, consider an
(ε, δ)-m.p. noise matrix for which there is a δ-biased opinion distribution c̃ such
that (c̃ · P )m − (c̃ · P )i < 0 for some opinion i. Given opinion distribution c̃,
from each node’s perspective, opinion m does not appear to be the most frequent
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opinion. Indeed, the messages that are received are more likely to be i than m.
Thus, plurality consensus cannot be solved from opinion distribution c̃.

Observe that verifying whether a given matrix P is (ε, δ)-m.p. with respect
to opinion m consists in checking whether for each i 6= m the value of the
following linear program is at least εδ:

maximize (P · c)m − (P · c)i

subject to
∑
j

cj = 1,

and ∀j, cj ≥ 0, cm − cj − δ ≥ 0.

We now provide some negative and positive examples of (ε, δ)-m.p. noise
matrices. First, we note that a natural matrix property such as being diago-
nally dominant does not imply that the matrix is (ε, δ)-m.p. For example, by
multiplying the following diagonally dominant matrix by the δ-biased opinion
distribution c = (1/2 + δ, 1/2− δ, 0)ᵀ, we see that it does not even preserve the
majority opinion at all when ε, δ < 1/6: 1

2 + ε 0 1
2 − ε

1
2 − ε

1
2 + ε 0

0 1
2 − ε

1
2 + ε

 .

On the other hand, the following natural generalization of the noise matrix in
[27] (see Eq. (1)), is (ε, δ)-m.p. for every δ > 0 with respect to any opinion:

(P )i,j = pi,j =

{
1
k + ε if i = j,
1
k −

ε
k−1 otherwise.

More generally, let P be a noise matrix such that

(P )i,j =

{
p if i = j,

ql ≤ qi,j ≤ qu otherwise,
(17)

for some positive numbers p, qu and ql. Since

(Pc)m − (Pc)i = pcm +
∑
j 6=m

qj,mcj − pci −
∑
j 6=i

qj,icj

≥ p(cm − ci) +
∑
j 6=m

qlcj −
∑
j 6=i

qucj

≥ p(cm − ci) + ql(1− cm)− qu(1− ci)
≥ p(cm − ci) + ql − qlcm − qu + quci

≥ p(cm − ci)− qu(cm − ci)− (qu − ql)
≥ (p− qu)(cm − ci)− (qu − ql)
≥ (p− qu)δ − (qu − ql). (18)

By defining ε = (p− qu)/2, we get that the last line in Eq. (18) is greater than
εδ iff (p − qu)δ/2 ≥ (qu − ql), which gives a sufficient condition for any matrix
of the form given in Eq. (17) for being (ε, δ)-m.p.
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5 Conclusion
In this paper, we solved the general version of rumor spreading and plurality
consensus in biological systems. That is, we have solved these problems for an
arbitrarily large number k of opinions. We are not aware of realistic biological
contexts in which the number of opinions might be a function of the number n
of individuals. Nevertheless, it could be interesting, at least from a conceptual
point to view, to address rumor spreading and plurality consensus in a scenario
in which the number of opinions varies with n. This appears to be a technically
challenging problem. Indeed, extending the results in the extended abstract of
[27] from 2 opinions to any constant number k of opinions already required to
use complex tools. Yet, several of these tools do not apply if k depends on n.
This is typically the case of Proposition 1. We let as an open problem the design
of stochastic tools enabling to handle the scenario where k = k(n).

Acknowledgments. We thank the anonymous reviewers of an earlier version of
this work for their constructive criticisms and comments, which were of great help in
improving the results and their presentation.
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APPENDIX

A Technical Tools
Lemma 13. For any integer r ≥ 1 it holds

22r

√
πr
e

1
9r ≤

(
2r

r

)
≤ 22r

√
πr
e

1
8r .

Proof. By using Stirling’s approximation [39]
√

2πr
(r
e

)r
e

1
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√
2πr

(r
e

)r
e

1
12r ,

we have(
2r
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πr
e
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9r .

The proof of the upper bound is analogous (swap e
1

12r+1 and e
1

12r in the first
inequality).

Lemma 14. Let X1, ..., Xn be a random sample from a Bernoulli(p) distribution
with p ∈ (0, 1) constant, and let Z ∼ N(0, 1). It holds

lim
n→∞

sup
z∈R

∣∣∣∣∣Pr

(∑n
i=1Xi − pn√

n
≤ z
)
− Pr

(
Z ≤ z√

p (1− p)

)∣∣∣∣∣ = 0.

Lemma 15. The function

g (x, y) =


x
(
1− x2

) y−1
2 if x < 1√

y ,

1√
y
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1− 1

y

) y−1
2

if x ≥ 1√
y ,

with x ∈ [0, 1] and y ∈ [1,+∞) is non-decreasing w.r.t. x and non-increasing
w.r.t. y.

Proof. To show that g(x, y) is non-decreasing w.r.t. x, observe that

∂
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2 ≥ 0
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for x < y−
1
2 .

To show that g(x, y) is non-increasing w.r.t. y, observe that this is true for
x < y−

1
2 . For x ≥ y− 1

2 , since

∂
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1
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y − 1

2
log
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1− 1
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we have

∂

∂y
g (x, y) =

∂

∂y
exp

{
log y−

1
2 +

y − 1

2
log

(
1− 1

y

)}
≤ 0,

concluding the proof.

Lemma 16. Let {Xt} t∈[n] be n i.i.d. random variables such that

Xt =


1 with probability p,
0 with probability r,
−1 with probability q.

with p+ r + q = 1. It holds
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Proof. Let us define the r.v.

Yt =
Xt + 1

2
. (19)

We can apply the Chernoff-Hoeffding bound to Yt (see Theorem 1.1 in [22]),
obtaining

Pr
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Yi ≤ (1− θ)E

[∑
i

Yi
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≤ exp

(
−θ

2

2
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[∑
i
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for any θ ∈ (0, 1). Substituting Eq. (19) we have
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,

concluding the proof.
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B Removing the Parity Assumption on `

The next lemma shows that, for k = 2, the increment of bias at the end of each
phase of Stage 2 in the process P is non-decreasing in the value of `, regardless
of its parity. In particular, since Proposition 1 is proven by induction, and since
the value of ` affects only the base case, the next lemma implies also the same
kind of monotonicity for general k.

Lemma 17. Let k = 2, a = 1, let ` be odd, and let (c ·P )1 ≥ (c ·P )2. The rule
of Stage 2 of the protocol is such that

Pr (maj`(u) = 1) = Pr
(
maj`+1(u) = 1

)
≤ Pr

(
maj`+2(u) = 1

)
,
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)
≥ Pr

(
maj`+2(u) = 2

)
. (20)

Proof. To simplify notation, let p1 = (c · P )1 and p2 = (c · P )2. By definition,
we have

Pr (maj`(u) = 1) = Pr
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X
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,

where X(`)
1 , X(`+1)

1 and X
(`+2)
1 are binomial r.v. with probability p1 and

number of trials `, ` + 1, and ` + 2, respectively. We can view X
(`)
1 , X(`+1)

1 ,
and X(`+2)

1 as the sum of `, `+ 1 and `+ 2 Bernoulli(p1) r.v., respectively. In
particular, let Y and Y

′
be independent r.v. with distribution Bernoulli(p1).

We can couple X(`)
1 , X(`+1)

1 and X(`+2)
1 as follows:

X
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Since ` is odd, observe that if X(`)
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⌈
`
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⌉
, then maj`(u) = 1 regardless of the

value of Y , and similarly if X(`)
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⌉
then maj`(u) = 2. Thus we have
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As for the last two terms in the previous equation, we have that

Pr
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2
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and
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Moreover, by a direct calculation one can verify that

Pr

(
X

(`)
1 =

⌈
`

2

⌉)
=

Pr (Y = 0)

Pr (Y = 1)
Pr

(
X

(`)
1 =

⌊
`

2

⌋)
. (24)

From Eq. (22), (23) and (24) it follows that
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By plugging Eq. (25) in Eq. (21) we get

Pr (maj`(u) = 1) = Pr
(
maj`+1(u) = 1

)
.

The proof that
Pr (maj`(u) = 2) = Pr

(
maj`+1(u) = 1

)
is analogous, proving the first part of Eq. (20).

As for the second part, observe that if X(`+1)
1 > `+1

2 , then maj`+2(u) = 1

regardless of the value of Y ′, and similarly if X(`+1)
1 < `+1

2 then maj`+2(u) = 2.
Observe also that

Pr

(
maj`+2(u) = 1

∣∣∣∣X(`+1)
1 =

l + 1

2

)
= Pr (Y = 1) = p1.

Because of the previous observations and the hypothesis that p1 ≥ 1
2 , we have
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that
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(26)

The proof of
Pr
(
maj`+2(u) = 2

)
≤ Pr

(
maj`+2(u) = 2

)
is the same up to the inequality in (26), whose direction is reversed because
p2 ≤ 1

2 .

C Rumor spreading with ε = Θ(n−
1
4−η)

In [27] it is shown that at the end of Stage 1 the bias toward the correct opin-
ion is at least εT+2/2 and, at the beginning of Stage 2, they assume a bias
toward the correct opinion of Ω(

√
log n/n). In this section, we show that, when

ε = Θ(n−
1
4−η) for some η ∈ (0, 1/4), the protocol considered by [27] and us

cannot solve the rumor-spreading and the plurality consensus problem in time
Θ(log n/ε2).

First, observe that when ε = Θ(
√

log n/n) the length of the first phase of
Stage 1 is Θ

(
log n/ε2

)
= Ω(n log n), which implies that, w.h.p., each node gets

at least one message from the source during the first phase. Thus, thanks to our
analysis of Stage 2 we have that when ε = Θ(

√
log n/n) the protocol effectively

solves the rumor-spreading problem, w.h.p., in time Θ(log n/ε2).
In general, for ε < n−1/2−η for some constant η > 0, if we adopt the second

stage right from the beginning (which means that the source node sends ε−2

messages), we get that, w.h.p., all nodes receive at least log n/(ε2n) messages.
Thus, by a direct application of Lemma 16, after the first phase we get an√

log n/n-biased opinion distribution, w.h.p., and Stage 2 correctly solves the
problem according to Theorem 2.

However, when ε = Θ(n−
1
4−η) for some η > 0, from Claim 2 and Lemma 7

we have that, after phase 0 in opinion distribution c, at most O
(
log n/ε2

)
=

O(n
1
2 +2η log n) nodes are opinionated, and c is ε

2 -biased. Each node that gets
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opinionated in phase 1 receives a message pushed from some node of c, and,
because of the noise, the value of this message is distributed according to c(τ0)·P .
It follows that c is an ε2/2-biased opinion distribution with ε2 = n−

1
2−2η which

is much smaller than the Ω(
√

log n/n) bound required for the second stage.
We believe that no minor modification of the protocol proposed here can

correctly solve the noisy rumor-spreading problem when ε = Θ(n−
1
4−η) in time

O
(
log n/ε2

)
.
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