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Abstract

This paper investigates the construction of a metamodel for coastal flooding
early warning at the peninsula of Géavres, France. The code under study is an
hydrodynamic model which receives time-varying maritime conditions as inputs.
We concentrate on Gaussian pocess metamodels to emulate the behavior of the
code. To model the inputs we make a projection of them onto a space of lower
dimension. This setting gives rise to a model selection methodology which we
use to calibrate four characteristics of our functional-input metamodel: (i) the
family of basis functions to project the inputs; (ii) the projection dimension; (iii)
the distance to measure similarity between functional input points; and (iv) the
set of functional predictors to keep active. The proposed methodology seeks to
optimize these parameters for metamodel predictability, at an affordable com-
putational cost. A comparison to a dimensionality reduction approach based on
the projection error of the input functions only showed that the latter may lead
to unnecessarily large projection dimensions. We also assessed the adaptability
of our methodology to changes in the number of training and validation points.
The methodology proved its robustness by finding the optimal solution for most
of the instances, while being computationally efficient.

Keywords: Dimensionality reduction, Gaussian process, Metamodeling,
Functional inputs, Computer experiments

1. Introduction

The use of computer codes for the study of complex systems is, nowadays,
a well extended practice. On the one hand, they offer the possibility of simu-
lating realizations of the system under study at a lower resource expense,/risk
than if observations were taken from the real system. On the other hand, they
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provide a solution for cases when the real system is a natural process (e.g., vol-
canic activity) and some input-output conditions are rarely observed. In the
coastal flooding domain, for instance, by focusing on flooding on sites never or
rarely flooded, it is not possible to obtain a sufficient number of observations
from historical registers [1, 2, 3]. In those cases, computer codes can be used
to produce the required observations to complement historical data. Despite
the aforementioned advantages, computer codes for environmental and indus-
trial applications often happen to be too time-consuming for direct application
(e.g., for uncertainty quantification or fast prediction within an early warning
system) [4, 5]. This difficulty is usually resolved by creating quick-to-evaluate
mathematical emulators of those numerical codes, based on a limited collection
of runs [6, 7, 8]; such emulators are often called surrogate models or metamod-
els. In this paper, we illustrate an intermediate step in the development of a
surrogate model of a complex hydrodynamic code used in the context of early
warning for coastal flooding hazards. This work is said to be an intermediate
step as the target hydrodynamic code to emulate is still under calibration. In
the meantime, we use a simplified fast-running version of it which allows us to
study the dynamics of the system and the specificities of the metamodeling task
at hand.

The simplified hydrodynamic code receives four inputs and delivers a single
output, all of them functions of time. As usual in practice, each function is
supplied to and delivered by the code in the format of a time series represented
by a long vector. Even though, we keep referring to them as functional inputs
(resp. functional output) since the notions of order and/or proximity between
time points hold for them. The focus of this article is on the modeling of
functional inputs. Thus, we keep their full complexity into account, but we
reduce the problem by only considering a scalar representation of the output,
which corresponds to the cumulative sum of its values over time.

The main difficutly of functional-input regression is the large number of pre-
dictors that one may end up dealing with. In our coastal flooding application, for
instance, each input variable is a time series with 37 time points. Some applica-
tions involve inputs with more then 1000 time points (see e.g., [5]). Such a large
number of covariates naturally hampers the tractability and processing speed of
the metamodel while making it more prone to overfitting. A common approach
to overcome this problem is to make a projection of each functional input onto
a space of lower dimension while preserving the main statistical or geometric
properties of the variable [9, 10, 5, 4]. The projection is sometimes preceeded
by time warping if an input shows a cyclical pattern which is consistent among
functions [11]. A suitable basis for the projection space may come from a variety
of families, including B-splines, PCA, Legendre polynomials, wavelets, Fourier
and many others. The ideal basis family seems to vary from one application to
the other. However, most studies set this feature a priori, leaving wide margin
for potential improvement of the metamodel.

The approach based on the projection of the inputs also requires the selection
of the projection dimension. Seeking for a balance between speed/tractability
and prediction quality, the goal should be to set the new dimension considerably
lower than the original one, but still sufficiently large to allow for good predic-
tions. Thus, for forecast purposes, dimensionality reduction of the inputs should
be primarily leaded by metamodel predictability. However, the new dimension
p is often chosen to retain certain amount of information on the input. For



instance, so that most information on its variability is concentrated on the first
p components [5] or by minimizing the projection error [12]. Some alternative
techniques better incorporate the idea of focusing on metamodel predictabil-
ity. These include scalar-on-function regression [13, 14, 15|, methods in the
field of active subspaces [16], as well as stack models composed of a dimension-
ality reduction and a metamodeling technique put together and trained using
backpropagation [17, 18, 19, 20]. Despite the advantages of these methods in
terms of simplicity or predictablity, their application in this paper is prevented
by a set of factors. First of all, developments of scalar-on-function regression
are mainly related to the linear regression framework, whose scope is exceeded
by the complexity of the coastal flooding phenomenon. Secondly, active sub-
spaces techniques often rely on the gradient of the output w.r.t the inputs. This
information is rarely available and has to be approximated from data [21], a
sometimes difficult task when inputs are structured objects such as time series
or spatial fields [22]. Finally, techniques relying on stacked models turn out
to be quite restrictive regarding the combination of components of the stack;
most of the proposals are limited to one specific combination of dimensionality
reduction and metamodeling technique. Rather than restricting oneself to some
particular dimensionality reduction method, this paper aims to define a way to
explore and select among available alternatives.

Among all metamodel-based solutions (polynomials, splines, neural net-
works, etc.), we focus on Gaussian processes [23, 24, 25|. These are one of
the most popular metamodeling alternatives, partly due to their ability to pro-
vide both an interpolation of the data and an uncertainty quantification in the
unexplored regions. Although Gaussian processes for scalar-valued inputs and
outputs have been studied for almost 30 years, the functional framework is still
a relatively new and much less developed research area [4]. The essence of
extending Gaussian process models to receive functional inputs lies in the adap-
tion of the distance used to measure similarity /proximity between pairs of input
points. In the case of scalar inputs, the standard is to use a weighted Euclidean
distance where each input variable is assigned a weight [25]. These weights are
then optimized, typically through the Maximum Likelihood or Cross Validation
method [26]. When dealing with functional inputs, the selection of the distance
will strongly depend on the way of representing the inputs in the metamodel.
For projections, a popular approach is to use the projection coefficients as indi-
vidual scalar inputs of the model and proceed as described before [5]. In that
case, each projection coefficient would be assigned a weight. Another alterna-
tive is to aknowledge the fact that certain coefficients correspond to the same
input variable. Then, each set of projection coefficients, corresponding to the
same input variable, would be assigned a single weight [4]. These two and any
other suitable norm are valid choices and once again, the best option will likely
depend on the application.

The preceding discussion addresses some of the specificities of functional-
input metamodeling; the last paragraph making emphasis on Gaussian processes
which are the type of metamodel studied here. In line with that discussion, our
main contribution is a methodology to simultaneously tune multiple characteris-
tics of a functional-input metamodel. Here we use it to calibrate: (i) the family
of basis functions to project the functional inputs; (i) the projection dimen-
sion; (iii) the distance function to measure similarity between functional input
points; and (iv) the set of functional predictors to keep active. As mentioned



earlier, these types of metamodeling choices, herein called structural parameters
of the metamodel, are often fixed arbitrarily or based on results from other ap-
plications. However, as will be shown in this paper through a set of computer
experiments, the ideal metamodel configuration depends on the particular appli-
cation. Thus, this kind of setting should be optimized each time a metamodel is
to be built in order to get the best results from it [22]. Our proposal is a staged
exploration strategy which optimizes the set of structural parameters for meta-
model predictability. Although relatively simple, the methodology presented
here seems to be an effective tool to perform such an optimization task.

The remainder of this paper is organized as follows. Section 2 describes the
coastal flooding application case that motivates this study. The set of technical
details concerning the modeling of functional inputs within Gaussian process
metamodels are provided in Section 3. Section 4 describes the exploration ap-
proach proposed here to calibrate the structural parameters of the metamodel.
This section also presents an analytic case study to illustrate the methodology.
In Section 5, we apply the exploration strategy to setup the metamodel for the
coastal flooding application. In Section 6, we conduct an experiment to assess
the robustness of the proposed methodologies to changes in the training and
validation set size. A final section synthesizes the main results of this paper and
proposes some future research lines.

2. Motivating case: coastal flooding prediction at Gavres, France

This study is motivated by the Gavres coastal flooding case study extracted
from the ANR research project RISCOPE [27]. RISCOPE focuses on the de-
velopment of risk-based methods relying on metamodeling for forecasting, early
warning and prevention of coastal flooding. Our case study considers the coastal
French municipality of Gavres, located on a peninsula at the Blavet river mouth,
in the conurbation of Pays de Lorient (Morbihan). This region is representative
of a significant part of French mainland coasts in terms of variety and complex-
ity of flooding processes, as well as available offshore data. Since 1864, Gavres
has had to deal with more than ten coastal flooding events, two of the most dra-
matic ones taking place in the 21st century. Flooding processes at Gavres are
known to be complex enough (tide influence and overtopping) to cover most of
the flooding cases along the French mainland coasts. This ensures the scalability
of the methods presented here, to any coastal flooding type.

2.1. Hydrodynamic code

Here we consider a simplified fast running code defined on a cross-shore
transect model (see Figure 1, and the next paragraph for the description). The
code takes four variables with physical interpretability as inputs. Those are
the tide (7d), atmospheric storm surge (Sg), significant wave height (Hs) and
wave peak period (7p). Each input should be provided to the system in a
time series format, so that Td = (Td;)¢=1.... 1, and similarly for the other three
inputs. The code outputs a time series of the same length of the inputs, with
the value at time ¢t € {1,..., L} indicating the overtopped and overflowed water
volume during a period equal to the time span between any pair of consecutive
instants. From that series, it is naturally possible to compute the cumulative
overtopped and overflowed water volume along this transect until time instant



t. We denote that quantity by CV;. As explained in the introduction of the
article, here we focus on the management of functional inputs and try to keep
the output as simple as possible. Therefore, we study a scalar output instead of
a functional one. In particular, we consider as the output the total overtopped
and overflowed water volume during the span of an event. It corresponds to
the last value of the CV; series, CVy,. From here on, we denote this quantity by
FCV | which stands for final cumulative volume.
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Figure 1: Illustration of the cross-shore transect considered in the RISCOPE application.
Vertical location is referenced to the altimetric French system IGNG69.

Calculations in the computer code involve the statistical model SWAN [2§]
and the EurOtop equations [29], both described below.

Inputs - SWAN — EurOtop — Outputs

e SWAN is a spectral wave model which allows computing the wave con-
ditions at the coastal defence toe, accounting for water level variations
induced by tide and surge.

e EurOtop refers to the use of the overtopping and overflow discharge for-
mulas provided in the Eurotop (2018) manual ([29], Eq. 5.11 and 5.20).
These formulas require as input the wave conditions at the coastal defence
toe, the crest freeboard (water height above the coastal defence crest, in-
cluding the wave setup computed by SWAN plus the tide and surge) and
coastal defence characteristics. Based on the discharge, the overtopped
and overflowed water volume along the transect is finally computed.

We are aware that the adoption of a cross shore configuration does not allow
to properly model all the complexities of the phenomenon under study. However,
in the frame of the RISCOPE project, the analysis presented here is considered
an intermediate step in the development of methodologies for functional meta-
modeling, that could be later implemented for more realistic computer codes.
The use of a simplified computer code at this stage enables a wider exploration
and understanding of the physical phenomenon, before dealing with more de-
tailed and more computationally time consuming models. We remark that in
this simplified code, FCV is equal to the sum over time of the overtopped and
overflowed water volume; this latter being estimated from scalar quantities.
Thus, for this simplified code, a metamodel based on a scalar representation of
the inputs may provide relatively good predictions. However, in a future stage



of the RISCOPE project we will address intrinsically functional problems such
as the estimation of the water height at different points on land (i.e., in the
space between the back of the coastal defense and inland). At that point, we
expect the functional metamodels to be able to better reproduce the shape of
the output than the scalar ones.

2.2. Dataset

For purposes of training and validation of the metamodel, we rely on a
dataset composed of hindcasts of past conditions of 7d, Sg, Hs and Tp. All
registers are located offshore of the study site over the period 1900-2016. The
dataset is constituted by the concatenation of hindcasts of different sources (see
Appendix A), with bias corrections between the hindcasts through a quantile-
quantile correction method (for more details, see [30]). The various hindcasts
have different time steps. As the main driver, 7d, significantly changes in 10
minutes, the other three inputs were also interpolated at a 10 min time step.
Then, the long dataset was split into a collection of tidal events, each covering
a period of £+ 3 hours around a high tide. A time series of 37 elements (cor-
responding to a time lapse of 6 hours with the time step of 10 min) was used
to represent each functional input at each event (see Figure 2). Only events
where the tide peak reached at least 2.342m (IGN69) were kept. This value
corresponds to the mean spring high tide level below which no flooding event
ever happened in Gavres. As a result, a total of 20557 events were obtained.
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Figure 2: Illustration of functional inputs. 7d, Sg and Hs are given in meters and Tp in
seconds.

The Td series has a characteristic parabolic shape, which is consistent among
events. In fact, its peak (always located at time instant ¢ = 19) is known to
be highly influential on the output of the code. In contrast, the majority of



Sg, Hs and Tp curves are almost constant or linear with small slope. It means
that the range of variation of those three inputs within each event is relatively
small compared to their range of variation among events. Based on that, one
could presume that just one or two scalar parameters associated to the height
and/or slope would be enough to characterise those curves. However, beyond
any conclusion that we could reach by visual inspection, the ideal dimension to
represent each input will depend on the sensitivity of the output of the code to
changes on it. Even quite small and visually negligible changes on some input
might cause important changes in the ouput depending on the interactions that
happen within the code.

3. Theoretical background

3.1. Scalar and functional inputs of computer codes

In this paper we study the emulation of an expensive-to-run computer model
feode by means of a metamodel. Throughout our discussions, we discriminate
between scalar and functional inputs. For the sake of clarity, we stick to the
following vocabulary and definitions:

(a) When the code is & — feode (z), with & = (2. .. ,x(ds))/ and z(F) € R
for k =1,...,ds, we say that the code has ds € N scalar inputs, we call
z®) for k = 1,...,ds ascalar input, and we call & a vector of scalar inputs.
For simplicity, we may also refer to & as scalar inputs.

(b) When the code is f — feode (f), with f = (f(1)7...,f(df)), and f) .
T, CR—>Rfor k=1,...,df, we say that the code has df € N functional
inputs, we call f%) for k = 1,...,df a functional input, and we call f
a vector of functional inputs. For simplicity, we may also refer to f as
functional inputs.

(c) When the code is (x, f) = feode (@, ), we say that the code has ds scalar
inputs and df functional inputs, and we use the same vocabulary as before
for  and f.

3.2. Gaussian process metamodeling of scalar-input codes

Let us first consider the scalar-input setting where f.oqe models the rela-
tionship between a vector of scalar inputs & = (J:(l),...,x(ds))/ € R% and
an output variable of interest y € R, with y = feode (). As the evaluation
of feode is computationally costly, it is proposed to build a light-to-run statis-
tical model to approximate it. To this end, there is available a learning set
D ={(z1,v1),--, (Tn,¥Yn)}. In this context, Gaussian processes are nonpara-
metric regression models which treat the fixed function f..qe as a realization of
a Gaussian process &, specified by its mean and covariance functions m and k.
For any pair of input vectors ,& € R?, the Gaussian process model can be
written as:

6() ng(m<)>k(a))a (1)
with



m(z) =E[f(z)]  and  k(z,2) = E[({(x) - m(2))(£(Z) —m(Z))].  (2)

Gaussian processes present diverse attributes that have contributed to their
popularity in many applications. They provide a mean estimate along with an
indication of the uncertainty attached to it. They are able to reproduce the
observations exactly, but there is a simple way to switch from interpolation to
smoothing by means of a nugget effect, if required (see [25] for more details).
Furthermore, the Gaussian process model often has a very high prediction power
compared to other approaches [4]. In addition, the conditional distribution of
Gaussian processes, given observed values, is particularly tractable in practice
and closed form expressions exist for the conditional mean and variance. We
discuss them below.

Let X = (x1,.. .,a:n)T be the n x ds inputs matrix extracted from the
learning set (where x; for ¢« = 1,...,n is a column vector), and let y =
(y1,--- ,yn)—r be the vector of corresponding output values. Similarly, let X, =
(Tw,1s- -, m*,n*)T be a n, X ds inputs matrix of prediction points. The Gaus-
sian conditioning theorem (see e.g., [25]) implies that, conditionally to y, £ is a
Gaussian process with mean and covariance functions m,, and k,, defined by

ma(Xy) = E[¢ (X) ly] = K (X, X)K(X, X) 'y 3)

and

:K(X*7X*)_K(X*aX)K(X’X)_lK(va*)v (4)

where K (X, X) denotes the n x n matrix of covariances (k(x;, @;))1<ij<n
among all pairs of training input points, and similarly for the other entries
K(X,X.), K(X,,X)and K(X., X.). Weremark that m,,(X) and &k, (X, X«)
are of the form

mp(Xx) = (E[(2x,3)[E(z1) = Y1, ..., &(@n) = Yn])1<i<n.
Fn (X, Xu) = (COV[E(m*,i),€($*,j)|§(f’»’1) =y1,...,&(xn) = yn})gi,jgn*-

In practice the conditional mean (3) is used as an estimation of the true
function feode at the test points X, while the conditional variance (4) is often
interpreted as a measure of the local error of the prediction [8].

Gaussian process models are flexible by incorporating diverse types of co-
variance functions (a.k.a. kernels), being aware that only functions that yield
symmetric positive semidefinite covariance matrices are valid choices [25]. The
selection of the covariance function encodes assumptions such as the degree of
regularity of the underlying process [31]. A general expression for the covariance
between any pair of scalar input points &, £ € R is given by

k(x — &;0%,6,) = 02 R(x — &;6,), (5)

where o2 is the variance of the stochastic process and R denotes the correlation
function which governs the degree of similitude between input points through



the use of the vector of length-scale parameters 6; = (95(1), ceey Gs(ds)). Together,

o2 and 6, are the so-called hyperparameters of the model which have to be
estimated.

Examples of standard covariance functions are given for instance in [26] and
[32]. Without loss of generality, in this paper we make use of the Matérn 5/2
kernel defined in its anisotropic form for scalar inputs as

5|77
k(T;0%,05) = o <1+\/5 ||7'||L2,9$+#L2’9s exp (—\/5 ||7-HL2765> , (6)

where 7 = & — & and |7|12,¢, denotes the anisotropic L? norm of  — & which
can be written as

i at®) - 59

k=1 (95~(k)) ?

In the equation above, ||| is the Euclidean norm in R, which by definition is
just the absolute value of the quantity. Intuitively, if & = &, then the correlation
is 1, whereas if the distance between both vectors tends to infinity, then the
correlation tends to 0.

|z —&|L20, =

(7)

3.3. Gaussian process metamodeling of functional-input codes

Let us now consider the functional-input setting where f.oqe models the
relationship between a vector of functional inputs f = (f(l), ceey f(df))/, with
f®) T, cR—Rfor k=1,...,df, and an output variable of interest y € R,
so that y = feode (f)- Similarly to the scalar-input case, we assume that there is
available a learning set D = {(f1,%1),.--, (fn,yn)}. The extension of Gaussian
processes to functional inputs reduces to the selection of a suitable distance for
functions to be used within the correlation function. That is the topic of this
section.

3.3.1. Three distances for functional inputs
Let us consider two functional data points f = (f(),.. .,f(df))’ and f =

. IR -
(f(l), ey f(df)) . The anisotropic L? norm of f — f can be written

_ - df Hf(k) _ f(’f)H2
1f = Fllr20, = ; W

) is the vector of length-scale parameters for the df

(®)

where 85 = (9}1), e )

functional input variables and ||-|| is any norm for functions.

Note that (8) is just the straightforward extension of (7) for functional in-
puts. However, the norm in each term is no longer as trivial as in the scalar
case and different paths can be followed from here. Most times in the literature,
the norm is computed using one of the three distances that we discuss now.



The first approach is to use the L? norm for functions, under the mild
assumption that f and f for ¢ = 1,...,df have finite L? norm. In that
case, (8) becomes

[ GP0=i0) @
S,
If— fllre : ; (9}5’“))2

where T}, C R is the domain of the functions f®) and f).

The second approach is to make a projection of f*) and f*) for k = 1,...,df
onto a subspace of finite, small or moderate dimension, and then use the L? norm
of the projections in (8) instead of the L? norm of the original functions. For
illustration, let H(f(k)) and H(f(k)) denote the projections of f*) and f(k) onto
the space generated by a basis B(*) = {BYC), cee B,(,z)}. For k =1,...,df, the

expression to obtain H(f(k)) and H(f(k)) can then be written as

; 9)

()0 =3 aBOE  and )0 = S aPBOE, (0)
r=1 r=1

respectively. The projection dimension p; has to be chosen strategically so
that the functions are represented well enough and computations for the meta-

model remain tractable. The projection coefficients a(¥) = (agk), .. .,a,(,]i))
and a(F) = (&gk), . 75[1(,],2)) are typically set up to minimize the error of the

projection with respect to the original input function. Diverse methods such as
B-splines, Fourier, PCA, kPCA or PLS can be used to generate the basis func-
tions for the projection of each input variable. The only requirement is that the
projection has the structure diplayed in (10).

Once the projection of each curve is made, the norm || f*) — f(#)|| ;2 can be
replaced by its projection based approximation ||H(f(k)) — H(f(k)) ||L2 in (9) to
obtain

Gy
[TI(f) _H(f)HD,ef = I;Tk (9}“)2 :

As noted by [4], an efficient computation of ||H(f(k)) fH(f(k)) HL2 is possible,
by reduction to a norm in RPs:

10



Tk
Pk 2

= / (Zdﬁ’”Bﬁ’“(t)) dt

T, r=1
= (5(k))’J(k) (5(k))
- ||6(k)||J(k)’ (12)

where J®) is the pj, x pp Gram matrix (ka BZ-(k)(t)BJ(-k) (t)dt)1<‘ - The
<i,§<pr

interesting fact about (12) is that J®) does not depend on the coefficients of
the decomposition, but only on the set of basis functions. Thus, it can be stored
and reused, saving processing time. Moreover, when the projection basis is an
orthonormal family of vectors (e.g., PCA basis), J®) is simply the identity
matrix of dimension py X p.

The third approach is a variation of the second one, where the distance only
considers the coefficients of the decomposition and disregards the information
in the basis functions. In addition, this approach works with p, length-scale
parameters for the k-th model input instead of only one as in (9) and (11):

B df pk (O“(ak) 7&5}‘7))2
() =T llsg, = | 2D~ (13)

N2
k=1r=1 (0;];))

Note that here we denote the vector of length-scale coefficients by 0}, with

elements (9;i))1§7-§pk,1gk§df, to differentiate with the shorter vector 6y, with

elements (O}k))lgksdf used in (9) and (11). Also note that (13) can be inter-

preted as if each projection coefficient ozg-k) was taken as an individual scalar

input of the model, since (13) matches the structure of the anisotropic L? norm
for scalars shown in (7).

For applications of the three approaches, the reader is referred to [33], [4] and
[5], in the corresponding order. For the sake of theory, we expressed (9), (11)
and (12) in terms of infinite-dimensional inputs f*) : T, ¢ R — R. However,
in practice one typically does not have access to the infinite-dimensional func-

!/
tion, but to a vectorial representation of it (f(k) (tgk)> o [ (tgc))) , with

k
tgk), . ,tgi)} C T}, as is the case in our costal flooding application. In (9), if

a vectorial representation of the input is provided, the integral could be com-
puted by numerical approximation or substituted by the Euclidean norm of a
vector. A numerical approximation of the integral can be used in (11) and (12)
as well.

To the best of our knowledge, up to now there is no evidence of the su-
periority of any of the three methods over the others in terms of metamodel
predictability. However, the two distances based on the projection of the inputs
are motivated by potential gains in speed and tractability. The dimension of
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our inputs in the coastal flooding application case is large enough (time series
of length 37) to take this advantage into consideration. Therefore, in this paper
we focus on the two approaches based on the functional decomposition of the
inputs, i.e., distances (11) and (13).

3.4. Gaussian process metamodeling with scalar and functional inputs

Our coastal flooding application matches the functional-input setting f —
feode (f), with f = (Td, Sg, Hs, Tp)'. However, we want to provide the meta-
model with some flexibility so that if we find convenient to remove a functional
input from the explanatory variables, we can still keep active a scalar represen-
tation of it (e.g., its temporal mean). To do so, we consider the hybrid-input
setting where f.oqe models the relationship between a vector of scalar inputs
z= (21, ... ,x(ds))l € R%, a vector of functional inputs f = (f(),..., f(df))l,
with f®) : T), C R — R for k = 1,...,df, and an output variable of interest
y € R, with y = feode (x, ). We model the correlation between scalar points
and the correlation between functional points as described in Sections 3.2 and
3.3, respectively. To integrate both types of inputs in the model, we follow the
approach in [4] and adopt an anisotropic, tensor-product kernel of the form

Cov(§(@. £). 6. ) = o* R(x—:6) R(f-F:6.). (14)

with 6, denoting either the vector 8 or the vector 0}, depending on whether the
distance ||-||p,g; or ”'Hséf is used. To illustrate, if we take our tensor-product

kernel from the Matérn 5/2 family (6) and we use the distance ||-||p,e, for the
functional inputs, we obtain:

Cov(&(x, f), €, f)) = o2 (1—1—\/5 |l — &| 12,9+ 3

exp (—\/5 |z — :EHL2795>

5 [lx — j||2L2,95>

. 50— FII2
<1+¢5 I - Floe, + ”’c:f”D)

cop (~V5 1~ Fle) - (15)

4. Exploration strategy

The construction of a surrogate model requires making a series of decisions
that may have significant impact on its performance. The projection method
and projection dimension, the distance function to measure similarity between
functional input points, as well as the set of functional predictors to keep active
make all part of those decisions. The ideal combination of those parameters
varies from one application to the other. In this section, we present an ex-
ploration methodology designed to select a suitable combination of these or
some other structural parameters. A scheme of the proposed methodology is
presented in Figure 3 and its main steps are briefly described below.
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Figure 3: Exploration strategy flowchart.

1. Screening. This step is intended to provide an overview of the effect that
each parameter has on the performance of the metamodel. The main
objectives here are to:

e Identify patterns, as could be the dominance of certain levels of a
given parameter over its other levels. For intance, determine if some
projection method clearly outperforms the others.

e Detect trend in numerical parameters. For example, determine if the
performance of the metamodel improves by increasing or decreasing
the projection dimension.

e Determine if the functional representation of each functional input
variable adds information to the metamodel or if a scalar represen-
tation of it is enough. To do so, a metamodel using only a scalar
representation of each functional input is used as a benchmark.

As one of the main purposes of the exploration methodology is to reduce
the dimension of the inputs considerably, we start by exploring configu-
rations with the lowest possible dimension. For instance, configurations
using projections of dimension 1, 2 and 3.

2. Cleaning. If the screening stage allows to detect a trend to better per-
formance with larger projection dimension, the exploration is extended in
that direction. However, depending on the number of structural parame-
ters under study, the extension of the experiment could become too time
consuming. Therefore, the cleaning stage consists on discarding domi-
nated levels of the parameters, identified in screening stage.
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3. Descent. Once the dominated levels of the parameters have been dis-
carded, greater values of projection dimension are evaluated. To do so,
a new factorial design of experiments is built, considering only the non-
dominated levels of the other parameters. We call this stage descent as
its purpose is to explore a new region in the domain of the structural pa-
rameters, where the projection error will likely be reduced. Similarly to
the response surface methodology [34, 35|, this stage is repeated until a
stationary point is identified.

4.1. Scope of the methodology

This section briefly discusses some of the concerns that users may have on
the scope and adaptability of the proposed methodology. This discussion seeks
to provide an insight on the possible uses of the methodology for a variety of
modeling scenarios.

e Learning and validation sample size: generally speaking, the quality of a
regression model has direct correlation with the number of training points.
On the other hand, the robustness of the performance statistic used to
assess its quality correlates with the number of validation points. Hence,
in the frame of this, or any other exploration methodology, fewer training
points will reduce the quality of every configuration and fewer validation
points will reduce the robustness of the measure used for comparison.

This cleared up, we could say that the proposed methodology is suitable
for both, scenarios of relatively large or considerably short data availability
(samples of the code). This aspect is thoroughly discussed in Section 6.
For cases of very limited data the performance of each configuration could
be assessed by means of cross validation / bootstrap methods [36]. These
adopt resampling techniques to estimate the performance of a regression
model using training and validation sets of modest size. Efficient formulas
exist, e.g., for Gaussian processes [37, 38] and polynomial chaos expansions
[11].

e Large number of features or levels: in the proposed method, the number
of experimental conditions to test grows exponentially with the number
of structural parameters. The growth rate, in turn, increases with the
number of levels of each parameter. A convenient fact is that all configu-
rations can be trained and validated using the same set of samples of the
expensive code. Nonetheless, we have to acknowledge that the process-
ing time to build all metamodel configurations may turn prohibitive for
some applications with several inputs and/or levels. A possible way to cir-
cumvent this inconvenience, and a potential topic of future research, is to
extend the methodology towards a metaheuristic-based algorithm able to
deal with wider solution spaces. In this regard, Ant colony programming
[39], Artificial bee colony programming [40] and Genetic programming [41]
could be suitable choices based on their recurrent usage to solve symbolic
regression and automatic programming problems whose nature is quite
close to that of the problem discussed here.

e Functional inputs in larger dimensions: in both case studies revised here,
the functional inputs are time series (functions in dimension one). How-
ever, the exploration strategy is generic enough to account for inputs in
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larger dimensions such as fields or images (functions in dimension two).
To do so, tensorized finite dimensional projection spaces could be consid-
ered (see e.g., [42] or [43]). If the functional inputs are functions from
T C R? = R, then for tensorized projection spaces, the projection dimen-
sion is of the form p™ x ... x p(), where p™), ..., p(® can be defined as
structural parameters and the already defined steps and rules will hold.

Functional output: the exploration methodology can be used in case of
both, scalar and functional outputs. The latter can be handled in at least
two ways which are described in the following paragraphs.

The first way is to transform the problem to a scalar-output version of
it. For instance, if the original output is a time series, an individual
metamodel can be used to predict the output at each time instant or the
time index can be taken as an input of the metamodel, making the output
scalar (see e.g., [44]). In both cases, our methodology will proceed as
illustrated in the case studies.

The second way is to project the output onto a space of lower dimen-
sion and then fit an individual metamodel to predict each component of
the projection (see e.g., [10] or [44]). For each individual metamodel, our
methodology will proceed as in the case studies. It is worth mentioning
that for this approach, the optimum projection dimension for the out-
put, in terms of projection error, will be the largest possible one. This
value, however, will not necessarily be the optimum in terms of meta-
model predictability and will likely be a highly expensive choice in terms
of computational time. Thereby, a sound approach would be to optimize
the output projection dimension w.r.t the prediction error of the meta-
model and consider the processing time of the metamodel as a second
objetive function or as a constraint (i.e., discard any configuration whose
processing time exceeds certain limit).

Stochastic code: metamodeling with stochastic codes often reduces to
multiple subproblems consisting on estimating moments or quantiles of
the output distribution given an input value (see e.g., [45] and [46], re-
spectively). All these are scalar-output problems that can be addressed
similarly to our case studies.

More advanced techniques predict the probability density function (pdf)
[47] or the quantile function [48] of the output given an input value. If
the output is scalar, then this case can be perceived and approached as
the functional output problems described in the previous item. If the
output is functional, for instance a time series, a pdf could be built for
each observation at each time step. Then, one could put the time index
as an input and the problem will likewise reduce to the case of functional
output already discussed.

4.2. Analytic case

In this section we illustrate our exploration methodology by means of a toy
case. It corresponds to the second analytic case presented in [4], with a slight
different domain for the functional inputs. In [4], a functional-input Gaussian
process metamodel is built using B-spline projections of dimension 5 and order
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4. Here, we use the exploration strategy presented in previous section to find
an attractive metamodel configuration.

Let F be the set of continuous functions from [0,1000] to R. Consider a
black box computer code receiving the scalar inputs x = (m(l),x@)) € [0, 1]2
and the continous functional inputs f = (f(1), f?) € F? defined as:

G: [0,1]*x F? = R,
5 2 5
@) _ 2 () 2.0 _g
(z, f) — (:n yoe) ()" + —u )

+10 (1 - 81> cos (M) + 10

2

s

4 1000
+37 (42/ 15 fO@) (1 —t)dt
0

W 45 1000
m (33; + 15) / 15t f(2>(t)dt> .
0

Note that G is an instrinstic functional code, since the integrals over the
domain of the inputs and the interactions between functional and scalar variables
make it unfeasible to recover the output by means of independent computations
on scalar representations of the input over its domain. This fact gives an insight
on the type of metamodel that should be used; at least, we expect functional
metamodels to be an interesting alternative here.

4.2.1. Dataset

We started by creating a dataset with 5000 runs of the code that could
be used later to generate multiple independent training and validation sets.
The coordinates of the 5000 scalar input points where uniformily sampled over
their domain. For the functional part, we followed the approach proposed in
[4] by making the design over the coefficients of a functional decomposition.
To this end, we modeled each functional input as a B-spline of dimension 5
and order 4. Then, we built a Latin Hypercube design [49] with 5000 points
taking the decomposition coefficients as coordinates. We remark that the order
and dimension used for the constitution of the dataset is independent of the
order and dimension to be used later for the representation of the inputs in
the metamodel. As the focus of this paper is not on the optimal design of
experiments, we do not develop further this aspect and match the 5000 scalar
coordinates to the 5000 functional coordinates using a random permutation. For
a more elaborated approach to perform this pairing, the reader is referred to
[4]. The full dataset and a set of 25 trajectories of the function f(!) are shown
in Figures 4a and 4b, respectively.
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Figure 4: Illustration of the functional input f;.

4.2.2. Screening

Once the dataset was obtained, we set up the screening experiment, which
implies the definition of a scalar metamodel to be used as a benchmark for the
functional ones. Let f = (f(1), f2) be the vector of scalar representations of
the functional inputs f(*) and f(?). Different scalar parameters could be used to
represent the inputs, depending on the geometry and/or the physical meaning
of the curves. For simplicity, and as the functions in this theoretical example
do not have any physical meaning, here we set the average over [0, 1000] of each
function as its scalar representation. Then, we define the scalar metamodel as:

Moo : [0,1]% x [0,1]* =R,
(:B) f) HMOO(ma f) (16)

For the funtional metamodels, let us consider a shifted version of f, com-
puted as f =f- f Then, let IT = (II;, II5) denote the vector of projections of
the elements in f onto a space of dimension p. For every functional metamodel,
we keep  and f as inputs and we add at least one element of IT,. This way,
the difference in performance between the scalar metamodel and any functional
metamodel will be attributed to the addition of the corresponding projections.
As an example, metamodels with (a) only II; active, (b) only IIy active, and (c)
both, II; and Il active, are defined in (17), (18) and (19), respectively.

Mo 0,12 x [0,1]2 x RP R,
(CB, .val) HMfO(w,fanl)' (17)

Moyt [0,1]* x [0,1]% x R? =R,
(m’ j:.7 HQ) HMOf(w7j;a HQ) (18)

My i [0,1]% x [0,1]% x (RP)? SR,
(:U, j':, H) i—)./\/lff (.CB, _];':7 H) (19)

In this notation, the subscript indicates which functional decompositions are
active. For instance, in M both functional decompositions are inactive, while
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in Mgy only I is active. However, the notation is generic in the sense that each
of the metamodels, (17), (18) and (19), might represent configurations involving
diverse combinations of projection method, projection dimension and distance
measure.

A total of 37 experimental conditions were included in the screening exper-
iment, resulting from the scalar metamodel Mg, plus all combinations of the
levels of the structural parameters (see Table 1), except for those cases where
both II; and II; are inactive. Those correspond to redundant counts of the
scalar metamodel. In the rest of the paper, for concision, we write [|-|p,g, as
Illp,e and H'”S,éf as ||||s,e- For the numerical experiments, we concentrate on
the B-splines and PCA projection methods, which have consistently appeared
as effective ways to model functional data (see e.g., [4, 50, 9] for applications
of B-splines and [5, 51] for applications of PCA). Both methods work with a
projection of the form (10) and thus, they are suitable choices in our framework.
For a full derivation of B-splines and PCA equations, the interested reader may
refer to [50] and [52], respectively. Other projection methods such as PLS [53] or
kPCA [22] are valid choices as well, and we encourage the inclusion of multiple
projection methods in the analysis for comparison. Furthermore, we impose the
projection dimension of every functional input to be the same, for simplicity of

exposition. That is, we let p; = ... = pgr = p, with the notation of Section 3.
Parameter Levels
State of II; inactive, active
State of Il5 inactive, active
Projection method B-splines, PCA
Projection dimension 1,2,3
Distance Illp.6s Ills.0

Table 1: Analytic case: parameters and levels for the screening stage.

In all cases, we set the projection coefficients agk), ey ozg,i) using an ordinary
least squares formulation (see Appendix B). We used the Matérn 5/2 kernel (6)
and estimated the hyperparameters of each metamodel by maximizing the joint
likelihood of the data [54, 26] in a similar way to the R package DiceKriging
[55]. The optimization was done by the R-function optim.

We assessed the quality of each configuration by means of the predictive
squared correlation coefficient %, which corresponds to the classical coefficient
of determinarion R? for a test sample, i.e., for prediction residuals [56]. For

a test set of n, output values ¥ 1,...,%n., With average denoted by ., and
corresponding predictions g 1, . .., x.n,, the Q% is defined as
o2
Q*=1--%, (20)
or
with
™ ™
Z(y*,i - @*,1)2 Z(y*ﬂ - y*)z
2 _ =l 2 _ i=1
op = and o =
E . T "
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The Q? takes values in [—oo, 1] where 1 indicates perfect fitting to the test
data. Thus, it not only allows to make comparisons between configurations, but
it also provides information on the absolute quality of each configuration.

To account for the sampling noise, we used a total of 30 independent pairs of
training and validation sets for each of the 37 metamodel configurations. Thus,
the statistic for comparison between configurations, denoted by @2, is obtained
by computing (20) for each of the 30 samples and then taking the average of
the results:

- 1 3 )
Q 3=%Z;QS~ (21)

The 30 pairs were kept fixed for all configurations in order to make the
comparison fair. We remark that the correlation between input and output is
implicitly taken into account when optimizing a predictability indicator such
as the Q2, since the methodology will select a projection dimension sufficiently
large to retain the amount of temporal/spatial information of the inputs neces-
sary to accurately reproduce the output.

We let the exploration run until fulfilling one of the following convergence-
oriented stopping conditions:

(i) Stop if the slope of a linear least squares fitting to the best Q2 values of
the screening is lower than a reference value m*;

(ii) Stop if a stationary point or plateau is reached. Each time the experiment
is expanded to a greater level p of projection dimension, compute a new
linear least squares fitting to the best Q2 values among those correspond-
ing to configurations based on projections of dimension p — 1 and p. If
the slope of such a fitting is lower than a reference value m*, count a flat
step. Stop if z consecutive flat steps are registered.

The first rule seeks to prevent the extension of the experiment unless evidence
of potential improvement of the Q2 was found during screening. On the other
hand, the second rule is oriented to stop if a prospect local optimum is detected
or the strategy reached certain degree of convergence. Note that the slope of
the linear least squares fitting is updated each time the projection dimension
is increased, and the fitting only takes into account the last two projection
dimensions. This seeks to obtain clear information on how the Q2 is behaving
locally. If other projection dimensions were considered in the fitting, one might
end up mistakenly thinking that the Q2 is still improving, when it is not. Also
note that we do not stop the search the first time we notice a flat step, but
after z consecutive counts. This is to prevent premature stops due to saddle
points. Similar stopping rules are often used in general for optimization, e.g.,
for gradient based methods [57] and heuristics [58].

Figure 5 illustrates the performance in terms of Q2 of the 37 metamodel
configurations, using 800 training points and 1500 validation points. Those
results were obtained using m* = 10~* and z = 3 for the stopping conditions,
which based on a set of preliminary tests seem to provide a good balance between
degree of exploration and convergence rate. For convenience in the analysis,
the plot classifies metamodel configurations into three groups based on their
performance:
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(i) the scalar metamodel Mg,
(ii) all metamodels with active functional representation of both functional
inputs My,
(iii) all metamodels with at least one functional representation inactive (except
for the scalar metamodel).

For a detailed list of the experimental conditions and corresponding results
of the screening stage, the reader is referred to Appendix C, Table C.7.
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Figure 5: Analytic case: results of the screening experiment. Points are labeled by projection
dimension p; the label 0 corresponds to the scalar metamodel.

As a first noticeable result, the scalar metamodel was the worst performing
configuration, closely followed by a metamodel with p = 1 (configuration 8).
For p = 2 and 3, configurations with both functional representations active
(i.e., configurations 16 + 3i, ¢ = 0...,7) performed better than the others,
while for p = 1 only those configurations with PCA representation of both
functional inputs (configurations 7 and 13) had outstanding performance. On
the other hand, it is visible that the Q? tends to grow as the number of basis
functions increases. In fact, the best performing metamodel of the screening
stage (configuration 37) was found for p = 3, the largest value tested so far.
Since the slope of the linear trend was larger than the critical value m = 1074,
we proceed to cleaning and descent.

4.2.8. Cleaning and descent
Appart from a positive trend of the Q? for increments in p, the screening
stage revealed that configurations with the functional representation of both
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inputs being active dominate any other configuration. Therefore, only this type
of metamodel is retained and we start expanding the experiment by increasing
p by steps of a unity. At each step, we inspect again for patterns or changes
in trend, and cleaning is performed if possible. The Q2 of the new configu-
rations is plotted in Figure 6. A detailed list of the experimental conditions
and corresponding results of this stage is provided in Appendix C, Table C.8.
From p = 3 to p = 4, and also from p = 4 to p = 5, we registered a flat step.
At p = 5, we removed the configurations using the scalar distance |-||s,0, as
those were clearly dominated by configurations using the decomposition-based
distance ||-||p,g. Then, p = 5 to p = 6 we registered a third flat step, which
fulfilled our secont stopping condition. Thus, at p = 6 we stopped.
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(b) Analytic case: zoom to best configurations of cleaning and descent. The value of
m in the box indicates the slope of the linear least squares fitting of the points.

Figure 6: Analytic case: results of cleaning and descent. Points are labeled by projection
dimension p. Configurations from the screening stage with p = 3 are also plotted here for
comparison against configurations with larger p.

The metamodel with an active B-splines representation of size p = 5 for both
functional inputs, using the decomposition-based distance ||-||p,¢ (condition 44)
is the most attractive configuration found. As we do not know the shape of the
(Q? surface, we cannot guarantee that such a configuration provides the global
optimum. However, we know that its Q2 is 18.8 times as large as the Q2 of
the worst configuration assessed (conditon 1). Considering that, and based on
the patterns found during the exploration, condition 44 is likely one of the best
metamodel configurations in terms of Q? for this case study.

The fitting of the ordered true output for the best performing sample of the
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best configuration is illustrated in Figure 7. For this sample, the proportion of
output values lying within the confidence intervals at 99%, 95% and 90% was
89%, 77% and 68%, respectively.
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Figure 7: Analytic case: fitting of the best performing sample of the best configuration. Left-
top subplot illustrates the whole set of 1500 output values in increasing order; this subplot is
then subdivided to generate the remaining 5 subplots by splitting the abscissa into 5 sections
and zooming the resulting figures.

On the other hand, the calibration plot for the best and worst samples of the
best configuration are presented in Figures 8a and 8b, respectively. Based on
these results, we may conclude that this metamodel provides good predictions
with no evident fitting problems (e.g., skewness, heavy tails).
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Figure 8: Analytic case: calibration plot with 1500 data points for the best and worst samples
of the best performing metamodel (configuration 44).

5. Coastal flooding case study

In this section, we address the application case introduced in Section 2.
Similarly to the analytic case, we implement our exploration methodology to
tune the structural parameters of the metamodel. Note that the computer code
under study is actually a concatenation of two blocks: (i) the spectral wave
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model SWAN; and (ii) the EurOtop overtopping and overflow discharge formulas
(see the system description in Section 2.1). A possible way to handle problems
involving multiple nested blocks is to use multiple metamodels, one for each
block of the system. In a recent work this method was compared to the classical
approach based on a single metamodel, using Gaussian processes in both cases
[59, 60]. A set of numerical experiments showed a superior prediction capacity
when using multiple nested metamodels instead of a single one, however no
theoretical guarantees were provided. In the present paper we preferred to keep
the simpler yet powerful single metamodel approach and focus on the modeling
of functional inputs and optimization of structural parameters. We outlook the
comparisson of the two approaches for our application case as an interesting
topic of future research.

5.1. Screening

Following the exploration methodology described in Section 4, we start by
the screening stage oriented to identify patterns, detect trend and determine if
the functional representation of the inputs adds value to the metamodel. We
denote by f = (Td, Sg, Hs, Tp) the vector of functional inputs in a time series
format (see Section 2) and correspondingly, we denote by f= (Td, S, Hs, 'Ip)
the vector of shifted scalar representations of the elements in f. From the
physical perspective, the Td peak (its value at time 19) is the point in the series
with the most influence on the output. Thus, we use that quantity as its scalar
representation. On the other hand, for Sg, Hs and Tp we use the average of
the series over 37 time points, given their smooth and almost constant behavior
in the historical dataset (see Figure 2). Using a similar notation to that used
for the analytic case, we define the scalar benchmark metamodel as:

Mooo : R4 —)R,
Jz HMOOO(JZ)- (22)

As before, the funtional metamodels require the definition of a shifted ver-
sion of f computed as f = f — f However, the coastal flooding application
has four functional inputs, in contrast to the analytic case which had only two.
As mentioned earlier, in the proposed exploration method the number of exper-
imental conditions grows exponentially with the number of functional inputs,
and so does the processing time. In Section 4.1 we proposed an extension to
deal with a larger number of structural parameters and levels. Such an exten-
sion would certainly be of service here. However, its development requires a
considerable amount of additional work which is out of the scope of this paper.
Thus, in this section we adopt the simpler approach of performing a classic
principal component analysis to determine if any shifted functional input could
be discarded from exploration (see Figure 9). Note that the plot is built for the
shifted inputs as those are the ones that will potentially be used as functional
inputs of the metamodel (see the setup for the analytic case in Section 4.2).
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Figure 9: Coastal flooding case: PCA on the shifted inputs; the dotted red lines indicate the
number of principal components required to explain at least the 99% of the data variability.

According to the plots, Hs is the input requiring fewer components to be
well described, while S~'g and fp require a considerable number of components.
Considering this and the behavior of the time series in Figure 2, we decided
to discard Hs as a functional input of the metamodel. However, we keep its
scalar representation Hs active, as it does not affect the number of experimental
conditions to run and may help to improve predictions. Although Td is also well
described by just a few components, the tide is known to be a primary forcing
factor of coastal flooding. Both, statistical and physical reasoning are relevant
for this filtering process. Thus, we decided to keep Td in the experiment.

Now we let IT = (I1y, II5, IT3) denote the vector of projections of dimension p
for fd, S~g and fp For every functional metamodel, we keep all the elements in
j"" active and we add at least one element of IT as a functional input. Functional
metamodels are defined the same way as for the analytic case. For instance,
metamodels with (a) only II; active, (b) IIy and I3 active, and (c¢) all three
projections active, are defined in (23), (24) and (25), respectively.

Moo : [0,1]* x RP 5R,
(f, ) =Moo (f,TTh). (23)

Mosr: [0,1]* x RP x RP =R,
(j;a H23 H3) HMOff(.f.a HZ, HB) (24)

Mysp: [0,1]* x (RP)® R,

(F,T0) =M pp(F,10). (25)
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The interpretation of this notation is analogous to that of the metamodels in
the analytic case. The subscript of M indicates which functional decompositions
are active. The notation remains generic in the sense that (23), (24) and (25),
might all represent configurations involving diverse combinations of projection
method, projection dimension and distance measure.

A total of 85 experimental conditions were included in the screening experi-
ment this time, corresponding to the scalar metamodel plus all combinations of
the levels of the parameters listed in Table 2, except for those where II, IT> and
II3 are simultaneously inactive, which are equivalent to the scalar metamodel.
A detailed list of the 85 configurations and corresponding results is provided
in Appendix D, Table D.9. As for the analytic case, we have considered the
B-spline and PCA projection methods and set the projection dimension p to be
the same for all active functional inputs.

Parameter Levels
State of II; inactive, active
State of 1l inactive, active
State of 1I3 inactive, active
Projection method B-splines, PCA
Projection dimension 1,2,3
Distance lI-llp.6s Ills,0

Table 2: Coastal flooding case: parameters and levels for the screening stage.

In the analytical example, we used an ordinary least squares formulation to
set the projection coefficients, given that all points in the input series where
considered equally important. For the RISCOPE application, the midpoint of
the series is of particular relevance, as it corresponds to the moment of high tide.
Therefore, in this case we used a weighted least squares formulation instead (see
Appendix B). A constrained or weighted constrained formulation could also be
suitable choices here. Those are used for further analysis in Section 5.2.

For the weighted least squares formulation we denote the vector of weights
by w = (wy, ..., wr), with T = 37 for the application case. We set the value of
each element in w, based on the model

1 cift=t,
A i O< |t -t <4 (26)
Wy =
A\ ex _w it —t 6
p 20_2 . 1 | *|> 9

with 02 = —(w?)/(21In(v)) controlling the decay rate of the function.

Models like (26) are often used to represent the relevance of results for queries
on search engines [61]. It retains some interesting properties from the Gaussian
pdf, such as the non-negativity and the existence of at least one maximum
located at the origin .. A particular shape can be given to the curve by setting
the value of its parameters as follows. First, ¢ should be choosen from [0, ¢.].
Then, w should be set in [0, ¢, — ¢]. Finally, A and ~ should be set, each in [0, 1].
This setting along with the first case of (26) ensure that the greatest possible
score in w is 1. The weighting curve produced by such a model is illustrated in
Figure 10 with the parameterization used for the coastal flooding case.
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Figure 10: Weighting function for the coastal flooding case. The parameters A, v, w and 6,
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Figure 11 shows the Q? of the 85 metamodel configurations, using 800 train-
ing points and 1500 validation points. A total of 30 independent pairs of training
and validation sets were used and the Q? for each was computed. We used the
same stopping conditions and parameters (mx, z) as for the analytic case. That
is m* = 107% and z = 3. For convenience in the analysis, Figure 11 classifies
metamodel configurations into three groups based on their performance:

(i) the scalar metamodel Moyqg,
(ii) all metamodels using a decomposition-based distance ||-||p,e,
(iii) all metamodels using a scalar distance ||-||s,g-
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(b) Coastal flooding case: zoom to best configurations of screening. The value of m
in the box indicates the slope of the linear least squares fitting of the points.

Figure 11: Coastal flooding case: results of the screening experiment. Points are labeled by
basis size p; the label 0 corresponds to the scalar metamodel.
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The scalar metamodel and the functional ones using the decomposition-based
distance ||| p,e performed similarly and outperformed almost every configura-
tion using the scalar distance ||-||s,9, except for a few ones with p = 1. Regarding
the Q2 trend, here it seems that lower p values work better. Since the slope of
the linear fitting of the best configurations was smaller than the critical value
m = 10~* during screening, we stop based on our second stopping condition.
Thus, we stop the search and keep the current best configuration. Strictly
speaking, such a configuration corresponds to experimental condition number
18; a metamodel with an active B-spline representation of size p = 1 for Td and
Sg, using the decomposition-based distance ||-||p.o. However, in practice any
of the dominant configurations included in Figure 11b could be a good choice,
since the Q2 of all that group of configurations was quite similar and processing
times were all reasonable (see Appendix D, Table D.9).

It is inquiring to see that the Q2 values reported in Figure 11 are quite
moderate, even for the best configurations. Operationally, the problem is that
almost in each of the 30 samples of each configuration, there is at least one of
the 1500 validation points, whose prediction is significantly bad. To illustrate,
in Figure 12 we report the squared error of the 1500 validation points for each of
the 30 samples of metamodel configuration 18 — the best configuration of the
coastal flooding case. In almost every sample a few points behave as outliers,
increasing the sum of squared errors and thus, decreasing the QQ.
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Figure 12: Coastal flooding case: squared errors for each of the 1500 validation points in each
of the 30 samples of configuration 18.

We think that the problem comes from a strong imbalance in the dataset
between mild events (leading to minor or no flooding) and strong events (leading
to major flooding). In fact, after simulating each of the 20557 available hindcast
events (see Section 2), we found 90% of the output values below 4 m? although
the largest output value found was 3455 m>. This proportion of mild events has
total physical sense as most part of the time Gévres is not flooded. In that
sense, strong events — like Johanna storm, which hit Gévres in 2008 — are
rather statistically uncommon. However, this natural bias impacts the efficiency
of metamodel training, as the majority of learning data will match mild events
(see Figure 13). A possible way to deal with this issue is to use sequential
design techniques [62, 63] to dynamically add events to the learning set, seeking
to diminish the bias in the data. Further analysis on this issue is out of the
scope of this paper, but will be addressed in the upcoming steps of the project.
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Figure 13: Coastal flooding case: calibration plot with 1500 data points for the best and worst
samples of the best performing metamodel (configuration 18).

One may say that one or two bad predictions over 1500 is not exactly a bad
performance. Here the issue is that the Q? is overly affected by only these few
very large errors. Therefore, in this case, a more robust and appropiate way
to assess the absolute quality of each metamodel is to compute the 2, which
we define as the Q2 in (21), but using 5% = median ({(y«,; — 9x.i)2}iz1,....n. )
instead of 0%, and ¢% = median ({(y.; — §x)*}i=1,....n,) instead of o2. Here
median ({uq,...,u,}) is the empirical median of uq,...,u, € R. Configurations
18 and 71, the best and worst metamodels of the screening, reported Q2 values of
0.7247 and 0.6371, respectively. In contrast, if we compute their QQ, we obtain
0.9999857 and 0.9997, in the same order. Hence, the metamodel predictions are
accurate for the large majority of the elements in the testbase.
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Figure 14: Coastal flooding case: fitting of the best performing sample of the best configura-
tion. Left-top subplot illustrates the whole set of 1500 output values in increasing order; this
subplot is then subdivided to generate the remaining 5 subplots by splitting the abscissa into
5 sections and zooming the resulting figures.

The fitting of the ordered true output for the best performing sample of the
best configuration is illustrated in Figure 14. For this sample, the proportion of
output values lying within confidence intervals at 99%, 95% and 90% was 92%,
91% and 89%, respectively. In this case, the plot shows more variability in the
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confidence intervals than for the analytic case. However, this is just a visual
matter as the scale of each subplot is custom to the range of the output values
at each segment. Based on the results, we may conclude that the selected
metamodel provides good predictions for the majority of data and could be
improved by means of strategic sampling/sequential design techniques.

Interestingly, whilst the inputs of the code are time series of dimension 37,
it was possible to achieve quite good metamodel predictability just by using a
scalar representation of them. This result may be explained by the fact that,
as commented in Section 2.1, the simplified code considered here can be seen
as the sum of independent scalar-to-scalar problems. Thus, if we represent the
functional inputs by a scalar related to a key time instant in the evolution of the
output, we may expect to have reasonable predictions. We would not expect
this kind of result if the code was intrinsically functional as in the analytic case
studied in Section 4.2. There, the best configuration found was a metamodel
using a projection of dimension 5.

5.2. Dimension selection based on projection error

Earlier in the paper, we have commented the common practice in the liter-
ature to set up the projection dimension p, which is using the accuracy of the
projection itself as criterion. The problem with this approach, as mentioned
earlier, is that the projection dimension offering a good fit of the input does
not necessarily lead to a better performance of the metamodel. In this section,
we take advantage of the RISCOPE case study to illustrate such an inconsis-
tency. To do so, we first set p based on the projection error, and then we assess
the performance of the corresponding metamodels based on their QQ. Finally,
we compare results with those of the metamodels assessed in the frame of our
exploration methodology.

5.2.1. Selecting the dimension for each input based on projection error

Here we follow an approach which consists in the definition of an error tol-
erance for each input, and the posterior search of the lowest dimension for
which the tolerance is reached. Based on knowledge of the coastal flooding
phenomenon, we set a maximum error of 1cm, 1.5cm, and 1s, for the projec-
tions of Td, Sg and Tp, respectively. This tolerance should be achieved within
the critical time window ¢ = {13,...,25}, which corresponds to the moment of
maximum tide & 1 hour. Hence, the procedure will point out to find the lowest
projection dimension, for which every curve of the hindcast dataset satisfies the
stated tolerance. We also use this experiment to compare the four least squares
formulations presented in Appendix B to set the coefficients of the projection,
those being: the ordinary, weighted, constrained and weighted-constrained for-
mulation. The last three, could be interesting choices here as the points of the
series lying in the critical time window have greater importance than the others;
in particular at point t19. Results are condensed in Figure 15.
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Figure 15: Maximum projection error within the critical time window as a function of the
projection dimension p. Td and Sg error in centimeters and Tp error in seconds. In the
legends, the quantity in parenthesis indicates the value of p needed to meet the tolerance.

As suggested in Section 4, by focusing on the error of the projection one
may end up with an unnecessarily large projection dimension. For instance,
the projection error for Td using any of the formulations was already quite
low at p = 6, however, the constrained and weighted-constrained formulations
required at least p = 13 to reach the tolerance. What makes it even worst is
that usually, there are only a couple of curves in the dataset that require such
a high projection dimension. For instance, in Figure 16 we show how for the B-
splines projection method and the constrained formulation, almost all the curves
of Td had already reached the tolerance at p = 6. However, seven additional
dimensions where required to be compliant for all the curves. Although the
demanding constraint of perfect fitting at t;9 has part on such behavior, the
problem is also present in the ordinary and weighted formulations, which do not
implement the constraint. See for instance the curve of the weighted formulation
in Figure 15e. At p = 5 the error was considerably low, however, it required
p = 10 to meet the tolerance.
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Figure 16: Distribution of errors (in centimeters) for points in the critical window using the
constrained least quared optimization formulation and B-splines for the projection of Td.

5.2.2. Efficiency of configurations based on projection error

The weighted formulation was the best performing one in the experiment
above. It required the lowest dimension in all cases and its maximum error
remained almost always below that of all the other formulations. Therefore, in
this section we assess the performance of the metamodel using the projection di-
mension suggested by that formulation. Similarly to the previous experiments,
here we evaluate all the possible combinations of the following structural param-
eters: state of each projection (inactive or active), projection method (B-splines
or PCA) and distance (||-||s,0 or ||||p,e)- In this case the projection dimension
p is not taken as a factor of the experiment, as its values are taken from results
of the selection based on projection error. Those values are listed in Table 3
for each combination of input and projection method. In addition, in this ex-
periment we do not consider the case where all functional decompositions are
inactive, as it corresponds to the scalar metamodel, which we already evaluated
as part of the selection based on metamodel predictability in Section 5.1.

Td Sg 1Tp
B-splines 4 15 10
PCA 4 10 6

Table 3: Selected dimension based on projection error.

A total of 28 experimental conditions were evaluated this time. A detailed
list of them and their corresponding results is provided in Appendix D, Table
D.10. The Q? of each of these experimental conditions is reported in Figure
17, along with that of the best configuration found with the approach based on
metamodel predictability. To recall, the latter corresponds to configuration 18,
which has an active B-spline representation of size p = 1 only for Td, using the
decomposition-based distance ||| p o-
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1:(0,10,6), m : (4,10,6).

Once again, results with the decomposition-based distance ||| p,¢ were bet-
ter than those with the scalar one. The former has consistently been showing
better performance throughout the paper. Its advantage over the scalar distance
is presumably the fact that it keeps the number of length-scale parameters con-
trolled, which in turn maintains the learning problem handy and so its resolution
time. Conversely, the scalar distance implies in some cases many more hyperpa-
rameters. To illustrate, the average training time of the fourteen configurations
reported in Figure 17 for the scalar distance was 384.7 s, which corresponds to
10 times the average training time of configuration 18. In contrast, the same
quantity for the fourteen configurations using the decomposition-based distance
was 56.7s, or 1.5 times the average training time of configuration 18.

None of the new metamodels outperformed the best configuration found by
means of our exploration methodology. Metamodels selected with the approach
based on the projection error are in general more comptationally demanding.
Our exploration strategy eludes this problem by only increasing the projection
dimension if there is evidence of potential improvement in accuracy.

6. Robustness to changes in the amount of training/validation data

We close the experimental segment of the article with an analysis on the be-
havior of our exploration methodology when different amounts of training and
validation data are used. In Sections 4.2 and 5.1, the exploration strategy was
used to calibrate the structural parameters of a metamodel for the analytic case
study and the coastal flooding application, respectively. In both cases, we used
training sets of size 800 and validation sets of size 1500. Those numbers were se-
lected during a preliminary verification of functionality of our codes, taking into
consideration the numerical stability of the metamodel (e.g., when computing
inverse correlation matrices), its predictability and the stability of performance
statistics for it. However, the number of training and validation points are
undoubtedly influential factors in regression and also in model selection. If
different numbers of training and validation sets are chosen, the performance
statistics of any metamodel previously assessed will most likely change, so will
the optimal choice of a metamodel configuration. Then, a critical question is
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if the exploration methodology under use is robust to such changes. In other
words, if it is able to efficiently identify good metamodel configurations when we
change the amount of information available to train and validate. In this section
we conduct an experiment to test this attribute of our exploration methodology.

6.1. Ezxperiment setting

The experiment is based on the two case studies previosly addressed in the
paper. For each of them, we search the optimal metamodel configuration, given
different amounts of training and validation data. To do so, we use an exhaus-
tive search (ES) approach, where we evaluate all possible combinations of the
structural parameters. Then, we use the data generated by ES (Qz of each con-
figuration) and emulate the exploration process using our search methodology,
which we will refer to in this section as SS, standing for strategic search. Finally,
we assess the performance of SS by comparisson against ES.

To keep the experiment tractable, for each case study we consider a solution
space including all levels of the structural parameters already evaluated, except
for the projection dimension. For this latter, we only explore a range of levels
large enough to cover all metamodel configurations assessed in Sections 4.2
and 5. Thus, for the new experiment we make the ES method explore all
configurations with projections of dimension up to 8 for the analytic case and
up to 4 for the coastal flooding case. Conversely, we make the SS method
run until fulfilling one of the convergence-oriented stopping conditions used in
Sections 4.2 and 5 (with m+ = 1074 and z = 3), or until reaching a corner of
the solution space.

6.2. Performance statistics
In this paper we evaluate our exploration strategy in terms of solution quality
and runtime. To do so, we define the following two indicators:

e Optimality gap. Relative difference between the (? of the optimal solution
found by the ES method and that of the solution found by our SS method:

_ A2 A2
AQ? = %572%5 x 100%, (27)
ES
with Q%S and Q%S denoting the Q? of the best solution for the ES and

the SS method, respectively, computed with (21).

e Time saving. Relative difference between the runtime of the ES method
and that of our SS method:

Tes — T¢
ATime := 25— 255 » 100%, (28)
Trs
where Tgg denotes the sum of training and validation times of all the

configurations evaluated by the ES method, and similarly for Tsg.

The Q2 values, training times and validation times recovered by ES are re-
cycled by SS in order to have a fair comparisson among exploration methods.
To preserve the legitimacy of the results, the optimal configuration is kept un-
known until SS has been run and formal stopping conditions are used. Similarly
as before, 30 pairs of training and validation points are used to account for noise.
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6.3. Analysis

Statistics for the analytic and the coastal flooding case are presented in
Tables 4 and 5, respectively. The results suggest the following findings: (1)
the number of training points has greater impact on the optimal combination
of structural parameters than the number of validation points. Configurations
tend to vary more between rows than between columns; (2) greater number
of training points leads to selection of configurations with larger projection
dimension when the problem is intrinsically functional, as in the analytic case;
(3) the decomposition-based distance ||| p,¢ could be in general a better choice
than the scalar distance ||-||s,9. The former was the optimal choice in almost all
cases except for two instances for the coastal flooding application.

B-3 B-3
My My My My

lI-lp,e lIlp.6 lI-lp,e lIlp.6 lIlp.e [Ilp.0
AQ?%: 0.0% AQ?%: 0.0% AQ?: 0.0% AQ?: 0.0%
ATime: 76.7% ATime: 75.4% ATime: 73.7% ATime: 73.1%

100

Tgs: 47.1m | Tss: 11.6m | Tgs: 62.6m | Tss: 16.5m

400

AQ?%: 0.0% AQ?: 1.1e—7% AQ?: 0.0% AQ?: 6.46—8%
ATime: 66.2% ATime: 65.7% ATime: 65.1% ATime: 64.4%

P-5 B-6 B-6 B-6 B-6
My My My Mgy

Mgy

-6 lp.e -6 Ilp.e -6 I-lp.e
AQ?: 0.0% AQ?: 0.0% AQ?: 0.0% AQ?: 0.0%
ATime: 68.0% ATime: 67.8% ATime: 67.5% ATime: 67.1%

700

Tas: 36.9h | Tss: 11.8h | Tas: 37.4h | Tss: 12.1h | Ths: 38.3h | Tss: 12.4h | Ths: 39.3h | Tss: 13.0h
B-6 B-6 B-6 B-6 B-6 B-6 B-6 B-6
My My My My Mg Mjy Mis My
-6 I lp.e lI-lp.e Ilp.e lI-lp.e Ilp.e I-lp,e l-llp.e

AQ* 0.0% AQ* 0.0% AQ% 0.0% AQ% 0.0%
ATime: 69.1% ATime: 69.0% ATime: 68.8% ATime: 68.5%
Tas: 4.3d ‘ Tss: 1.3d | Tes: 4.3d ‘ Tss: 1.3d | Tes: 4.4d ‘ Tss: 1.4d | Tes: 4.4d ‘ Tes: 1.4d

1000

Table 4: Analytic case: robustness to changes in the amount of training and validation data.
Each intersection contains the configuration selected by (i) the ES method (darker colored
cell @) and (ii) the SS method (lighter colored cell []), as well as the performance statistics
computed with (27) and (28). The convention used to denote a configuration is to divide its
components in three lines. First line contains the projection method (P: PCA, B:B-splines)
and dimension (1,...,8) separated by a script. Second line indicates the active functional
inputs (Moo, Mos, Mgo, Myy). Finally, the third line indicates the type of distance (||-|| 5,0,
Illp,e). For example, the configuration selected by ES for 400 training and 500 validation
points is a metamodel with a B-splines projection of dimension 3 for both functional inputs,
using the distance ||-||p,g. Tes and Tsg are provided in minutes (m), hours (h) and days (d).

Regarding the performance of the exploration methodology proposed in this
paper, results show that: (1) the methodology is robust to changes in both, the
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amount of training and validation data. Its configuration choice was optimal
in the vast majority of cases. In the remaining ones, the optimality gap AQ?
was always negligible (worst case in the order of 1e—2%); (2) our exploration
strategy provides an efficient way to solve the problem of structural parameter
calibration. It caused time savings of at least 64.4% for the analytic case and
28.7% for the coastal flooding case. We remark that the times reported in
Tables 4 and 5 are the sums of training and validation times of the 30 samples
of every configuration evaluated by each exploration method (ES and SS). At
each combination of number of training and validation points, ES evaluated 97
configurations in the analytic case and 113 in the coastal flooding case. For
the instance with 1000 training points and 2000 validation points, SS evaluated
47 configurations in the analytic case and 85 in the coastal flooding case. This
gives average metamodel construction times (training and validation) for the
analytic case of 2.19 min for ES and 1.42 min for SS. For the coastal flooding
case, the average construction times are 2.08 min for ES and 1.71 min for SS.

NA NA NA
Maooo Maooo Mooo
NA N NA
AQ?%: 0.0% AQ?: 0.0% AQ?: 0.0% AQ?: 0.0%
ATime: 30.7% ATime: 30.7% ATime: 30.3% ATime: 28.7%

100

Tgs: 31.8m | Tss: 22.1m
B-4 P=8 B-4 P=8
Mooy Mooy Mooy Moos

Trs: 43.7m | Tss: 30.3m | Tgs: 61.4m | Tsg: 42.8m | Trs: 79.9m | Tss: 56.9m
P—3

Mooy

-llp.0 -0 [I-llp.0 I-llp.0
AQ?: 4.0e—2% AQ?: 9.7e—5% AQ?: 9.7e—5% AQ?: 6.5e—3%
ATime: 36.3% ATime: 35.3% ATime: 35.4% ATime: 34.8%

400

Tgs: 10.6h

P-1 P-1 P-1 P-1
Mios Mior Mios Mg

P-1

lI-Ilp.e [Ilp.0 I-lp,e [Ilp,0
AQ?%: 0.0% AQ?: 0.0% AQ?: 0.0% AQ?: 0.0%
ATime: 34.6% ATime: 34.5% ATime: 34.2% ATime: 33.9%

700

Tgs: 40.4h | Tss: 26.5h | Tgs: 41.4h | Tsg: 27.2h | Tgs: 42.6h | Tsg: 28.1h

Tgs: 39.7h | Tss: 26.0h
P-1 B-2 B-2

Moo Mojyo Moo

P-1 B-3 B-3
Mior Mooy Mooy

ll-llp.6 II-lls.o [I-lls.0 lllp.6 II-lls.o [I-lls.0

AQ?%: 0.0% AQ?: 0.0% AQ?: 0.0% AQ?: 0.0%
ATime: 38.7% ATime: 38.6% ATime: 38.4% ATime: 38.4%

Tgrs: 4.7d ‘ Tss: 2.9d Trs: 4.8d ‘ Tss: 2.9d Trs: 4.8d ‘ Tss: 3.0d Trs: 4.9d ‘ Tss: 3.0d

1000

Table 5: Coastal flooding case: robustness to changes in the amount of training and validation
data. Each intersection contains the configuration selected by (i) the ES method (darker
colored cell [) and (ii) the SS method (lighter colored cell [J), as well as the performance
statistics computed with (27) and (28). The convention is analogous to that of Table 4,
except that the projection dimension takes values from (1,...,4). Tgs and Tsg are provided
in minutes (m), hours (h) and days (d).
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7. Conclusions

In this article we propose a methodology to simultaneously tune multiple
characteristics of a functional-input metamodel. Its construction is motivated
by a coastal flooding application where a surrogate of a functional-input hydro-
dynamic code is to be built for early warning. The nature of the inputs gives
rise to a number of questions about the proper way to represent them in the
metamodel: which inputs should be kept as predictors, what is a good method
to reduce their dimension, which dimension is ideal, and given our choice to
work with Gaussian process metamodels which are kernel based methods, also
the question of which is a convenient distance to meassure similarities between
functional input points. The proposed methodology is intended to find domi-
nant combinations of these types of features of the metamodel, which we call
structural parameters. One of its main features is the possibility to calibrate
the projection of the inputs (method and dimension) based on metamodel pre-
dictability, rather than projection error which is the common approach.

The proposed methodology works in a staged fashion. First it explores some
low levels of projection dimension with all possible combinations of the remain-
ing structural parameters. From there, the exploration evolves by detecting
trends and patterns indicating the direction of improvement on the performance
of the metamodel. Dominated levels of the structural parameters are discarded
along the way to speed up the exploration. The exploration ends when a po-
tential local optimum is detected or the performance statistic reaches certain
degree of convergence.

While relatively simple, the proposed methodology proved its effectiveness
through a theoretical case study and our coastal flooding application. In both
cases it allowed to find metamodel configurations of outstanding performance
able to accurately predict the output of the numerical model. The ideal projec-
tion method and projection dimension proved to vary from one application to
the other, and even for different instances of the same application. For instance,
for intrinsic functional problems where the output of the code cannot be recon-
structed by iterative scalar-input runs, greater number of training points seem
to lead to the selection of larger projection dimensions. Regarding the distance
to meassure similarity among functional input points, the decomposition-based
distance ||-|p,e consistently reported better results than the scalar distance
Ills,e throughout the experiments. Apparently, decomposition-based distance
is a useful alternative to integrate functional inputs in a kernel-based model
while keeping the complexity of the learning process manageable.

Interestingly, our application case made evident that even when the inputs
of the code are functional, it could be possible to obtain good predictions just
by using a scalar representation of them. Whether this is the case will depend
on the way the numerical model exploits the inputs to produce the outputs.
Therefore, our main premise throughout the article has been that dimension-
ality reduction of the inputs should be mainly guided by metamodel perfor-
mance. Our comparison with an approach based on a tolerance of projection
error illustrated how this type of approach may lead to an unnecessarily large
projection dimension. Depending on other metamodeling choices, such as the
type of distance used to measure similarities between functional input points,
large projection dimensions may imply a significant increase in processing time,
not justified by any improvement in prediction accuracy.
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The proposed methodology showed its efficiency through an experiment
where it was compared to an exhaustive search approach. Our method was
able to find an attractive solution while saving up to 76.7% and 38.7% of the
time spent by the exhaustive search in the analytic case and coastal flood-
ing case, respectively. The solution found by our methodology was optimal in
most cases. A critical factor on its efficiency is that it applies the principles of
exploration and exploitation present in many classical meta-heuristics such as
Genetic Algorithms [64] and Ant Colony Optimization [65]. The first principle
points out to start the exploration with a screening of a wide variety of meta-
model configurations. Then, the second principle leads to concentrate around
the best solutions so far and seek for local improvements. Given the positive
results obtained in this study, an interesting research avenue would be the ex-
tension of the proposed methodology towards an heuristic-based optimization
algorithm. Other studies in the field of computer experiments have pointed out
this possibility as well [11].

Another potential direction of research is to develop one of the functional-
input regression methods cited in the introduction. The extension of scalar-
on-function techniques to nonlinear settings could be achieved, for instance, by
defining penalized likelihood and cross validation formulations [13]. This would
pave the road to the selection of the relevant components of the inputs during
the optimization of the hyperparameters for powerful non-linear metamodels
such as Gaussian processes.

As the two case studies presented here consider a discretized representation of
the functional inputs, it seems interesting to assess alternative distances adapted
to time series [66] or try to adapt the work of [67] where a Geodesic PCA for
density functions is introduced.
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Appendix A. Dataset constitution
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Appendix B. Setting the projection coefficients

Here we discuss the calibration of the projection coefficients. For the sake
of presentation, let us consider a single functional input variable provided in a
time series format over the set t = {t1,...,t1}, with L € N. Let F be a matrix
of dimension L X n containing n € N observations of that input variable. By
adapting the expression for projections provided in (10) to discretized functions,
and generalizing for the simultaneous projection of multiple curves, we obtain

F ~TI(F) = Ba,

where B is a L X p matrix containing p basis functions discretized into the L
points in t and « is a p X n matrix containing the p projection coefficients re-
quired to represent the n input curves. Assuming that the matrix B is produced
by means of a standard method such as PLS, B-splines or PCA, the problem
reduces to setting the values of the matrix ae. This task is often completed using
standard least squares optimization formulations. Closed form expressions for
four variations of the problem are provided below. In the formulations we use
A; . to denote the i-th row of a matrix A and similarly A, ; to denote its j-th
column. In addition, the orientation of the elements holds so that A, o is a row
vector whilst A, ; is a column vector

e Weighted Least Squares (WLS)

Sometimes, certain points in the domain of the inputs are more important
than others or the information about the input is more reliable there. This
can be taken into account in the selection of the projection coefficients by
introducing a diagonal weight matrix W of dimension L x L indicating
the importance of each point in ¢. Then, the projection coefficients can
be found by minimizing the weighted sum of squared residuals. For j =

1,...,n, the optimization problem can be written:
min (F.,j — Ba.,j)'W(F.,j — Ba.,j). (Bl)
e, ERP

The integrated solution by derivatives for the n problems yields:
&= (B'WB) 'B'WF. (B.2)

e Ordinary Least Squares (OLS)

If all points in ¢t are equaly important and the information at all points is
equally reliable, the matrix W can be replaced by the identity matrix of
dimension L x L in (B.1) and (B.2) or simply removed from the equations.

e Weighted-Constrained Least Squares (WCLS)

If in addition to a set of important points in the domain of the inputs, there
is some point t;, € t of outstanding relevance, a weighted-constrained for-
mulation could be used. It allows to enforce the projection to interpolate
exactly the true function at ¢;,, while keeping relatively good precision on
the remaining critical points. In this case, the coefficients of the projection
can be found by solving (B.1), subject to the constraint
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Biy,e0le,j — Fix,j = 0. (B.3)

To solve this problem we use the well known method of Lagrange multipli-
ers [75] which allows to include equality constraints as part of the objective
function in order to solve the problem by derivatives. For j = 1,...,n,
the Lagrange function to minimize can be writen as

L(eej,Aj) = (Fo,j — Ba,j) W(Fe,; — Baa,j)
+/\j(Bi*,oao,j - Fi*,j)7 (B4)
with A; € R denoting the Lagrange multiplier for the optimization problem

j. If we collect the values of the n Lagrange multipliers into a row vector
A, the integrated solution by derivatives for the n optimization problems

yields
1 ~
&= (B/VVB)_1 (B/WF — 2B£*’.)\> , (B.5)
with
5 9 [Bi*’.(B/WB)*lB/WF - Fi*,.} (B.6)
= Bi*,.(B/WB)_lBIE*,. . .

e Constrained Least Squares (CLS)

The WCLS formulation can be easily modified for cases where only the
point t;, is of particular relevance. It suffices to replace the matrix W in
(B.5) and (B.6) by the identity matrix of dimension L x L.

We remark that the closed form solutions provided in (B.2), (B.5) and (B.6)
work as vectorized expressions for multiple simultaneous projections (i.e., they
do not require loops in code if matrix oriented coding environments like R or
Matlab are used).
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Appendix C. Experimental conditions and results for analytic case

Functional Results
Cont. input Projection Covariance Projection
P P method function dimension o2 CPU time (sec)
Train Pred
1 0 0 B B E 0.0533 14.2 2.0
2 1 0 B-splines I-lls,0 1 0.2914 23.2 2.0
3 0 1 B-splines I-lls,0 1 0.3425 15.6 2.0
4 1 1 B-splines I-lls,0 1 0.6367 17.6 2.0
5 1 0 PCA IIls,e 1 0.1729 18.6 2.0
6 0 1 PCA I-lls,0 1 0.7814 19.0 2.0
7 1 1 PCA I-ls,0 1 0.9947 53.5 2.1
8 1 0 B-splines I'Ip.e 1 0.0717 18.7 2.6
9 0 1 B-splines I HD;G 1 0.3603 18.1 2.6
10 1 1 B-splines I-lp,e 1 0.4283 21.8 2.6
11 1 0 PCA I-Ip.e 1 0.4544 25.9 2.6
12 0 1 PCA I'lp,e 1 0.5819 23.3 2.6
13 1 1 PCA Il HD:9 1 0.9899 86.1 2.7
14 1 0 B-splines I-lls,0 2 0.7262 17.3 2.2
15 0 1 B-splines I-lls,0 2 0.7959 16.9 2.2
16 1 1 B-splines I-ls,0 2 0.9994 32.4 2.3
17 1 0 PCA Ills,e 2 0.7925 37.7 2.3
18 0 1 PCA I-lls,0 2 0.8442 38.8 2.3
19 1 1 PCA I-ls,0 2 0.9968 53.9 2.4
20 1 0 B-splines I'lp.e 2 0.5017 20.9 2.6
21 0 1 B-splines Il HD:g 2 0.6813 20.9 2.6
22 1 1 B-splines Ilp.e 2 0.9989 49.5 2.9
23 1 0 PCA I'lp,e 2 0.5788 33.4 2.6
24 0 1 PCA I-lp,e 2 0.7825 36.2 2.6
25 1 1 PCA I-lp,e 2 0.9953 89.5 2.9
26 1 0 B-splines I-ls,0 3 0.7901 56.6 2.4
27 0 1 B-splines I-ls,0 3 0.8452 59.5 2.4
28 1 1 B-splines I'ls.e 3 0.9991 27.6 2.4
29 1 0 PCA I-lls,0 3 0.8183 95.7 2.3
30 0 1 PCA I-ls,0 3 0.8687 91.7 2.1
31 1 1 PCA I-ls,0 3 0.9990 35.3 2.2
32 1 0 B-splines I-lp,e 3 0.7626 33.0 2.9
33 0 1 B-splines I-Ip,e 3 0.8187 34.6 2.8
34 1 1 B-splines IlIp.e 3 0.9995 45.9 3.1
35 1 0 PCA I-lp,e 3 0.7904 43.5 2.8
36 0 1 PCA Il HD:e 3 0.8412 44.2 2.8
37 1 1 PCA I-p,e 3 0.9997 42.4 3.1

Table C.7: Analytic case: experimental conditions and results from screening stage.

For

training and prediction time, the value displayed is the average over 30 runs using independent
training and validation sets of size n = 800 and n. = 1500, respectively. For the functional
input, 1 denotes active and 0 denotes inactive.

Functional Results
Conf input Projection Covariance Projection u
: o P method function dimension — CPU time (sec)
Q Train Prod
38 T T B-splines TTs.e I 0.9981 13.2 2.2
39 1 1 PCA Ills.e 4 0.9982 54.9 2.3
40 1 1 B-splines I'lp,e 4 0.9997 36.9 3.3
41 1 1 PCA I-lb. e 4 0.9997 49.0 3.3
42 1 1 B-splines Ilse 5 0.9959 52.8 2.5
43 1 1 PCA I-lls.e 5 0.9973 211.9 2.8
44 1 1 B-splines Ilp.e 5 0.9997 34.2 3.5
45 1 1 PCA I-lp.e 5 0.9997 48.3 3.5
46 1 1 B-splines Ilse 6 0.9959 62.1 2.6
a7 1 1 PCA I-lls.e 6 0.9960  365.3 2.8
48 1 1 B-splines I'lp.e 6 0.9997 34.0 3.7
49 1 1 PCA I'lp.e 6 0.9997 43.0 3.7

Table C.8: Analytic case: experimental conditions and results from cleaning and descent
stages. The training and prediction times are computed as described in Table C.7. For the
functional input, 1 denotes active and 0 denotes inactive.
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Appendix D. Experimental conditions and results for coastal flooding

case
Functional Results
Conf. input Projection Covari'ance P.roject'ion .
Td Sg Tp method function dimension Q2 CPITI time (sec)
Train Pred
T 0 0 0 - B B 0.7209 27.7 2.0
2 1 0 0 B-splines I-lls,e 1 0.7214 32.0 2.0
3 0 1 0 B-splines I-lls,e 1 0.7226 31.2 2.1
4 1 0 0 B-splines I-ls,e 1 0.7146 36.3 2.1
5 0 0 1 B-splines I-lls,e 1 0.7211 29.0 2.0
6 1 1 1 B-splines I-lls,e 1 0.7201 34.8 2.1
7 0 1 1 B-splines I-lls,e 1 0.7213 33.9 2.1
8 1 1 1 PCA I-lls,e 1 0.7123 42.6 2.1
9 1 0 0 PCA I-lls,e 1 0.7198 29.1 2.1
10 0 1 0 PCA I'ls.e 1 0.7004 29.1 2.1
11 1 1 0 PCA I-lls,e 1 0.6948 30.6 2.1
12 0 0 1 PCA I-ls,e 1 0.7160 36.7 2.1
13 1 0 1 PCA I-lls,e 1 0.7074z 40.2 2.1
14 0 1 1 PCA I-lls,e 1 0.6958z 39.3 2.1
15 1 1 1 PCA I-lls,e 1 0.6864z 45.3 2.1
16 1 0 0 B-splines I-lp,e 1 0.7244 35.8 2.7
17 0 1 0 B-splines I-Ip,e 1 0.7232 34.3 2.6
18 1 1 0 B-splines I'lp.e 1 0.7247 38.5 2.8
19 0 0 1 B-splines \|-||D:9 1 0.7217 48.8 2.7
20 1 0 1 B-splines Ilp,e 1 0.7238 61.9 2.8
21 0 1 1 B-splines I-lp,e 1 0.7230 57.0 2.7
22 1 1 1 B-splines I'lp.e 1 0.7247 62.5 2.8
23 1 0 0 PCA H-IID:o 1 0.7234 33.5 2.6
24 0 1 0 PCA IIp,e 1 0.7210 33.4 2.6
25 1 1 0 PCA I-Ip,e 1 0.7218 37.7 2.7
26 0 0 1 PCA I'lp,e 1 0.7199 52.0 2.6
27 1 0 1 PCA “'”D:G 1 0.7216 62.4 2.7
28 0 1 1 PCA Ilp,e 1 0.7192 59.1 2.7
29 1 1 1 PCA I-lp,e 1 0.7204 64.9 2.8
30 1 0 0 B-splines I-lls,e 2 0.6967 32.0 2.3
31 0 1 0 B-splines I-ls,e 2 0.6915 33.2 2.3
32 1 0 0 B-splines I-lls,e 2 0.6592 42.3 2.4
33 0 0 1 B-splines I-lls,e 2 0.7137 37.8 2.3
34 1 1 1 B-splines I-lls,e 2 0.6866 48.1 2.4
35 0 1 1 B-splines I-lls,e 2 0.6869 48.3 2.4
36 1 1 1 PCA I-lls,e 2 0.6507 67.0 2.6
37 1 0 0 PCA I-lls,e 2 0.6973 31.4 2.3
38 0 1 0 PCA I-ls,e 2 0.7048 34.0 2.3
39 1 1 0 PCA I-lls,e 2 0.6653 44.4 2.4
40 0 0 1 PCA I-lls,e 2 0.7145 42.4 2.3
41 1 0 1 PCA I-lls,e 2 0.6875 60.5 2.5
42 0 1 1 PCA I-ls,e 2 0.6932 61.3 2.5
43 1 1 1 PCA I-lls,e 2 0.6532 95.1 2.6
44 1 0 0 B-splines Ilp,e 2 0.7215 33.9 2.7
45 0 1 0 B-splines I'lp.e 2 0.7211 35.7 2.7
46 1 1 0 B-splines H'”D:G 2 0.7195 38.4 2.8
47 0 0 1 B-splines I-lp,e 2 0.7199 55.0 2.8
48 1 0 1 B-splines I-Ip,e 2 0.7203 60.8 2.9
49 0 1 1 B-splines I-Ip,e 2 0.7190 61.2 2.9
50 1 1 1 B-splines Ilp,e 2 0.7187 65.8 3.0
51 1 0 0 PCA Ilp,e 2 0.7226 33.2 2.7
52 0 1 0 PCA I'lp.e 2 0.7211 37.2 2.7
53 1 1 0 PCA H-IID:(-) 2 0.7197 35.5 2.8
54 0 0 1 PCA Ilp,e 2 0.7199 52.0 2.7
55 1 0 1 PCA I-Ip,e 2 0.7212 58.7 2.9
56 0 1 1 PCA I'lp,e 2 0.7196 59.5 2.9
57 1 1 1 PCA \|-||D:9 2 0.7197 63.0 3.0
58 1 0 0 B-splines I-lIs,e 3 0.7081 36.3 2.3
59 0 1 0 B-splines I'ls.e 3 0.7158 35.9 3.4
60 1 0 0 B-splines I-lls,e 3 0.6790 50.7 2.5
61 0 0 1 B-splines I-ls,e 3 0.7121 53.8 2.4
62 1 1 1 B-splines I-lls,e 3 0.6969 84.2 2.6
63 0 1 1 B-splines I-lls,e 3 0.6994 81.1 2.6
64 1 1 1 PCA I-lls,e 3 0.6699 130.6 2.7
65 1 0 0 PCA I-ls,e 3 0.6737 38.0 2.4
66 0 1 0 PCA I-lls,e 3 0.7014 37.0 2.4
67 1 1 0 PCA I-lls,e 3 0.6428 55.8 2.6
68 0 0 1 PCA I-lls,e 3 0.7117 56.5 2.4
69 1 0 1 PCA I-ls,e 3 0.6665 122.9 2.6
70 0 1 1 PCA I-lls,e 3 0.6956 94.4 2.6
71 1 1 1 PCA I-lls,e 3 0.6371 182. 2.7
72 1 0 0 B-splines I-lp,e 3 0.7225 33.9 2.7
73 0 1 0 B-splines IIp,e 3 0.7202 36.1 2.8
74 1 1 0 B-splines I-Ip,e 3 0.7211 37.5 2.9
75 0 0 1 B-splines I-lp,e 3 0.7205 53.3 2.8

Continued on next page
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Table D.9 — Continued from previous page

76 1 0 1 B-splines Ilp,e 3 0.7216 67.7 3.0
77 0 1 1 B-splines Ilp e 3 0.7194 60.7 3.0
78 1 1 1 B-splines I ||D:9 3 0.7206 65.8 3.2
79 1 0 0 PCA IIp,e 3 0.7231 31.5 2.7
80 0 1 0 PCA I-Ip,e 3 0.7219 36.9 2.7
81 1 1 0 PCA I'lp,e 3 0.7225 35.7 2.9
82 0 0 1 PCA Ilp,e 3 0.7203 52.4 2.8
83 1 0 1 PCA I-lp,e 3 0.7218 58.0 3.0
84 0 1 1 PCA o e 3 0.7212 60.0 3.0
85 1 1 1 PCA H-IID:(-) 3 0.7212 63.3 3.2

Table D.9: Coastal flooding case: experimental conditions and results from screenig stage.
The training and prediction times are computed as described in Table C.7. For the functional
input, 1 denotes active and 0 denotes inactive.

Projection dimension C s . Results
Run Projection Covarl.ance — CPU tims (559)
Td Sg Tp method function Q2 —Train  Pred —

86 1 0 0 B-splines TTs,e 0.6734 10.6 2.2
87 0 0 B-splines IIll's,e 0.6233 285.5 2.6
88 4 15 0 B-splines Ils,0 0.5653 400.9 2.8
89 0 10 B-splines IIlls,e 0.7066 261.4 2.4
920 4 0 10 B-splines I'ls.e 0.6554 420.4 2.6
91 0 15 10 B-splines ||'Hs:9 0.6096 1055.3 3.0
92 4 15 10 B-splines I'lls.e 0.5562 1280.8 3.2
93 4 0 0 PCA Ils,0 0.6651 44.9 2.1
94 0 10 0 PCA IIlls,e 0.6569 71.4 2.4
95 4 10 0 PCA I-lls,0 0.5871 120.5 2.6
96 0 0 6 PCA I'lls.e 0.7138 101.1 2.3
97 4 0 6 PCA I-ls,0 0.6546 265.6 2.4
98 0 10 [3 PCA IIlls,e 0.6472 363.4 2.6
99 4 10 6 PCA Ils,0 0.5830 674.1 3.1
100 4 0 0 B-splines I'lp,e 0.7228 35.8 2.8
101 0 15 0 B-splines I'lp.e 0.7230 50.0 3.6
102 4 15 0 B-splines 1D e 0.7221 54.1 3.7
103 0 0 10 B-splines Il p,e 0.7218 61.4 3.3
104 4 0 10 B-splines I'Ip.e 0.7223 65.7 3.5
105 0 15 10 B-splines II- HD:B 0.7222 85.3 4.1
106 4 15 10 B-splines IIp.e 0.7220 98.2 4.3
107 4 0 0 PCA Il p,e 0.7211 35.6 2.8
108 0 10 0 PCA I'lp.e 0.7235 32.8 3.2
109 4 10 0 PCA II- HD:B 0.7230 34.8 3.4
110 0 0 6 PCA Ilp,e 0.7207 53.5 2.6
111 4 0 6 PCA I-Ip,e 0.7205 60.3 2.9
112 0 10 6 PCA I'lp.e 0.7234 59.1 3.2
113 4 10 6 PCA 1D e 0.7214 67.5 3.4

Table D.10: Coastal flooding case: evaluation of projection dimension selected based on
projection error. The training and prediction times are computed as described in Table C.7.
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