
HAL Id: hal-01998724
https://hal.science/hal-01998724v1

Preprint submitted on 29 Jan 2019 (v1), last revised 25 Nov 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gaussian process metamodeling of functional-input code
for coastal flood hazard assessment

José Daniel Betancourt, François Bachoc, Thierry Klein, Déborah Idier,
Rodrigo Pedreros, Jeremy Rohmer

To cite this version:
José Daniel Betancourt, François Bachoc, Thierry Klein, Déborah Idier, Rodrigo Pedreros, et al..
Gaussian process metamodeling of functional-input code for coastal flood hazard assessment. 2019.
�hal-01998724v1�

https://hal.science/hal-01998724v1
https://hal.archives-ouvertes.fr

Gaussian process metamodeling of functional-input code
for coastal flood hazard assessment

José Betancourta,b, François Bachoca, Thierry Kleina,b,∗, Deborah Idierc,
Rodrigo Pedrerosc, Jérémy Rohmerc

aInstitut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, UPS
IMT, 31062 Toulouse Cedex 9, France

bENAC - Ecole Nationale de l’Aviation Civile, Université de Toulouse, France
cBRGM, 3, av. Claude Guillemin, BP 36009, 45060 Orleans Cedex 2, France

Abstract

In this article we investigate the construction of metamodels when the numerical
code has functional inputs. We compare diverse Gaussian process metamodeling
approaches that take into account the functional structure of the data. We
discuss two methods to tune the dimension of the projection when functional
inputs are decomposed on a functional basis: (i) based on the error of the
projection; (ii) based on the performance of the metamodel. We further propose
a methodology that allows to detect the optimal projection of the input function.
We apply this methodology to the real case study of coastal flooding in the
peninsula of Gâvres. Results show that the approach based on the error of the
projection, being the common practice nowadays, may lead to unnecessarily
large projection dimensions. In contrast, the approach based on metamodel
performance presents the virtue of directly pointing to the final objective of
building a fast and accurate metamodel.

Keywords: Computer code experiments, Metamodeling, Functional inputs,
Gaussian processes

1. Introduction

The use of computer codes for the study of complex systems is, nowadays,
a well extended practice. On the one hand, they offer the possibility of simu-
lating realizations of the system under study at a lower resource expense/risk
than if observations were taken from the real system. On the other hand, com-
puter codes provide a solution for cases when the real system is a natural pro-
cess (i.e., it makes part of the environment) and some conditions of the inputs
or the outputs rarely occur. In the coastal flooding domain, for instance, by
focusing on flooding on sites never or rarely flooded, it is not possible to ob-
tain a sufficient number of observations from historical registers [1, 2, 3]. In

∗Corresponding author
Email addresses: jbetanco@math.univ-toulouse.fr (José Betancourt),

francois.bachoc@math.univ-toulouse.fr (François Bachoc),
thierry.klein@math.univ-toulouse.fr (Thierry Klein), D.Idier@brgm.fr (Deborah Idier),
r.pedreros@brgm.fr (Rodrigo Pedreros), j.rohmer@brgm.fr (Jérémy Rohmer)

Preprint submitted to Reliability Engineering and System Safety January 29, 2019

those cases, computer codes can be used to produce the required observations
to complement historical data. Despite the aforementioned advantages, com-
puter codes for environmental and industrial applications often happen to be
too time-consuming for direct application (e.g., for uncertainty quantification or
fast prediction within an early warning system) [4, 5]. Despite the steady and
continuing growth of computing power and speed, the complexity of these codes
seems to keep pace with computing advances [6]. This issue is usually addressed
by creating quick-to-evaluate mathematical emulators of those numerical codes,
based on limited collection of runs of the original computational model [7, 8, 9];
such emulators are often called surrogate models or metamodels. In this study,
we illustrate the development of a metamodel for the emulation of a complex
hydrodynamic code used in the context of early warning for coastal flooding
hazards, using a simplfied fast running model for the metamodel developement
purpose.

The computer code studied here receives four inputs and delivers a single
output, all of them functional (time-dependent). The focus of this article is
on the management of functional inputs, therefore we use a simplified scalar
representation of the output but keep the full complexity of the inputs into ac-
count. Among all the metamodel-based solutions (polynomials, splines, neural
networks, etc.), we focus on Gaussian processes [10, 11, 12]. These are one of
the most popular metamodeling alternatives, partly due to their ability to pro-
vide both an interpolation of the data and an uncertainty quantification in the
unexplored regions. Although Gaussian processes for scalar-valued inputs and
outputs have been studied for almost 30 years, the functional framework is still
a relatively new and much less developed research area [4]. A common approach
to deal with functional data is to project the input/output onto a functional
basis of lower dimensionality while preserving the main statistical or geometric
properties of the variable. The basis functions can be of various forms, such
as Legendre polynomials, trigonometric functions, or wavelet bases [13]. In the
case of functional inputs, one can either use the coefficients of the decomposition
as independent scalar inputs of the metamodel, or implement adapted covari-
ance functions able to measure the similarity among pairs of projections. The
first and more common approach was applied for wavelets in [14] and for prin-
cipal component analysis (PCA) in [5]. A comparison of PCA and partial least
squares (PLS) was also carried out by [15]. The second approach was recently
adopted by [4], who projected the inputs of the model onto a B-pline basis [16]
and used a Gaussian process metamodel with an adapted covariance function
depending on the decomposition to fit the output of the code.

A common limitation for most of the studies cited above is that the projec-
tion dimension is chosen beforehand. Usually, the new dimension p is chosen
so that most information is concentrated in the p first basis functions, e.g. so
that the variance in the set of functional inputs is explained at a minimum level
of 80%; yet, for forecast purposes, it is the accuracy on the prediction of the
output which matters. Therefore, dimension reduction of the inputs should be
primarily constrained by metamodel predictability (objective-based dimension
reduction). An interesting solution lies in the field of (linear) regression under
the name of scalar-on-function regression (see e.g. [17] for a review article). This
method deals with cases of high-dimensional regression, where the number of
covariates is relatively large compared to the amount of observations. It consists
on the use of penalizations to control the number of predictors in the model and

2

consequently, the overall sparsity of the coefficient matrix. In the context of this
article, scalar-on-function techniques could be applied directly to the original
input funtion (under a time series representation) or to a functional projection
of it, in order to determine which elements of the series or coefficients of the
projection to keep in the model. Applications of this approach can be found for
instance in [18] using a PCA basis and [19] using a kernel-based principal com-
ponent basis (KPCA). Despite the advantages that scalar-on-function regression
offers in terms of metamodel fitting, developments concerning this method are
mainly related to the linear regression framework. The present study extends
the state of the art by exploring non-linear regression models (Gaussian pro-
cesses). Moreover, the methodology proposed here allows to simultaneously set
up the projection dimension and diverse other characteristics of the metamodel
such as the projection method (PCA, B-splines, wavelets, etc), the type of co-
variance function or the distance used to measure similarity among observation
points. This types of metamodeling choices, herein called structural parameters
of the metamodel, are often fixed arbitrarily or based on results from previous
articles. However, as we prove through the case studies conducted here, the
ideal metamodel configuration depends on the particular application. Thus,
this kind of setting should be optimized each time a metamodel is to be built in
order to get the best results. Although simple, the methodology presented here
seems to be an effective tool to perform such an optimization task.

The remainder of this paper is organized as follows. Section 2 describes the
motivating case which lies in the domain of coastal flooding. As mentioned
above, this case study requires the application of special metamodeling tech-
niques designed for scenarios with functional inputs. The particular methods
used here are described in Section 3. Then, Section 4 illustrates the exploration
approach that we follow in order to setup structural parameters of the meta-
model while setting a good dimension for the inputs. Section 4 also includes an
analytic case study that allows to illustrate the functioning of the methodology.
In Section 5 we apply the exploration methodology to the coastal flooding case
study. The contrast among the solutions of the two case studies evidences that
the ideal levels of the structural parameters of a metamodel strongly depends
on the application, which justifies the use of our methodology. This and some
other conclusions, as well as further research lines are pointed out in Section 6.

2. Motivating case: coastal flooding prediction at Gâvres, France

This study is motivated by the Gâvres coastal flooding case study extracted
from the ANR research project RISCOPE [20]. RISCOPE focuses on the devel-
opment of risk-based methods relying on metamodeling, for forecasting, early
warning and prevention of coastal flooding. Our case study considers the coastal
French municipality of Gâvres, located on a peninsula at the Blavet river mouth,
in the conurbation of Pays de Lorient (Morbihan). This region is representative
of a significant part of French mainland coasts in terms of variety and complex-
ity of flooding processes, as well as available offshore data. Since 1864, Gâvres
has had to deal with more than ten coastal flooding events, two of the most dra-
matic ones taking place in the 21st century. Flooding processes at Gâvres are
known to be complex enough (tide influence and overtopping) to cover most of
the flooding cases along the French mainland coasts. This ensures the scalability
of the methods presented here, to any coastal flooding type.

3

2.1. Hydrodynamic code
Here we consider a simplified fast running code defined on cross-shore tran-

sect model (see Figure 1, and the next paragraph for the description). The
code takes four variables with physical interpretability as inputs. Those are the
tide (Tp), atmospheric storm surge (Sg), significant wave height (Hs) and wave
peak period (Td). Each input should be provided to the system in a time series
format, so that Td = (Tdt)t=1,...,T , and similarly for the other three inputs. As
the output, the code delivers a time series of the same length of the inputs, with
the value of the average amount of water entering inland at each time instant
t ∈ {1, . . . , T}, expressed as a volume. From that series, it is also possible to
compute the cumulative amount of water entered inland along this transect at
each time instant t. We note that quantity as CVt. In this paper we focus on
the management of functional inputs and try to keep the output as simple as
possible. Therefore, we study a scalar output instead of a functional one. In
particular, we consider as the output the total amount of water entering inland,
corresponding to the last value of the cumulative amount of water series, CVT .
From here on, we will note CVT as FCV , referring to final cumulative volume.

Figure 1: Illustration of the cross-shore transect considered in the RISCOPE application.

Computations inside the computer code involve the statistical model SWAN
[21] and the EurOtop equations [22], both described below.

Inputs → SWAN → EurOtop → Outputs

• SWAN is a spectral wave model which allows computing the wave con-
ditions at the coastal defence toe, accounting for water level variations
induced by tide and surge.

• EurOtop refers to the use of the overtopping and overflow discharges for-
mulas provided in the Eurotop (2018) manual ([22], Eq. 5.11 and 5.20).
These formulas require as input the wave conditions at the coastal defence
toe, but also the crest freeboard (water height above the coastal defence
crest, including the wave setup computed by SWAN plus the tide and
surge) and coastal defence characteristics. Based on the computed dis-
charge, the volume of water entering inland along the transect (Figure 1)
is finally computed.

4

We are aware that the adoption of a cross shore configuration does not allow
to properly model all the complexities of the phenomenon under study. However,
in the frame of the RISCOPE project, the analysis presented here is considered
an intermediary step in the development of methodologies for functional meta-
modeling, that could be later implemented for more realistic computer codes.
The use of a simplified computer code at this stage enables a wider exploration
and understanding of the physical phenomenon, before dealing with more de-
tailed - and thus, more computationally time consuming - hydrodynamic models.
We remark that FCV is equal to the sum over t of the volume entering inland at
each instant CVt, estimated from scalar inputs. Thus, for this simplified code, a
metamodel based on a scalar representation of the inputs may provide relatively
good predictions. However, in a further stage of the RISCOPE project we will
address intrinsically functional problems such as the estimation of the water
height on land (i.e., at different points in the space between the back of the
coastal defense and inland). At that point, we naturally expect the functional
metamodels to be able to better reproduce the shape of the output than the
scalar ones.

2.2. Data set
For purposes of construction and validation of the metamodel, we count on

a data set composed of hindcasts of past conditions for tide, atmospheric storm
surge, significant wave height and wave peak period, offshore of the study site
over the period 1900-2016. The data set is constituted by the concatenation of
hindcasts of different sources (see Appendix A), but with bias corrections be-
tween the hindcasts through a quantile-quantile correction method. The various
hindcasts have different time steps. As the main driver (the tide) significantly
changes in 10 minutes, the other three inputs are also interpolated at a 10 min
time step. Then, the long data set was split into a collection of tidal events,
each covering a period of ± 3 hours around a high tide. A time series of 37 ele-
ments (corresponding to a time lapse of 6 hours with the time step of 10 min)
was used to represent each functional input at each event (see Figure 2). Only
events where the tide reached at least 2.342m (IGN69) were kept. This value
corresponds to the mean spring high tide level below which no flooding event
ever happened in Gâvres. As a result, a total of 20557 events were obtained.

5

(a) 100 randomly sampled events.

(b) 3 sample events on independent plots.

Figure 2: Illustration of functional inputs. Td, Sg and Hs are given in meters and Tp in
seconds.

The tide series has a characteristic parabolic shape, which is consistent
among events. In fact, its peak (always located at time istant t = 19) is known
to be highly influential on the output of the code. In contrast, the majority of
Sg, Hs and Tp curves are almost constant or linear with small slope. It means
that the range of variation of those three inputs within each event is relatively
small compared to their range of variation among events. Based on that, one
could presume that just one or two scalar parameters associated to the height
and/or slope would be enough to characterise those curves. However, beyond
any conclusion that we could reach by visual inspection, the ideal dimension will
depend on the sensitivity of the output of the code to changes of each input.
Even quite small and visually negligible changes on some input could cause im-
portant changes in the ouput depending on the interactions that happen within
the code.

3. Theoretical background

3.1. Metamodeling using Gaussian processes in case of scalar inputs
Let us consider a regression framework, where an expensive computer code

fcode is available to model the relationship between a group of input variables
x ∈ Rd and an output variable of interest y ∈ R. As the evaluation of fcode
is computationally costly, it is desired to build a light-to-run mathematical
model to approximate it. To this end, there is available a learning set D =
{(x1, y1), . . . , (xn, yn)}, with yi = fcode(xi). In this context, Gaussian processes
are nonparametric regression models which treat the fixed function fcode as
a realization of a Gaussian process ξ, specified by its mean and covariance
functions m and k. The Gaussian process model can be written as:

6

fcode(·) ∼ ξ(m(·), c(·, ·)), (1)

with

m(x) = E[ξ(x)], (2)
k(x1,x2) = E[(ξ(x1)−m(x1))(ξ(x2)−m(x2))]. (3)

Gaussian processes present diverse attributes that have contributed to their
popularity in many applications. They provide a mean estimate along with an
indication of the uncertainty attached to it. They are able to reproduce the
observations exactly, but there is a simple way to switch from interpolation to
smoothing by means of a nugget effect, if required (see [12] for more details).
Furthermore, the Gaussian process model often has a very high prediction power
compared to other approaches [4]. In adition, the conditional distribution of
Gaussian processes, given observed values, is particularly tractable in practice
and closed form expressions exist for the conditional mean and variance. We
discuss them below.

Let X = (x1, . . . ,xn)
> be the n × d inputs matrix extracted from the

learning set (where xi for i = 1, . . . , n is a column vector), and let y =

(y1, . . . , yn)
> be the vector of corresponding output values. Similarly, let X∗ =

(x∗,1, . . . ,x∗,n∗)
> be a n∗ × d inputs matrix of prediction points. The Gaus-

sian conditioning theorem (see e.g., [12]) implies that, conditionally to y, ξ is a
Gaussian process with mean and covariance functions mn and kn defined by

mn(X∗) := E[ξ (X∗) |X,y] = K(X∗,X)K(X,X)−1y (4)

and

kn(X∗,X∗) := Cov[ξ (X∗) , ξ (X∗) |X,y]

= K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗). (5)

Here K(X,X) denotes the n × n matrix of covariances (k(xi,xj))1≤i,j≤n
among all pairs of observation points, and similarly for the other entriesK(X,X∗),
K(X∗,X) and K(X∗,X∗). We remark that mn(X∗) and kn(X∗,X∗) are of
the form

mn(X∗) = (E[ξ(x∗,i)|ξ(x1) = y1, . . . , ξ(xn) = yn])1≤i≤n∗ ,

kn(X∗,X∗) = (Cov[ξ(x∗,i), ξ(x∗,j)|ξ(x1) = y1, . . . , ξ(xn) = yn])1≤i,j≤n∗ .

In practice the conditional mean (see Equation (4)) is used as an estimation
of the true function fcode at the test points X∗, while the conditional variance
(see Equation (5)) is often interpreted as a measure of the local error of the
prediction [9].

Gaussian process models are flexible by incorporating diverse types of covari-
ance functions, being aware that only functions that yield symmetric positive
semidefinite covariance matrices are valid kernels [12]. The choice of the co-
variance function encodes assumptions such as the degree of regularity of the

7

underlying process [23]. Examples of standard covariance functions are given
for instance in [24] and [25]. The covariance between any given pair of input co-
ordinates (x1,x2), depends on the variance of the stochastic process σ2 and on
the correlation function R which governs the degree of correlation through the
use of the vector of length-scale parameters θ (see Equation (6) for its general
form). Two of the most popular correlation functions are the Gaussian kernel
(see Equation (7)) and the Matérn 5/2 kernel (see Equation (8)).

General: k(τ ;σ2,θ) = σ2 R(τ ;θ), (6)

Gaussian: k(τ ;σ2,θ) = σ2 exp

(
−‖τ‖

2
θ

2

)
, (7)

Matérn 5/2: k(τ ;σ2,θ) = σ2

(
1+
√

5 ‖τ‖θ+
5 ‖τ‖2θ

3

)
exp

(
−
√

5 ‖τ‖θ
)
. (8)

Here τ = x1−x2, σ2 and θ are the so called hyperparameters of the model

which have to be estimated, and ‖τ‖θ =

√
τ21
θ21

+ · · ·+ τ2d
θ2d

is the anisotropic L2

norm of τ . Intuitively, if x1 = x2, then the correlation is 1, whereas if the
distance between both vectors tends to infinity, then the correlation tends to 0.

3.2. Treatment of functional inputs
Gaussian process models were first developed for scalar inputs. That is the

case of a model of the form x → ξ(x). However, they can be also built for
functional inputs or a combination of both, scalar and functional inputs, which
would correspond to the models f → ξ(f) and (x,f) → ξ(x,f), respectively.
The objective of this paper is the third type of model, which considers a com-
bination of scalar and functional inputs.

3.2.1. Three distances complete
As for scalars inputs, Gaussian processes dealing with functional inputs re-

quire the selection of a proximity or similitude measure, enabling to discriminate
among input coordinates. Here we describe the three main approaches adopted
in the literature, taking as reference the L2 norm for functions. Other types
of norms such as weighted norms or general p norms, could also be chosen de-
pending on the physical or geometric interpretation of the functions, as well as
the notion of dissimilarity among functions for the particular application case.
The main difference among the three approaches lies in the way of representing
observations of the functional inputs. The first approach, for instance, works
with a modified L2 norm of the form:

‖f1 − f2‖f,θ =

√√√√√√
∫
T

(f1(t)− f2(t))2dt

θ2
, (9)

with

f1, f2 ∈ L2(T,R) =

{
f : T → R,

∫
T

f2(t)dt <∞

}
. (10)

8

If the computer code receives polynomial expressions as inputs, the integral
could be solved by ordinary calculus. Otherwise, if a temporal series represen-
tation is used, the integral could be computed by numerical approximation over
a large series of time instants. An alternative perspective could be to use a
distance measure for time series such as the Manhattan, Minkowski or infinite
norm (see e.g., [26]).

For the second approach, we consider a subspace of L2(T,R) of dimension
p and let B = {B1, . . . , Bp} be a basis of this space. We let Πp(f) denote the
projection of the functional input f onto the space generated by the basis B,
which can be written as:

Πp(f)(t) =

p∑
k=1

αkBk(t). (11)

Here, the scalar expansion coefficients α1, . . . , αp indicate the weight (con-
tribution) of each of the p basis functions. The dimension p has to be chosen
strategically so that the functions are represented well enough and computations
for the metamodel remain tractable. Diverse decomposition methods such as
Wavelets, Fourier, B-splines or PCA could be used and different approaches to
set the values of the expansion coefficients exist as well. We discuss those two
aspects in Section 3.2.2 and Appendix B, respectively.

If each observation of the functional input is represented using a decompo-
sition of the same dimension p, then (9) becomes:

‖Πp(f1)−Πp(f2)‖d,θ =

√√√√√√√
∫
T

(
p∑
k=1

(α1,k − α2,k)Bk(t)

)2

dt

θ2
(12)

where αi,k is the coefficient of the k-th basis function for the projection of
the i-th observation of the functional input.

The third approach is a variation of the second one, where the distance only
considers the coefficients of the decomposition:

‖Πp(f1)−Πp(f2)‖s,θ =

√√√√ p∑
k=1

(α1,k − α2,k)2

θ2k
. (13)

This approach is equivalent to taking the coefficients of the decomposition
as independent scalar inputs of the metamodel. Note that a similar distance
is obtained from (12) if B is an orthonormal family. However, (12) involves
a single correlation coefficient θ, while (13) involves p of them. The distance
in (13) can be interpreted as that in (12) in the case where B1, . . . , Bp are an
orthogonal family with ‖Bk‖ = θ−1k and θk = 1.

As general expressions to handle multiple functional inputs, we let

‖f1 − f2‖F,θ =

√√√√ df∑
`=1

‖f `1 − f `2‖2f,θ` , (14)

9

‖Πp(f1)−Πp(f2)‖D,θ =

√√√√ df∑
`=1

‖Πp(f
`
1)−Πp(f

`
2)‖2d,θ` , (15)

and

‖Πp(f1)−Πp(f2)‖S,θ =

√√√√ df∑
`=1

‖Πp(f
`
1)−Πp(f

`
2)‖2s,θ` . (16)

Here df is an integer denoting the number of functional inputs in the model.
In (16), θ = (θ1, . . . ,θdf) has dimension p × df as an independent correlation
length coefficient is matched to each basis function of each functional input. In
contrast, θ = (θ1, . . . , θdf) is a df -dimensional vector in (14) and (15), as a single
correlation length coefficient is used for all the basis functions associated to the
same functional input.

For applications of the three methods, the reader is referred to [27], [4]
and [5], in the corresponding order. To the best of our knowledge, up to now
there is no evidence of the superiority of any of the three methods over the
others. In fact, the best working method seems to vary from one application
case to the other. In this paper, we focus on the two approaches based on
functional decomposition (Equations (15) and (16)), as they fit better to the
application case that motivated this paper. Among those two approaches, the
one where the coefficients of the projection are taken as independent scalar
inputs (Equations (13) and (16)) is straightforward to implement, since the
classic covariance functions for scalars can be directly applied. In contrast, the
second method (Equations (12) and (15)), requires some developments in order
to adaptate standard covariance funtions to deal with the projection. Such
special treatement is the topic of the folllowing section.

3.2.2. Adapted covariance function for projections
In this study we focus on the B-splines and PCA projection methods, which

are attractive tools for the modeling of functional inputs (see for instance [4, 28,
13] for applications of B-splines and [5, 15] for applications of PCA). In both
cases, the functional input is represented by a linear combination of coefficients
αk and basis functions Bk, k = {1, . . . , p}, as in (11). Recall that the projection
dimension p has to be strategically chosen. Here we discuss the basics of each
method. For a more complete introduction and full derivation of B-splines and
PCA equations, the interested reader can refer to [16] and [29], respectively.

B-splines of order m are constructed from polynomial pieces of degree m−1,
joined at a sequence of points in the domain of the input, called the knots. A
B-spline requires a total of p −m + 2 knots to be constituted, with additional
m− 1 replicates for the first and the last knot

τ1 = · · · = τm−1 = τm < τm+1 < · · · < τp < τp+1 = τp+2 = · · · = τp+m.

Given a knots vector, the B-splines basis of any desired order m are given
by the following system of recursive equations:

Bi,1(t) = 1[τi,τi+1](t) for i ∈ {1, . . . , p+m− 1}

10

and

Bi,m(t) =
t− τi

τi+m−1 − τi
Bi,m−1(t)+

τi+m − t
τi+m − τi+1

Bi+1,m−1(t) for i ∈ {1, . . . , p},

with Bi,m = 0 if τi = · · · = τi+m = 0 to avoid division by zero.
For PCA we consider the n × T matrix F containing n observations of the

functional input under study at T time instants, that is, the matrix composed of
the set of discretized temporal curves fi (with i = 1, . . . , n). Similarly, we let Fc
be the centered input matrix that has the respective column means subtracted
from each element of F :

Fc = F − 1nf̄
′, (17)

with f̄ ′ = (f̄1, . . . , f̄T) denoting the vector of column means of F , and 1n
denoting a n-dimensional column vector of ones. Then, we define the vari-
ance–covariance matrix Σ = 1

nF
′
c · Fc of the columns of F . The PCA decom-

position is based on the expansion of Σ as follows:

Σ =

T∑
k=1

λkvkv
′
k, (18)

where λ1 ≥ λ2 ≥ · · · ≥ λT are the eigenvalues of Σ and vk,v2, . . . ,vT are
mutually orthogonal eigenvectors associated with these eigenvalues. In the PCA
framework, the basis functions B1, . . . , BT correspond to the eigenvectors vk.

B-spline basis are independent of the data set and may be of any desired di-
mension. In contrast, PCA is purely data driven and the basis size is bounded by
the number of observed time instants T , as basis functions correspond to eigen-
vectors of the matrix Σ. An attractive property of PCA is the orthonormality
of the basis. This characteristic simplifies some of the computations required
for metamodeling. For instance, in the frame of Design of Experiments, opti-
mizing a maximin criterion based on the quadratic distance of the coefficients
is equivalent to optimizing a maximin criterion based on the L2 distance of the
corresponding functions [30, 5].

For both methods, an efficient expression for the L2 norm of f1 − f2 can
be implemented, whenever both functions are projected on the same basis. In
the case of B-splines, the two projections should have the same size p, order m,
and knots vector τ in order to be considered as the same basis. For PCA, the
eigenvectors (basis functions) of the two projections must come from the same
covariance matrix Σ to have the same basis. If the stated conditions are met,
the norm ‖f1 − f2‖L2 approximated by ‖Πp(f1)−Πp(f2)‖L2 reduces to a norm
in Rp, with p ∈ N representing the dimension of the decomposition [4]:

11

‖Πp(f1)−Πp(f2)‖2L2 =

∫
T

(
p∑
k=1

α1
kBk(t)−

p∑
k=1

α2
kBk(t)

)2

dt

=

∫
T

(
p∑
k=1

(α1
k − α2

k)Bk(t)

)2

dt

:=

∫
T

(
p∑
k=1

δ1,2k Bk(t)

)2

dt

=

∫
T

p∑
j,k=1

δ1,2j δ1,2k Bj(t)Bk(t) dt = δ
′
Jδ. (19)

Here T ⊂ R is the domain of the functional input and J is the p× p Gram
matrix

(∫
T
Bj(t)Bk(t)dt

)
1≤j,k≤p. The attractive fact of this derivation proposed

in [4] is that the matrix J does not depend on the coefficients of the decom-
position but only on the basis functions, and thus it can be stored and reused,
saving computational time. Moreover, when the adopted basis is orthonormal
(e.g., PCA basis), J is simply the identity matrix of dimension p× p.

Now that the measure of proximity has been defined for functions, an ex-
tended version of the anisotropic, tensor-product kernel can be implemented in
order to include functional inputs in the covariance function:

Cov(Z(x1,f1), Z(x2,f2)) = σ2 k (Ds(x1−x2;θs)) k (Df (f1−f2;θf)) , (20)

where Ds(x1 − x2;θs) and Df (f1 − f2;θf) denote distances for the scalar
and functional inputs, respectively, scaled by the corresponding length-scale
parameters θs and θf . For the Gaussian kernel, (20) becomes

Cov(Z(x1,f1), Z(x2,f2)) = σ2 exp

(
−1

2

ds∑
`=1

(
x`1 − x`2
θ`s

)2
)

exp

−1

2

df∑
`=1

(δ`1,2)′Jδ`1,2(
θ`f

)2
 . (21)

Here ds and df denote the number of scalar and functional input variables,
respectively. Following Equation (19), the term δ`1,2 denotes the vector of dif-
ferences among the coefficients of the decomposition of the `-th functional input
at observation points 1 and 2.

4. Exploration strategy

The construction of a surrogate model requires making a series of decisions
that may have significant impact on its resulting performance. The distance used
to measure similarity among functions (see Section 3.2), the projection method

12

used to represent functional inputs (e.g. B-splines, PCA, wavelets, polynomials),
as well as the dimension of the projection, are all part of those decisions. To
the best of our knowledge, there is no evidence of a best performing level for
any of the parameters mentioned above. In fact, the suitability of different
levels of those parameters may depend on the application, and thus, should be
optimized each time a metamodel is to be built, in order to achieve the best
possible performance. However, such an optimization is rarely performed in the
literature and the levels of those parameters are often fixed based on results from
previous studies. In particular, the projection dimension is often fixed using the
accuracy of the projection itself as criterion. The deficiency of this approach is
that the dimension that provides the highest accuracy in terms of projection of
the inputs, does not necessarily translate into good metamodel predictability.

Screening

Interesting
trend?

Descent
Move in the direction of
expected improvement

Stationary
point?

no

yes

Stop, keep current
best configuration

yes

no

Cleaning
Check patterns and discard

worst configurations

Figure 3: Exploration strategy flowchart.

To overcome the issues described above, here we propose a methodology
that aims at exploring different configurations of some structural parameters
of the surrogate model, while determining a good dimension to represent the
functional inputs. A scheme of the proposed methodology is presented in Figure
3 and its main steps are briefly described below:

1. Screening. This step is intended to provide an overview of the effect of the
parameters on the performance of the metamodel. The main objectives
here are to:

• Identify patterns, as could be the dominance of certain levels of a
parameter over the other levels. For intance, determine if some pro-
jection method clearly outperforms the others.

• Detect trend in numerical parameters, for instance, the projection
dimension. See if the performance of the metamodel improves by
increasing or decreasing the value of such parameters.

13

• Determine if the functional representation of functional inputs adds
information to the metamodel or if a scalar representation is enough.
To do so, a metamodel using a scalar representation of the functional
inputs is used as a benchmark, which is compared to metamodels
based on functional decompositions of the inputs.

In ideal circumstances, the performance of the metamodel can be assessed
using an independent validation dataset from the one used for training.
However, in most metamodeling applications, the number of simulations
available is quite limited to proceed in that way. The application of cross
validation / bootstrap methods (see e.g. [31]) is recomended for those
cases.
As one of the main purposes of the exploration methodology is to reduce
considerably the dimension of the inputs, we start by exploring configura-
tions with the lowest possible dimensions. For instance, configurations of
dimension 1, 2 and 3.

2. Cleaning. If the screening stage allows to detect a tendency to better per-
formance on highest projection dimensions, the exploration is extended
in such direction. However, depending on the number of structural pa-
rameters under study, the extension of the experiment could become too
time consuming. Therefore, the cleaning stage consists on discarding those
dominated levels of the parameters, identified through the patterns on the
screening stage.

3. Descent. Once the dominated levels have been discarded, greater values of
projection dimension are evaluated, building a new factorial experiment
only with the non-dominated levels of the other parameters. Here we call
this stage descent as we aim to find metamodels providing lower error as
we increase the dimension size. Similarly to the response surface method-
ology (see [32] and [33]), this stage is repeated until a stationary point is
identified.

Despite the fact that the proposed methodology may require the evaluation
of several experimental conditions, all of them could be performed using the
same set of observations of the expensive code. Thus, the computational cost of
the methodology is expected to be reasonable and the potential gains in terms
of metamodel performance could be worth it. The following example is used to
illustrate the methodology.

4.1. Analytic case
In this section, we consider the second analytic case presented in [4], with

a slight different domain for the functional inputs. In [4], a Gaussian process
metamodel is built using B-spline decompositions of dimension 5 and order 4 to
represent the functional inputs. Here, we use the exploration strategy presented
above to find an attractive metamodel configuration among several combinations
of decomposition dimension, projection method and type of covariance function.

Let F be the set of continuous functions from [0, 1000] to R. Then, consider
a black box computer code receiving the scalar inputs x = (x1, x2) ∈ [0, 1]

2 and
the continous functional inputs f = (f1, f2) ∈ F2, defined as:

14

G : [0, 1]2 ×F2 → R,

(x,f) 7→
(
x2 −

5

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10

+
4

3
π

(
42

∫ 1000

0

15f1(t) (1− t) dt

+ π

(
x1 + 5

5
+ 15

)∫ 1000

0

15tf2(t)dt

)
.

Note that G is an instrinstic functional code, since the integrals over the do-
main of the inputs and the interactions between functional and scalar variables
make it not possible to recover the output by means of independent computa-
tions on scalar representations of the input over its domain. That fact gives
an insight on the type of metamodel that should be used; at least, we expect
functional metamodels to be an interesting alternative here.

4.1.1. Data set
We started by creating a data set with 5000 observations of the code that

could be used later to generate multiple independent training and validation
sets. The coordinates of the 5000 observation points for the scalar inputs where
uniformily sampled over their domain. For the functional part, we followed an
approach proposed in [13], which is to make the design over the coefficients of a
basis. Here we modeled each functional input as a B-spline of dimension 5 and
order 4, and then we constructed a Latin Hypercube design (LHD) [34] with
5000 observation points for the coefficients of the basis. We remark that the
order and dimension used for the constitution of the data set is independent of
the order and dimension to be used later for the representation of the inputs in
the metamodel. As the focus of this paper is not optimal design of experiments,
we do not develop further on the construction of the data set, and we assign
the 5000 scalar coordinates to the 5000 functional coordinates using a random
permutation. For a more elaborated approach to combine the scalar and func-
tional parts of the design, the reader is referred to [4]. The full data set and a
sample of 25 observations of the function f1 are shown in Figures 4a and 4b,
respectively.

15

(a) Full data set. (b) 25 sample functions.

Figure 4: Illustration of the functional input f1.

4.1.2. Screening
Once the data set was obtained, we set up the screening experiment, which

implies the definition of a scalar metamodel to be used as a benchmark for
the functional ones. Let f̈ = (f̈1, f̈2) be the vector of scalar representations of
the functional inputs f1 and f2. Different scalar parameters could be used to
represent the inputs, depending on the geometry and/or the physical meaning
of the curves. For simplicity, and as the functions in this theoretical example
do not have any physical meaning, here we set the mean of each function as its
scalar representation. Now, let us define the scalar metamodel as:

M00 : [0, 1]2 × [0, 1]2 →R,

(x, f̈) 7→M00(x, f̈). (22)

In order to define the funtional metamodels, let us consider a shifted version
of f , computed as f̃ = f − f̈ . Then, let Πp = (Πp,1,Πp,2) denote the vector
of functional decompositions of the elements in f̃ onto a basis of dimension p.
For every functional metamodel, we keep x and f̈ as inputs and we add at least
one element of Πp. This way, the difference in performance among the scalar
metamodel and any functional metamodel will be attributed to the addition of
the corresponding functional decompositions. As an example, metamodels with
a) only Πp,1 active, b) only Πp,2 active, and c) both, Πp,1 and Πp,2 active, are
defined in Equations (23), (24) and (25), respectively.

Mf0 : [0, 1]2 × [0, 1]2 × Rp →R,

(x, f̈ ,Πp,1) 7→Mf0(x, f̈ ,Πp,1). (23)

M0f : [0, 1]2 × [0, 1]2 × Rp →R,

(x, f̈ ,Πp,2) 7→M0f (x, f̈ ,Πp,1). (24)

Mff : [0, 1]2 × [0, 1]2 × (Rp)2 →R,

(x, f̈ ,Πp) 7→M0f (x, f̈ ,Πp). (25)

16

The notation of the metamodels is such that the subscript indicates which
functional decompositions are active. For instance, in M00 both functional
decompositions are inactive, while in M0f only Πp,2 is active. Furthermore,
the notation of metamodels (23), (24) and (25) is generic in the sense that two
different decomposition methods can be used to represent the functional inputs
(B-splines or PCA), the dimension of the basis p can take values from N, and
either the scalar or the projection-based covariance function (‖f1 − f2‖S,θ and
‖f1 − f2‖D,θ, respectively) can be used.

A total of 37 experimental conditions were included in the screening exper-
iment, resulting from the scalar metamodel M00, plus all combinations of the
levels of the parameters listed below, except for those cases where both Πp,1

and Πp,2 are inactive as those correspond to redundant counts of the scalar
metamodel.

• State of Πp,1: inactive or active;
• State of Πp,2: inactive or active;
• Projection method (Pr): B-plines or PCA;
• Covariance function (Cv): ‖f1 − f2‖S,θ or ‖f1 − f2‖D,θ;
• Projection dimension (p): 1, 2 or 3 basis functions.

In all cases, the optimization of the expansion coefficients α1, . . . , αp (see
Equation (11)) was done using the ordinary least squares formulation proposed
in Section Appendix B. The estimation of the parameters is done using the
Maximum Likelihood method (see e.g., [35]) in a similar way to the estimation
methods used in the R package DiceKriging [36]. In a first step a number of
random points in the parameter space are checked for their log-likelihood value
and the best is chosen as starting point for the optimization by the R-command
optim. We used the Matérn 5/2 kernel (see Equation (8)) in every metamodel
tested. The quality of the metamodels was assessed using the root mean square
error RMSE (see e.g., [37]). For a validation sample y1, . . . , yn∗ with n∗ ∈ N,
the RMSE is defined as:

RMSE =

√√√√ 1

n∗

n∗∑
i=1

(ŷi − yi)2, (26)

where ŷi is the approximation of the observation yi.
Figure 5 illustrates the performance of the 37 metamodel configurations,

using 800 training points and 1500 validation points. A total of 30 independent
pairs of training and validation sets were used and the natural logarithm of the
average RMSE over the 30 runs (log(RMSE) hereon) is reported in the plot.
For convenience in the analysis, the plot classifies metamodel configurations
into three groups based on their performance:

(i) the scalar metamodelM00,
(ii) all metamodels with active functional representation of both functional

inputsMff ,
(iii) all metamodels with at least one functional representation inactive (except

for the scalar metamodel).

For a detailed list of the experimental conditions and corresponding results
of the screening stage, the reader is referred to Appendix C, Table C.3.

17

Figure 5: Analytic case: results of the screening experiment. The abscissa denotes the exper-
imental condition (see Table C.3). Points are labeled by basis size p; the label 0 corresponds
to the scalar metamodel.

As a first noticeable result, the scalar metamodel was the worst performing
one. For p = 2 and 3, configurations with both functional representations active
(i.e., configurations 16 + 3i, i = 0 . . . , 7) performed better than the others,
while for p = 1 only those configurations with PCA representation of both
functional inputs (configurations 7 and 13) had outstanding performance. On
the other hand, the RMSE tends to decrease as the number of basis functions
increases. In fact, the best performing metamodel (configuration 37) matches
to a configuration with p = 3, the greatest p value tested in the screening
experiment. That trend is more visible for the best performing configurations
than for the worst performing ones. In Figure 6 we plot the log(RMSE) of all
the experimental conditions considered in Figure 5, but this time using training
sets of different size. Specifically, we evaluated metamodels trained with sets of
size n = 200, 400 and 800. As in Figure 5, increasing the projection dimension p
clearly delivers a better fit for the best performing metamodels. In addition, for
the best configurations found, increasing the training sample size also improves
the performance. On the other hand, performance of the worst configurations
remains almost the same regardless the projection dimension or the training
sample size.

Figure 6: Analytic case: results of screening for different number of training points. The
abscissa denotes the combination of training set size n and projection dimension p for each
group of experimental conditions. For instance, (200, 2) means a training dataset of size 200
with a projection of dimension 2. As in Figure 5, p = 0 corresponds to the scalar metamodel.

18

4.1.3. Cleaning and descent
As an interesting trend was detected during the screening stage, we proceed

to the cleaning and descent stages. The screening stage allowed us to determine
that the increase of p reduces the RMSE and also that configurations with the
functional representation of the inputs being active dominate any other config-
uration. Therefore, only those configurations are kept and we start expanding
the experiment by increasing the projection dimension p by steps of a unity.
At each step, we inspect again for patterns or changes in trend, and cleaning is
performed again if possible. The log(RMSE) of the new configurations is ploted
in Figure 7. A detailed list of the experimental conditions and corresponding
results of this stage is provided in Appendix C, Table C.4. Note that at p = 7,
we removed the configurations using the scalar covariance function ‖f1−f2‖S,θ,
as those are clearly dominated by configurations using the covariance based on
functional decomposition. At p = 6, we observed a change in the trend as the
RMSE stopped improving. As the difference in RMSE with the best known
configuration up to that point was small, we kept increasing the dimension size
to see if it improved again. At p = 8 we stopped as no further improvement was
found.

Figure 7: Analytic case: results of cleaning and descent. The abscissa denotes the experimental
condition. Points are labeled by basis size p. Configurations with p = 3, evaluated in the
screening experiment are plotted again here for comparison against configurations with higher
p.

For this analytic case, the metamodel with an active B-splines representation
of size p = 5 for both functional inputs, using the covariance function based on
functional decomposition ‖f1−f2‖D,θ (configuration 44) is the most attractive
configuration found. Note that as we do not know the shape of the RMSE sur-
face, we cannot warrantee that such configuration provides the global optimum.
However, we know that its average RMSE corresponds to the 3.84% of the av-
erage RMSE of the worst configuration found (configuration 0). Considering
that and based on the patterns found during the exploration, configuration 44
is likely one of the best metamodels in terms of RMSE.

19

(a) Analytic case: fitting of the best performing sample of best configuration. Left-
top subplot illustrates the whole set of 1500 output observations in increasing order;
this subplot is then subdivided to generate the remaining 5 subplots by splitting the
abscissa into 5 sections and zooming the resulting figures.

(b) Analytic case: calibration plot.

Figure 8: Performance of best performing configuration for the analytic case. (a) 1500 ob-
servations of the true output sorted in increasing order and corresponding 95% confidence
intervals produced by the metamodel; (b) Prediction plot for 1500 data points for the best
metamodel configuration.

The fitting of the ordered output as well as the calibration plot of the best
of the 30 samples corresponding to the best performing configuration, trained
with 800 data points, are presented in Figures 8a and 8b, respectively. For this
sample, the proportion of observation points lying withing confidence intervals
at 99%, 95% and 90% was 89%, 77% and 65%, respectively. Based on this
results and the plots, the metamodel delivers a good prediction with no evident
fitting problems (e.g., skewness, heavy tails).

5. Coastal flooding case study

In this section, we address the application case introduced in Section 2.
As for the analytic case, we implement our exploration methodology to find

20

a convenient representation of the functional inputs and select a metamodel
configuration of realively high prediction quality.

5.1. Screening
Following the exploration methodology (described in Section 4), we start by

performing a screening test oriented to identify patterns, detect trend and deter-
mine if the functional representation of the inputs adds value to the metamodel.
Similarly to the analytic case, here we denote f = (Td,Sg,Hs,Tp) the vector
of discretized functional inputs (see Section 2) and correspondingly, we denote
f̈ = (T̈d, S̈g, Ḧs, T̈p) the vector of scalar representations of f . The peak of Td
(the value at time 19) is known to be the most critical and influencing part of
the curve, therefore, we use it as its scalar representation. For Sg, Hs and Tp,
we use the mean as their scalar representation, given the relatively constant
behavior showed by them in Figure 2. Then we define the scalar benchmark
metamodel as:

M000 : R4 →R,

f̈ 7→M000(f̈). (27)

As before, the funtional metamodels require the definition of a shifted version
of f , which can be computed as f̃ = f − f̈ . However, the coastal flooding
application has four functional inputs, in contrast to the analytic case (see
Section 4.1) which has only two. As the number of experimental conditions to
be tested grows exponentially with the number of functional inputs, it could
be useful to make a preliminary analysis to determine if some functional inputs
could be omitted in the metamodel. In order to decide which functional inputs
to keep, we observed the variance explained by the PCA projection of the shifted
inputs, as a function of the dimension of the basis (see Figure 9). We observe
the plot for shifted inputs as those are the ones that will be used as functional
inputs of the metamodel (see the set up for the theoretical example in Section
4.1).

21

(a) PCA shifted Td. (b) PCA shifted Sg.

(c) PCA shifted Hs. (d) PCA shifted Tp.

Figure 9: Coastal flooding case: PCA on the shifted inputs; the dotted red line indicates the
number of principal components necessary to explain at least the 99% of the variability of

the data.

According to the plots, H̃s is the input requiring fewer components to be
well described, while S̃g and T̃p require a considerable number of components.
Taking into account this information, as well as observing the shapes of the
time series (see Figure 2), we decided to discard H̃s as a functional input of
the metamodels. However, we keep its scalar representation Ḧs as part of the
experiment, as it does not affect the number of experimental conditions and may
help to improve the metamodel. Despite the fact that T̃d is also well described
by just a few components, that input is known to be a main forcing factor
and thus, we keep its functional representation in the experiment. Both, the
mathematical analysis of the series and the knowledge about the process should
be considered during this filtering process.

Based on the discussion above, we let Πp = (Πp,1,Πp,2,Πp,3) denote the
vector of functional decompositions of T̃d, S̃g and T̃p, respectively, onto a basis
of dimension p. For every functional metamodel, we keep f̈ as inputs and we
add at least one element of Πp. The functional metamodels are defined in
the same fashion as in the analytic case (see Section 4.1). For instance, the
metamodels with a) only Πp,1 active, b) Πp,2 and Πp,3 active, and c) all three
functional decompositions active, are defined in Equations (28), (29) and (30),
respectively.

Mf00 : [0, 1]4 × Rp →R,

(f̈ ,Πp,1) 7→Mf00(f̈ ,Πp,1). (28)

22

M0ff : [0, 1]4 × Rp × Rp →R,

(f̈ ,Πp,2,Πp,3) 7→M0ff (f̈ ,Πp,2,Πp,3). (29)

Mfff : [0, 1]4 × (Rp)3 →R,

(f̈ ,Πp) 7→Mfff (f̈ ,Πp). (30)

The interpretation of the metamodels notation is analogous to that of the
metamodels in the analytic case. The subscript indicates which functional de-
compositions are active. The generic aspect of the notation also holds for meta-
models (28), (29) and (30) so that the functional decomposition can be done
in a B-spline or PCA basis, whose dimension p can take values from N, and
either the scalar or the projection-based covariance function (‖f1 − f2‖S,θ and
‖f1 − f2‖D,θ, respectively) can be used.

A total of 85 experimental conditions were included in the screening exper-
iment this time, corresponding to the scalar metamodel plus all combinations
of the levels of the parameters listed below, except for those where Πp,1, Πp,2

and Πp,3 are simultaneously inactive, as those cases are already considered in
the scalar metamodel.

• State of Πp,1: inactive or active;
• State of Πp,2: inactive or active;
• State of Πp,3: inactive or active;
• Projection method (Pr): B-plines or PCA;
• Covariance function (Cv): ‖f1 − f2‖S,θ or ‖f1 − f2‖D,θ;
• Projection dimension (p): 1, 2 or 3 basis.

See Appendix D, Table D.5 for a detailed list of the experimental conditions
and corresponding results of the screening stage in the coastal flooding case.

In the theoretical example, we used the ordinary least squares formulation
to find the coefficients of the decompositions, as all points in the domain of the
functions where considered equally important. In the RISCOPE application, the
midpoint on the domain of the inputs is known to be of particular importance as
it corresponds to the moment of maximum Td. Therefore, in this case we used
the weighted least squares formulation (see Section Appendix B) instead of the
ordinary one. The constrained formulation and the weighted constrained one
could also be good choices, and they will be considered in a posterior analysis
on Section 5.2.

In the frame of the least squares formulations defined in Section Appendix
B, we are considering discretized functional inputs defined over the temporal
set t = {t1, . . . , tT }. For the coastal flooding application, T = 37 and the point
of outstanding importance is always t∗ = t19 (see Section 2 and the figures
therein). For the weighted least squares formulation we define the vector of
weights w = (w1, . . . , wT) in the following way (see Figure 10). We choose
0 ≤ δ ≤ t∗. Then we choose 0 ≤ ω ≤ t∗ − δ and (λ, γ) ∈ [0, 1]2. We also define
σ2 as:

σ2 = − ω2

2 ln(γ)
(31)

23

Then the weigths are giving the relative importance of the time series at
each instant in t, be defined by:

wt =

1 : if t = t∗

λ : if 0 < |t− t∗| ≤ δ

λ exp

(
− (|t− t∗| − δ)2

2 ∗ σ2

)
: if |t− t∗| > δ,

(32)

The weighting function used in the coastal flooding application is illustrated
in Figure 10. This type of function, often used to model relevance of potential
results regarding a given query on search engines (see e.g., [38]), retains some
interesting properties from the Gaussian pdf. For instance, it is a non-negative
function with at least one maximum located at the origin t∗. The first case of
(32) and the space considered in the definition of the parameters ensures that
the greatest possible score is 1.

Figure 10: Weighting function for coastal flooding case. In this application, the parameters
λ, γ, ω and δ controling the shape of the curve were set to 0.7, 0.5, 1.5 and 6, respectively.

Figure 11 illustrates the performance of the 85 metamodel configurations,
using 800 training points and 1500 validation points. Once again, a total of 30
independent pairs of training and validation sets were used and the log(RMSE)
over the 30 runs is reported in the results. For convenience in the analysis,
the plot classifies metamodel configurations into three groups based on their
performance:

(i) the scalar metamodelM000,
(ii) all metamodels using a distance decomposition-based distance ‖f1−f2‖D,θ,
(iii) all metamodels using a distance based only on the coefficients of the func-

tional decomposition ‖f1 − f2‖S,θ.

See Section 3.2 for the definition of the covariance functions.

24

Figure 11: Coastal flooding case: results of the screening experiment. The abscissa denotes
the experimental condition. Points are labeled by basis size p; the label 0 corresponds to the
scalar metamodel.

This time the scalar metamodel and the functional ones using the decomposition-
based covariance performed similarly and outperformed almost every configu-
ration based on the scalar covariance function. Here no trend of the RMSE
regarding the projection size is clearly visible, at least for the best performing
configurations. For the worst ones, it seems that a lower projection dimension
p works better. Following the flowchart presented in Figure 3, we stop here
and keep the current best configuration, as no interesting trend was detected.
Strictly speaking, such a configuration corresponds to experimental condition
number 16, which matches to a metamodel with an active B-spline representa-
tion of size p = 1 only for Td, using the decomposition-based covariance function
‖f1 − f2‖D,θ. However, from a practical perspective any other configuration
using the decomposition-based covariance function could be also a good choice,
since the performance of all that group of configurations was quite similar.

25

(a) Coastal flooding case: fitting of the best performing sample of best configuration.
Left-top subplot illustrates the whole set of 1500 output observations in increasing
order; this subplot is then subdivided to generate the remaining 5 subplots by splitting
the abscissa into 5 sections and zooming the resulting figures.

(b) Coastal flooding case: calibration
plot.

(c) Coastal flooding case: calibration
plot in logarithmic scale.

Figure 12: Performance of best performing configuration for the coastal flooding case. (a) 1500
observations of the true output sorted in increasing order and corresponding 95% confidence
intervals produced by the metamodel; (b) Prediction plot for 1500 data points for the best
metamodel configuration.

The same type of plots built for the inspection of metamodel predictability in
the analytic case, are used here (see Figure 12). For this sample, the proportion
of observation points lying withing confidence intervals at 99%, 95% and 90%
was 96%, 94% and 93%, respectively. In this case, the confidence intervals show
more variability than in the analytic case. However, this is partially a visual
effect since a significant part of the output series is almost constant here and
thus, the span of the ordinates is determined by the width of the confidence
intervals. As our input-output data set comes from hindcasts rather than a
design of experiments, the distribution of the output seems to present a positive
skew, and some outliers are visible (see Figure 12b). For this specific sample, it
seems that the metamodel was able to make a reasonable prediction even for the
largest outlier. Nonetheless, depending on the particular training and validation
set used, this type of observations could be difficult to fit and significant errors

26

may be expected. As those extreme output values correspond to scenarios of
great flooding, addressing such a difficulty should be a main priority in the
development of metamodels for this application. That subject is out of the
scope of the present study, but is currently under investigation.

5.2. Selecting the projection size
In Section 4, we briefly discussed the common practice in the literature to set

up the projection dimension p, which is to select a number of basis for which the
error of the projection istelf is relatively small. We also mentioned the weakness
of this approach, which is that the projection dimension offering a good fit of
the input does not necessarily lead to a better performance of the metamodel.
In this section, we take advantage of the RISCOPE case study to illustrate such
an inconsistency. To do so, we first set the p based on the projection error, and
then we assess the performance of the corresponding metamodels.

5.2.1. Selection based on projection error
This first approach requires the definition of a maximum admisible error in

the projection, that could be used as a stopping criterion when increasing the
number of basis functions. Based on the advice of experts in coastal flooding,
we set a maximum error within the critical time window t = [13, 25], of 1
centimeter, 1.5 centimeters, and 1 second for the projections of Td, Sg and
Tp, respectively. Such a time window corresponds to the moment of maximum
tide ± 1 hour. The objective is to find the lowest number of basis functions, for
which every curve of the data set satisfies the stated error tolerance. We also use
this experiment to assess the results obtained by using the four least squares
formulations presented in Section Appendix B, being the ordinary, weighted,
constrained and weighted-constrained. The last three formulations could be
interesting choices here as the points lying in the critical time window have
outstanding relavance, specially the point t19 which matches the maximum Td.

27

(a) Td - B-splines. (b) Td - PCA.

(c) Sg - B-splines. (d) Sg - PCA.

(e) Tp - B-splines. (f) Tp - PCA.

Figure 13: Maximum projection error versus projection dimension p. Td and Sg error in
centimeters and Tp error in seconds.

Figure 13 illustrates the maximum error within the critical time window,
among the 20557 time series included in the data set, as a function of the basis
size p for both the B-spline and PCA methods. Note that using a tolerance as
the criterion to set the number of basis functions may end up in an unnecessarily
large number of basis functions. For instance, the error of the Td projection
with all formulations was already quite low at 6 basis functions, however, the
constrained and weighted-constrained formulations required at least 13 basis
functions to reach the tolerance. What makes it even worst is that usually, there
are only a couple of curves in the data set that require such a high projection
dimension. For instance, for B-splines projection of Td using the constrained
formulation, almost all the curves reached the tolerance at p = 6 (see Figure
14). It means that the additional 7 basis functions required in that case where
only used to get a small portion of the data set to fulfil the criterion.

28

(a) p = 1. (b) p = 3.

(c) p = 5. (d) p = 6.

Figure 14: Distribution of errors (in centimeters) for points in the critical window using
constrained least quared optimization and B-splines projection for Td fitting.

Although the demanding constraint of perfect fitting at t19 has part on such
behavior, the problem is also present in the ordinary and weighted formula-
tions, which do not implement the constraint. See for instance the curve of the
weighted formulation for Tp using the B-splines method in Figure 13. At p = 5
the error was considerably low, however, it required 10 basis functions to reach
the tolerance.

5.2.2. Selection based on metamodel performance
The weighted formulation was the best performing one in the selection based

on projection error. It required the lowest number of basis in all cases and its
maximum error remained almost always below the error of all the other formu-
lations. Therefore, in this section we assess the performance of the metamodel
using the number of basis functions suggested by such formulation. Similarly
to the previous experiments, here we also evaluate all the possible combinations
of the cases where the functional decomposition of each input is inactive or ac-
tive, both projection methods (B-splines and PCA) and the type of covariance
function which can be scalar ‖f1−f2‖S,θ or decomposition-based ‖f1−f2‖D,θ.
However, in this case we do not evaluate the case where all functional decompo-
sitions are inactive, as it corresponds to the already evaluated scalar metamodel.
In addition, the projection dimension p is no longer a factor of the experiment
since its value is preset in the values listed in Table 1.

Td Sg Tp
B-splines 4 15 10
PCA 4 10 6

Table 1: Selected dimension p based on projection error.

29

A total of 28 experimental conditions were evaluated. See Appendix D,
Table D.6 for a detailed list of the experimental conditions and corresponding
results of this experiment. Results are illustrated in Figure 15, which in turn
includes results from the scalar metamodel and the configurations using the
decomposition-based covariance function, as those were the best performing
metamodels of the screening experiment (see Section 5.1).

Figure 15: Coastal flooding case: performance of metamodels with the projection dimension
p selected based on projection error. Points are labeled by basis size p; as the number of basis
functions varies from one input to the other in the new experiment, those points are labeled
using an alphabetic convenention where each letter is matched to a triple of integers denoting
the projection dimension for each input in the order Td,Sg,Tp: a : (4, 0, 0), b : (0, 15, 0),
c : (4, 15, 0), d : (0, 0, 10), e : (4, 0, 10), f : (0, 15, 10), g : (4, 15, 10), h : (0, 10, 0), i : (4, 10, 0),
j : (0, 0, 6), k : (4, 0, 6), l : (0, 10, 6), m : (4, 10, 6).

Once again, results with the decomposition-based covariance function were
better than those with the scalar one. However, none of the new configura-
tions outperformed the best configuration found by means of our exploration
methodology. Although the error of the best performing configurations in the
new experiment is comparable to that of the scalar metamodel or the con-
figurations with 1, 2 or 3 basis functions and decomposition-based covariance
function, the new configurations are much more computationally demanding as
they require larger data structures to be stored and processed. For instance,
the average training time (over the 30 independent runs) of configuration 92
was 9.8 times the largest training time registered during the screening stage,
corresponding to configuration 64. This makes those metamodels slower and
more prone to numerical issues, which makes the large number of basis func-
tions suggested by the selection based on error projection, not only unnecessary,
but also problematic.

6. Conclusions

In this article we propose a methodology to explore diverse Gaussian process
metamodeling approaches, while determining a good dimension to represent the
functional inputs. The methodology starts with a screening stage, where sev-
eral functional metamodels are compared with a scalar benchmark. This stage
is intended to identify patterns showing dominant metamodel configurations,
detect tendency in metamodel performance regarding numerical parameters as
the projection dimension, and determine if the functional representation of the

30

inputs provides useful information to the metamodel or not. It is followed by a
series of iterative experiments composing the cleaning and descent stages where
the best known configurations are tested for new projection dimensions until a
stationary point is reached. While relatively simple, the proposed methodology
allows to find metamodel configurations of proven outstanding performance.

The exploration methodology was successfully applied on a theoretical ex-
ample and also on a real life application to coastal flooding early warning. In
both application cases, the best metamodel configuration found was able to ac-
curately approximate the code. Results from the two applications corroborated
that the best metamodeling settings (projection method, type of covariance
function, projection dimension and combination of functional representation of
inputs) depends on the particular application. Therefore, we conclude that
those settings should be optimized each time a new metamodel is to be built in
order to ensure good performance. The exploration methodology proposed here
showed to be an effective tool for such optimization task.

One of the main advantages of the methodology is that it applies the princi-
ple of exploration-exploitation present in some classic heuristics such as Genetic
Algorithm and Ant Colony Optimization. This principle allows to achieve di-
versification in the initial set of metamodel configurations evaluated and then
leads the search to concentrate on the local improvement of the most attractive
solutions found at each iteration. Considering that, the study of alternative ex-
ploration methods such as algorithms supported by the exploration-exploitation
principle, could be an interesting topic of future research. In the same spirit,
the construction of penalized likelihood and cross validation formulations for
nonlinear models seems an interesting extension of the scalar-on-function tech-
niques existing for linear regression (see e.g., [17]). The advantage of such a
formulation would be the possibility of intrinsically setting the projection di-
mension for any metamodel configuration, which would considerably reduce the
number of experimental conditions to test.

Through the coastal flooding application we showed how the traditional
approach of setting the projection dimension based on the error of the projection
itself may result in an unnecessarily large number of basis functions. In contrast,
our methodology starts from the simpler metamodel configurations requiring
a smaller basis, and explores more complex alternatives only if potential of
improvement in that direction is found. Interestingly, we found that even when
the inputs of the code were time series of dimension 37, it was possible to
achieve quite good metamodel predictability just by using a scalar representation
of them. On the other hand, denser metamodel configurations found by the
traditional approach offered no improvement in performance, but significantly
larger training time (up to 9.8 times larger than the worst training time using
our methodology). This result may be explained by the fact that the simplified
code considered here can be seen as the sum of independent scalar-to-scalar
problems. Thus, if we represent the functional inputs by a scalar associated
to a key time instant in the evolution of the output, we may expect to have
reasonable predictions. We would not expect this kind of result if the code is
intrinsically functional as in the analytic case studied in Section 4.1, where the
best configuration found was a metamodel using a projection of the inputs in a
basis of dimension 5.

As the two case studies presented here consider a discretized representation of
the functional inputs, it seems interesting to assess alternative distances adapted

31

to time series [26] or try to adapt the work of [39] where a Geodesic PCA for
density functions is introduced.

Acknowledgements

This research was undertaken within the RISCOPE project (ANR, project
No.16CE04-0011, https://perso.math.univ-toulouse.fr/riscope/). The authors
gratefully acknowledge the data providers (Ifremer, LOPS, NOAA, Liens ; see
Table Appendix A). We also thank Xavier Bertin for dedicated running of wave
model for the Sonel-wave dataset. Sylvestre Le Roy and Camille André are also
acknowledged for providing the bahymetric data used to set up the cross-shore
numerical model.

References

[1] Rohmer J, Idier D. A meta-modelling strategy to identify the critical off-
shore conditions for coastal flooding. Natural Hazards and Earth System
Sciences. 2012;12(9):2943–2955.

[2] Jia G, Taflanidis AA. Kriging metamodeling for approximation of high-
dimensional wave and surge responses in real-time storm/hurricane risk
assessment. Computer Methods in Applied Mechanics and Engineering.
2013;261:24–38.

[3] Rueda A, Gouldby B, Méndez F, Tomás A, Losada I, Lara J, et al. The
use of wave propagation and reduced complexity inundation models and
metamodels for coastal flood risk assessment. Journal of Flood Risk Man-
agement. 2016;9(4):390–401.

[4] Muehlenstaedt T, Fruth J, Roustant O. Computer experiments with func-
tional inputs and scalar outputs by a norm-based approach. Statistics and
Computing. 2017;27(4):1083–1097.

[5] Nanty S, Helbert C, Marrel A, Pérot N, Prieur C. Sampling, metamodeling,
and sensitivity analysis of numerical simulators with functional stochastic
inputs. SIAM/ASA Journal on Uncertainty Quantification. 2016;4(1):636–
659.

[6] Simpson T, Mistree F, Korte J, Mauery T. Comparison of response sur-
face and kriging models for multidisciplinary design optimization. In:
7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Anal-
ysis and Optimization; 1998. p. 4755.

[7] Forrester A, Sobester A, Keane A. Engineering design via surrogate mod-
elling: a practical guide. John Wiley & Sons; 2008.

[8] Santner TJ, Williams BJ, Notz WI. The design and analysis of computer
experiments. Springer Science & Business Media; 2013.

[9] Lataniotis C, Marelli S, Sudret B. The Gaussian process modelling module
in UQLab. Journal of Soft Computing in Civil Engineering. 2018;.

32

[10] Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of com-
puter experiments. Statistical science. 1989;p. 409–423.

[11] Oakley J, O’hagan A. Bayesian inference for the uncertainty distribution
of computer model outputs. Biometrika. 2002;89(4):769–784.

[12] Rasmussen CE, Williams CK. Gaussian processes for machine learning.
2006. The MIT Press, Cambridge, MA, USA. 2006;38:715–719.

[13] Ramsay JO, Silverman BW. Applied functional data analysis: methods
and case studies. Springer; 2007.

[14] Marrel A, Iooss B, Jullien M, Laurent B, Volkova E. Global sensitivity
analysis for models with spatially dependent outputs. Environmetrics.
2011;22(3):383–397.

[15] Nanty S, Helbert C, Marrel A, Pérot N, Prieur C. Uncertainty quantifica-
tion for functional dependent random variables. Computational Statistics.
2017;32(2):559–583.

[16] De Boor C, De Boor C, Mathématicien EU, De Boor C, De Boor C. A
practical guide to splines. vol. 27. Springer-Verlag New York; 1978.

[17] Reiss PT, Goldsmith J, Shang HL, Ogden RT. Methods for Scalar-on-
Function Regression. International Statistical Review. 2017;85(2):228–249.

[18] Antoniadis A, Helbert C, Prieur C, Viry L. Spatio-temporal metamodeling
for West African monsoon. Environmetrics. 2012;23(1):24–36.

[19] Rohmer J. Boosting Kernel-Based Dimension Reduction for Jointly Prop-
agating Spatial Variability and Parameter Uncertainty in Long-Running
Flow Simulators. Mathematical Geosciences. 2015;47(2):227–246.

[20] ANR RISCOPE Project;. Accessed: 2018-12-04. https://perso.math.
univ-toulouse.fr/riscope/.

[21] Booij N, Holthuijsen L, Ris R. The" SWAN" wave model for shallow water.
In: Coastal Engineering 1996; 1997. p. 668–676.

[22] EurOtop I. Manual on Wave Overtopping of Sea Defences and Related
Structures. An Overtopping Manual Largely Based on European Research,
But for Worldwide Application; 2016. http://www.overtopping-manual.
com/.

[23] Moustapha M, Sudret B, Bourinet JM, Guillaume B. Quantile-based op-
timization under uncertainties using adaptive Kriging surrogate models.
Structural and multidisciplinary optimization. 2016;54(6):1403–1421.

[24] Stein ML. Interpolation of spatial data: some theory for kriging. Springer
Science & Business Media; 2012.

[25] Abrahamsen P. A review of Gaussian random fields and correlation func-
tions. Norsk Regnesentral/Norwegian Computing Center Oslo; 1997.

[26] Mori U, Mendiburu A, Lozano JA. Distance measures for time series in R:
The TSdist package. R Journal. 2016;8(2):451–459.

33

[27] Ginsbourger D, Rosspopoff B, Pirot G, Durrande N, Renard P. Distance-
based kriging relying on proxy simulations for inverse conditioning. Ad-
vances in water resources. 2013;52:275–291.

[28] De Boor C. A practical guide to splines, revised Edition, Vol. 27 of Applied
Mathematical Sciences. Mechanical Sciences, year. 2001;.

[29] Jolliffe I. Principal component analysis. In: International encyclopedia of
statistical science. Springer; 2011. p. 1094–1096.

[30] Morris MD. Gaussian surrogates for computer models with time-varying
inputs and outputs. Technometrics. 2012;54(1):42–50.

[31] Friedman J, Hastie T, Tibshirani R. The elements of statistical learning.
vol. 1. Springer series in statistics New York, NY, USA:; 2001.

[32] Pulido HG, De La Vara Salazar R, González PG, Martínez CT, Pérez
MdCT. Análisis y diseño de experimentos. McGraw-Hill; 2012.

[33] Montgomery DC. Design and analysis of experiments. John wiley & sons;
2017.

[34] McKay MD, Beckman RJ, Conover WJ. Comparison of three methods for
selecting values of input variables in the analysis of output from a computer
code. Technometrics. 1979;21(2):239–245.

[35] Marrel A, Iooss B, Van Dorpe F, Volkova E. An efficient methodology for
modeling complex computer codes with Gaussian processes. Computational
Statistics & Data Analysis. 2008;52(10):4731–4744.

[36] Roustant O, Ginsbourger D, Deville Y. DiceKriging, DiceOptim: Two R
packages for the analysis of computer experiments by kriging-based meta-
modeling and optimization. 2012;.

[37] Hamilton JD. Time series analysis. vol. 2. Princeton university press Prince-
ton, NJ; 1994.

[38] Dixit B. Elasticsearch Essentials. 2nd ed. Birmingham: Packt Publishing
Ltd; 2016.

[39] Bigot J, Gouet R, Klein T, López A. Geodesic PCA in the Wasserstein
space by convex PCA. Ann Inst Henri Poincaré Probab Stat. 2017;53(1):1–
26. Available from: https://doi.org/10.1214/15-AIHP706.

[40] Carrere L, Lyard F, Cancet M, Guillot A, Picot N. FES 2014, a new tidal
model-Validation results and perspectives for improvements. In: Proceed-
ings of the ESA Living Planet Symposium; 2016. .

[41] Compo G, Whitaker J, Sardeshmukh P, Matsui N, Allan R, Yin X, et al..
NOAA/CIRES Twentieth Century Global Reanalysis Version 2c. Re-
search Data Archive at the National Center for Atmospheric Research;
2015, updated yearly. Accessed: 28 feb 2017. https://doi.org/10.5065/
D6N877TW.

34

[42] Dee D, Balmaseda M, Balsamo G, Engelen R, Simmons A, Thépaut JN.
Toward a consistent reanalysis of the climate system. Bulletin of the Amer-
ican Meteorological Society. 2014;95(8):1235–1248.

[43] Muller H, Pineau-Guillou L, Idier D, Ardhuin F. Atmospheric storm surge
modeling methodology along the French (Atlantic and English Channel)
coast. Ocean Dynamics. 2014;64(11):1671–1692.

[44] Bertin X, Prouteau E, Letetrel C. A significant increase in wave height
in the North Atlantic Ocean over the 20th century. Global and Planetary
Change. 2013;106:77–83.

[45] Charles E, Idier D, Thiébot J, Le Cozannet G, Pedreros R, Ardhuin F,
et al. Wave climate variability and trends in the Bay of Biscay from 1958
to 2001. Journal of Climate doi. 2012;10.

[46] Boudière E, Maisondieu C, Ardhuin F, Accensi M, Pineau-Guillou L, Lep-
esqueur J. A suitable metocean hindcast database for the design of Marine
energy converters. International Journal of Marine Energy. 2013;3:e40–e52.

[47] Bertsekas DP. Nonlinear programming. Athena scientific Belmont; 1999.

35

Appendix A. Data set constitution

In
p
u
t

P
er
io
d

In
it
ia
l
ti
m
e
st
ep

S
ou

rc
e

N
am

e
P
ro
vi
d
er

R
ef
er
en

ce
W
eb

si
te

T
id
e

19
00

-2
01

6
N
o
co
ns
tr
ai
ne
d.

Se
t
at

10
m
in
.

F
E
S2

01
4

LE
G
O
S

[4
0]

ht
tp

s:
//

ww
w.

av
is

o.
al

ti
me

tr
y.

fr
/e

n/
da

ta
/

pr
od

uc
ts

/a
ux

il
ia

ry
-p

ro
du

ct
s/

gl
ob

al
-t

id
e-

fe
s/

de
sc

ri
pt

io
n-

fe
s2

01
4.

ht
ml

Su
rg
e

19
00

-1
97

8
6h

20
C
R

(s
ea

su
rf
ac
e
pr
es
su
re
)

N
O
A
A

[4
1]

ht
tp

s:
//

re
an

al
ys

es
.o

rg
/a

tm
os

ph
er

e/
ov

er
vi

ew
-c

ur
re

nt
-a

tm
os

ph
er

ic
-r

ea
na

ly
se

s\
#T

WE
NT

v2
c

19
79

-2
00

5
1h

C
F
SR

(s
ea

su
rf
ac
e
pr
es
su
re
)

N
O
A
A

[4
2]

ht
tp

s:
//

cl
im

at
ed

at
ag

ui
de

.u
ca

r.
ed

u/
cl

im
at

e-
da

ta
/

cl
im

at
e-

fo
re

ca
st

-s
ys

te
m-

re
an

al
ys

is
-c

fs
r

20
06

-2
01

6
15

m
in

M
A
R
C

If
re
m
er

an
d
LO

P
S

[4
3]

ht
tp

:/
/m

ar
c.

if
re

me
r.

fr
/

H
s,

T
p

19
00

-1
95

7
6h

So
ne
l(
w
av
es
)

Li
en
s

[4
4]

ht
tp

:/
/w

ww
.s

on
el

.o
rg

/-
Wa

ve
s-

.h
tm

l?
la

ng
=e

n
19

58
-0
9/

20
02

1h
B
oB

W
A

B
R
G
M

[4
5]

ht
tp

:/
/b

ob
wa

.b
rg

m.
fr

/

10
/2

00
2-
20

07
1h

H
om

er
e

If
re
m
er

an
d
LO

P
S

[4
6]

ht
tp

:/
/m

ar
c.

if
re

me
r.

fr
/e

n/
pr

od
ui

ts
/r

ej
eu

_d
_

et
at

s_
de

_m
er

_h
om

er
e

20
08

-2
01

6
1h

Io
w
ag
a/

N
or
ga

su
g

If
re
m
er

an
d
LO

P
S

[4
6]

ht
tp

s:
//

ww
z.

if
re

me
r.

fr
/i

ow
ag

a/
Pr

od
uc

ts

T
ab

le
A
.2
:
So

ur
ce
s
of

da
ta

fo
r
th
e
co
as
ta
l
flo

od
in
g
ap

pl
ic
at
io
n
ca
se
.

36

Appendix B. Setting the coefficients for the functional basis

Here we discuss the calibration of the coefficients α1, . . . , αp of the decom-
position. This task can be performed by means of standard least squares opti-
mization. Closed form solutions for four variations of the optimization problem
are provided below. For the sake of exposition, let us assume first that a single
realization of the functional input wants to be projected.

• Weighted Least Squares (WLS)

Let f = (f(t1), . . . , f(tT))
> be a column vector with the true values of

a functional input f ∈ R, observed at time instants t = {t1, . . . , tT }.
Consider the functional decomposition Πp(f) of dimension p defined in
(11). Then, let B denote the T × p matrix containing the values of the p
basis functions evaluated at t, and let α denote the p-dimensional vector
of coefficients for the decomposition. Consider a case where some parts of
the domain of f are more relevant than others. This can be considered in
the selection of the expansion coefficients by assigning a weight wt to each
one of the errors of the projection. To this end, let us consider a diagonal
weight matrix W of dimension T × T . Let now

SSRw : Rp → R, (B.1)

α→ (f −Bα)
′
W (f −Bα),

denote the weighted sum of squared residuals of the fit of f by means of
the functional decomposition Bα. The weighted formulation can be then
writen as:

min
α∈Rp

SSRw. (B.2)

The solution by derivatives yields:

α̂ = (B′WB)−1B′Wf . (B.3)

This formulation is also useful for instance, when observations of the func-
tion at different points of its domain are not equally reliable.

• Ordinary Least Squares (OLS)

In the particular case whereW is the identity matrix of dimension T ×T
(i.e., all points in the domain of f are equaly important), (B.3) becomes

α̂ = (B′B)−1B′f . (B.4)

Which corresponds to the classic normal equations for ordinary least squares
in linear regression problems.

37

• Weighted-constrained Least Squares (WCLS)
If there are multiple critical points in the domain of f and there is also a
particular point t∗ ∈ t of outstanding importance, the weighted-constrained
formulation can be applied. It allows to enforce the projection to interpo-
late exactly the true function at the main critical point t∗, while assigning
relatively large weights to the remaining critical points. Note that addi-
tional constraints could be added in order to warrant a good fitting at
multiple critical points, however, the more constraints we add, the more
prone we are to leave no feasible solution.
Let us denote b′t∗ the t∗-th row of the matrix B, corresponding to the
values of the p basis functions at the critical point t∗. Similarly, let ft∗ =
f(t∗) denote the value of the functional input at the critical point t∗. We
can write the weighted constrained optimization problem as:

min
α∈Rp

SSRw; (B.5)

s.t. b′t∗α− ft∗ = 0. (B.6)

Here we use the well known method of Lagrange multipliers [47] which
allows to include equality constraints as part of the objective function in
order to solve the problem by derivatives. The Lagrange function for this
problem can be writen as

L(α, λ) = SSRw + λ(b′t∗α− ft∗), (B.7)

with λ ∈ R, playing the role of Lagrange multiplier.
The solution in this case is given by

α̂ = (B′WB)−1
(
B′Wf − 1

2
bt∗λ̂

)
, (B.8)

with

λ̂ =
2
[
b′t∗(B

′WB)−1BWf − ft∗
]

b′t∗(B
′WB)−1bt∗

. (B.9)

• Constrained Least Squares (CLS)
Similarly to the ordinary least squares, the constrained formulation is a
particular case of the weighted-constrained one where W is the identity
matrix of dimension T × T . In that case, (B.8) becomes

α̂ = (B′B)−1
(
B′f − 1

2
bt∗λ̂

)
, (B.10)

38

and (B.9) becomes

λ̂ =
2
[
b′t∗(B

′B)−1Bf − ft∗
]

b′t∗(B
′B)−1bt∗

. (B.11)

The least squares formulations provided above arise from the basic case
where a single realization of the functional input needs to be projected. How-
ever, we remark that closed form solutions provided by Equations (B.3), (B.4),
(B.8), (B.9), (B.10) and (B.11), also work as vectorized expressions for multiple
simultaneous projections (i.e., they do not require loops in code if matrix ori-
ented coding environments like R or Matlab are used). To that end, the column
vector f should be replaced by a T × n matrix F with n observations of the
functional input. Correspondingly, the output of the optimization would be a
p×n matrix containing n p-dimensional vectors of expansion coefficients αk for
the decomposition of the n observations of the function.

Appendix C. Experimental conditions and results for analytic case

Conf.

Functional
input Projection

method
Covariance
function

Basis
size

Results

f1 f2 log(RMSE) CPU time (sec)
Train Pred

1 0 0 - - - 12.6 14.2 2.0
2 1 0 B-splines ‖·‖S,θ 1 12.4 23.2 2.0
3 0 1 B-splines ‖·‖S,θ 1 12.3 15.6 2.0
4 1 1 B-splines ‖·‖S,θ 1 12.1 17.6 2.0
5 1 0 PCA ‖·‖S,θ 1 12.0 18.6 2.0
6 0 1 PCA ‖·‖S,θ 1 11.9 19.0 2.0
7 1 1 PCA ‖·‖S,θ 1 10.0 53.5 2.1
8 1 0 B-splines ‖·‖D,θ 1 12.6 18.7 2.6
9 0 1 B-splines ‖·‖D,θ 1 12.4 18.1 2.6
10 1 1 B-splines ‖·‖D,θ 1 12.3 21.8 2.6
11 1 0 PCA ‖·‖D,θ 1 12.3 25.9 2.6
12 0 1 PCA ‖·‖D,θ 1 12.2 23.3 2.6
13 1 1 PCA ‖·‖D,θ 1 10.3 86.1 2.7
14 1 0 B-splines ‖·‖S,θ 2 12.0 17.3 2.2
15 0 1 B-splines ‖·‖S,θ 2 11.8 16.9 2.2
16 1 1 B-splines ‖·‖S,θ 2 8.9 32.4 2.3
17 1 0 PCA ‖·‖S,θ 2 11.8 37.7 2.3
18 0 1 PCA ‖·‖S,θ 2 11.7 38.8 2.3
19 1 1 PCA ‖·‖S,θ 2 9.7 53.9 2.4
20 1 0 B-splines ‖·‖D,θ 2 12.2 20.9 2.6
21 0 1 B-splines ‖·‖D,θ 2 12.0 20.9 2.6
22 1 1 B-splines ‖·‖D,θ 2 9.2 49.5 2.9
23 1 0 PCA ‖·‖D,θ 2 12.1 33.4 2.6
24 0 1 PCA ‖·‖D,θ 2 11.8 36.2 2.6
25 1 1 PCA ‖·‖D,θ 2 9.9 89.5 2.9
26 1 0 B-splines ‖·‖S,θ 3 11.8 56.6 2.4
27 0 1 B-splines ‖·‖S,θ 3 11.7 59.5 2.4
28 1 1 B-splines ‖·‖S,θ 3 9.1 27.6 2.4
29 1 0 PCA ‖·‖S,θ 3 11.8 95.7 2.3
30 0 1 PCA ‖·‖S,θ 3 11.6 91.7 2.1
31 1 1 PCA ‖·‖S,θ 3 9.1 35.3 2.2
32 1 0 B-splines ‖·‖D,θ 3 11.9 33.0 2.9
33 0 1 B-splines ‖·‖D,θ 3 11.8 34.6 2.8
34 1 1 B-splines ‖·‖D,θ 3 8.8 45.9 3.1
35 1 0 PCA ‖·‖D,θ 3 11.8 43.5 2.8
36 0 1 PCA ‖·‖D,θ 3 11.7 44.2 2.8
37 1 1 PCA ‖·‖D,θ 3 8.6 42.4 3.1

Table C.3: Analytic case: experimental conditions and results from screening stage. For
training and prediction time, the value displayed is the average over 30 runs using independent
training and validation sets of size n = 800 and n∗ = 1500, respectively. In the case of the
error, the value displayed is the natural logarithm of the average RMSE over the 30 runs. For
the functional input, 1 denotes active and 0 denotes inactive.

39

Conf.

Functional
input Projection

method
Covariance
function

Basis
size

Results

f1 f2 log(RMSE) CPU time (sec)
Train Pred

38 1 1 B-splines ‖·‖S,θ 4 9.5 43.2 2.2
39 1 1 PCA ‖·‖S,θ 4 9.5 54.9 2.3
40 1 1 B-splines ‖·‖D,θ 4 8.6 36.9 3.3
41 1 1 PCA ‖·‖D,θ 4 8.6 49.0 3.3
42 1 1 B-splines ‖·‖S,θ 5 9.9 52.8 2.5
43 1 1 PCA ‖·‖S,θ 5 9.7 211.9 2.8
44 1 1 B-splines ‖·‖D,θ 5 8.6 34.2 3.5
45 1 1 PCA ‖·‖D,θ 5 8.6 48.3 3.5
46 1 1 B-splines ‖·‖S,θ 6 9.9 62.1 2.6
47 1 1 PCA ‖·‖S,θ 6 9.9 365.3 2.8
48 1 1 B-splines ‖·‖D,θ 6 8.6 34.0 3.7
49 1 1 PCA ‖·‖D,θ 6 8.6 43.0 3.7
50 1 1 B-splines ‖·‖D,θ 7 8.6 36.0 3.8
51 1 1 PCA ‖·‖D,θ 7 8.6 41.9 3.8
52 1 1 B-splines ‖·‖D,θ 8 8.6 35.6 3.9
53 1 1 PCA ‖·‖D,θ 8 8.6 43.1 4.0

Table C.4: Analytic case: experimental conditions and results from cleaning and descent
stages. The values of log(RMSE), training time and prediction time are computed as described
in Table C.3. For the functional input, 1 denotes active and 0 denotes inactive.

Appendix D. Experimental conditions and results for coastal flooding
case

Conf.

Functional
input Projection

method
Covariance
function

Basis
size

Results

Td Sg Tp log(RMSE) CPU time (sec)
Train Pred

1 0 0 0 - - - 3.35 27.7 2.0
2 1 0 0 B-splines ‖·‖S,θ 1 3.37 32.0 2.0
3 0 1 0 B-splines ‖·‖S,θ 1 3.38 31.2 2.1
4 1 0 0 B-splines ‖·‖D,θ 1 3.41 36.3 2.1
5 0 0 1 B-splines ‖·‖S,θ 1 3.35 29.0 2.0
6 1 1 1 B-splines ‖·‖S,θ 1 3.38 34.8 2.1
7 0 1 1 B-splines ‖·‖S,θ 1 3.38 33.9 2.1
8 1 1 1 PCA ‖·‖S,θ 1 3.41 42.6 2.1
9 1 0 0 PCA ‖·‖S,θ 1 3.38 29.1 2.1
10 0 1 0 PCA ‖·‖S,θ 1 3.40 29.1 2.1
11 1 1 0 PCA ‖·‖S,θ 1 3.43 30.6 2.1
12 0 0 1 PCA ‖·‖S,θ 1 3.37 36.7 2.1
13 1 0 1 PCA ‖·‖S,θ 1 3.40 40.2 2.1
14 0 1 1 PCA ‖·‖S,θ 1 3.41 39.3 2.1
15 1 1 1 PCA ‖·‖S,θ 1 3.45 45.3 2.1
16 1 0 0 B-splines ‖·‖D,θ 1 3.35 35.8 2.7
17 0 1 0 B-splines ‖·‖D,θ 1 3.35 34.3 2.6
18 1 1 0 B-splines ‖·‖D,θ 1 3.35 38.5 2.8
19 0 0 1 B-splines ‖·‖D,θ 1 3.35 48.8 2.7
20 1 0 1 B-splines ‖·‖D,θ 1 3.35 61.9 2.8
21 0 1 1 B-splines ‖·‖D,θ 1 3.35 57.0 2.7
22 1 1 1 B-splines ‖·‖D,θ 1 3.35 62.5 2.8
23 1 0 0 PCA ‖·‖D,θ 1 3.35 33.5 2.6
24 0 1 0 PCA ‖·‖D,θ 1 3.35 33.4 2.6
25 1 1 0 PCA ‖·‖D,θ 1 3.35 37.7 2.7
26 0 0 1 PCA ‖·‖D,θ 1 3.35 52.0 2.6
27 1 0 1 PCA ‖·‖D,θ 1 3.35 62.4 2.7
28 0 1 1 PCA ‖·‖D,θ 1 3.36 59.1 2.7
29 1 1 1 PCA ‖·‖D,θ 1 3.36 64.9 2.8
30 1 0 0 B-splines ‖·‖S,θ 2 3.46 32.0 2.3
31 0 1 0 B-splines ‖·‖S,θ 2 3.42 33.2 2.3
32 1 0 0 B-splines ‖·‖S,θ 2 3.53 42.3 2.4
33 0 0 1 B-splines ‖·‖S,θ 2 3.38 37.8 2.3
34 1 1 1 B-splines ‖·‖S,θ 2 3.48 48.1 2.4
35 0 1 1 B-splines ‖·‖S,θ 2 3.44 48.3 2.4
36 1 1 1 PCA ‖·‖S,θ 2 3.54 67.0 2.6
37 1 0 0 PCA ‖·‖S,θ 2 3.46 31.4 2.3
38 0 1 0 PCA ‖·‖S,θ 2 3.42 34.0 2.3
39 1 1 0 PCA ‖·‖S,θ 2 3.53 44.4 2.4
40 0 0 1 PCA ‖·‖S,θ 2 3.37 42.4 2.3
41 1 0 1 PCA ‖·‖S,θ 2 3.48 60.5 2.5
42 0 1 1 PCA ‖·‖S,θ 2 3.44 61.3 2.5
43 1 1 1 PCA ‖·‖S,θ 2 3.54 95.1 2.6
44 1 0 0 B-splines ‖·‖D,θ 2 3.36 33.9 2.7
45 0 1 0 B-splines ‖·‖D,θ 2 3.35 35.7 2.7

Continued on next page

40

Table D.5 – Continued from previous page

46 1 1 0 B-splines ‖·‖D,θ 2 3.36 38.4 2.8
47 0 0 1 B-splines ‖·‖D,θ 2 3.35 55.0 2.8
48 1 0 1 B-splines ‖·‖D,θ 2 3.36 60.8 2.9
49 0 1 1 B-splines ‖·‖D,θ 2 3.36 61.2 2.9
50 1 1 1 B-splines ‖·‖D,θ 2 3.36 65.8 3.0
51 1 0 0 PCA ‖·‖D,θ 2 3.35 33.2 2.7
52 0 1 0 PCA ‖·‖D,θ 2 3.35 37.2 2.7
53 1 1 0 PCA ‖·‖D,θ 2 3.36 35.5 2.8
54 0 0 1 PCA ‖·‖D,θ 2 3.35 52.0 2.7
55 1 0 1 PCA ‖·‖D,θ 2 3.36 58.7 2.9
56 0 1 1 PCA ‖·‖D,θ 2 3.36 59.5 2.9
57 1 1 1 PCA ‖·‖D,θ 2 3.36 63.0 3.0
58 1 0 0 B-splines ‖·‖S,θ 3 3.44 36.3 2.3
59 0 1 0 B-splines ‖·‖S,θ 3 3.40 35.9 3.4
60 1 0 0 B-splines ‖·‖S,θ 3 3.50 50.7 2.5
61 0 0 1 B-splines ‖·‖S,θ 3 3.38 53.8 2.4
62 1 1 1 B-splines ‖·‖S,θ 3 3.46 84.2 2.6
63 0 1 1 B-splines ‖·‖S,θ 3 3.44 81.1 2.6
64 1 1 1 PCA ‖·‖S,θ 3 3.52 130.6 2.7
65 1 0 0 PCA ‖·‖S,θ 3 3.51 38.0 2.4
66 0 1 0 PCA ‖·‖S,θ 3 3.42 37.0 2.4
67 1 1 0 PCA ‖·‖S,θ 3 3.57 55.8 2.6
68 0 0 1 PCA ‖·‖S,θ 3 3.38 56.5 2.4
69 1 0 1 PCA ‖·‖S,θ 3 3.53 122.9 2.6
70 0 1 1 PCA ‖·‖S,θ 3 3.44 94.4 2.6
71 1 1 1 PCA ‖·‖S,θ 3 3.58 182.7 2.7
72 1 0 0 B-splines ‖·‖D,θ 3 3.35 33.9 2.7
73 0 1 0 B-splines ‖·‖D,θ 3 3.36 36.1 2.8
74 1 1 0 B-splines ‖·‖D,θ 3 3.36 37.5 2.9
75 0 0 1 B-splines ‖·‖D,θ 3 3.35 53.3 2.8
76 1 0 1 B-splines ‖·‖D,θ 3 3.35 67.7 3.0
77 0 1 1 B-splines ‖·‖D,θ 3 3.36 60.7 3.0
78 1 1 1 B-splines ‖·‖D,θ 3 3.36 65.8 3.2
79 1 0 0 PCA ‖·‖D,θ 3 3.35 31.5 2.7
80 0 1 0 PCA ‖·‖D,θ 3 3.35 36.9 2.7
81 1 1 0 PCA ‖·‖D,θ 3 3.35 35.7 2.9
82 0 0 1 PCA ‖·‖D,θ 3 3.35 52.4 2.8
83 1 0 1 PCA ‖·‖D,θ 3 3.35 58.0 3.0
84 0 1 1 PCA ‖·‖D,θ 3 3.35 60.0 3.0
85 1 1 1 PCA ‖·‖D,θ 3 3.36 63.3 3.2

Table D.5: Coastal flooding case: experimental conditions and results from screenig stage.
The values of log(RMSE), training time and prediction time are computed as described in
Table C.3. For the functional input, 1 denotes active and 0 denotes inactive.

41

Run
Basis size Projection

method
Covariance
function

Results

Td Sg Tp log(RMSE) CPU time (sec)
Train Pred

86 4 0 0 B-splines ‖·‖S,θ 3.52 40.6 2.2
87 0 15 0 B-splines ‖·‖S,θ 3.59 285.5 2.6
88 4 15 0 B-splines ‖·‖S,θ 3.68 400.9 2.8
89 0 0 10 B-splines ‖·‖S,θ 3.40 261.4 2.4
90 4 0 10 B-splines ‖·‖S,θ 3.55 420.4 2.6
91 0 15 10 B-splines ‖·‖S,θ 3.62 1055.3 3.0
92 4 15 10 B-splines ‖·‖S,θ 3.69 1280.8 3.2
93 4 0 0 PCA ‖·‖S,θ 3.55 44.9 2.1
94 0 10 0 PCA ‖·‖S,θ 3.53 71.4 2.4
95 4 10 0 PCA ‖·‖S,θ 3.66 120.5 2.6
96 0 0 6 PCA ‖·‖S,θ 3.37 101.1 2.3
97 4 0 6 PCA ‖·‖S,θ 3.56 265.6 2.4
98 0 10 6 PCA ‖·‖S,θ 3.55 363.4 2.6
99 4 10 6 PCA ‖·‖S,θ 3.67 674.1 3.1
100 4 0 0 B-splines ‖·‖D,θ 3.35 35.0 2.8
101 0 15 0 B-splines ‖·‖D,θ 3.35 50.0 3.6
102 4 15 0 B-splines ‖·‖D,θ 3.35 54.1 3.7
103 0 0 10 B-splines ‖·‖D,θ 3.35 61.4 3.3
104 4 0 10 B-splines ‖·‖D,θ 3.35 65.7 3.5
105 0 15 10 B-splines ‖·‖D,θ 3.35 85.3 4.1
106 4 15 10 B-splines ‖·‖D,θ 3.36 98.2 4.3
107 4 0 0 PCA ‖·‖D,θ 3.35 35.6 2.8
108 0 10 0 PCA ‖·‖D,θ 3.35 32.8 3.2
109 4 10 0 PCA ‖·‖D,θ 3.35 34.8 3.4
110 0 0 6 PCA ‖·‖D,θ 3.35 53.5 2.6
111 4 0 6 PCA ‖·‖D,θ 3.35 60.3 2.9
112 0 10 6 PCA ‖·‖D,θ 3.35 59.1 3.2
113 4 10 6 PCA ‖·‖D,θ 3.36 67.5 3.4

Table D.6: Coastal flooding case: evaluation of projection dimension selected based on pro-
jection error. The values of log(RMSE), training time and prediction time are computed as
described in Table C.3.

42

