On strict sub-Gaussianity, optimal proxy variance and symmetry for bounded random variables

Julyan Arbel 1 Olivier Marchal 2, 3 Hien Nguyen 4
1 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
3 PSPM - Probabilités, statistique, physique mathématique
ICJ - Institut Camille Jordan [Villeurbanne]
Abstract : We investigate the sub-Gaussian property for almost surely bounded random variables. If sub-Gaussianity per se is de facto ensured by the bounded support of said random variables, then exciting research avenues remain open. Among these questions is how to characterize the optimal sub-Gaussian proxy variance? Another question is how to characterize strict sub-Gaussianity, defined by a proxy variance equal to the (standard) variance? We address the questions in proposing conditions based on the study of functions variations. A particular focus is given to the relationship between strict sub-Gaussianity and symmetry of the distribution. In particular, we demonstrate that symmetry is neither sufficient nor necessary for strict sub-Gaussianity. In contrast, simple necessary conditions on the one hand, and simple sufficient conditions on the other hand, for strict sub-Gaussianity are provided. These results are illustrated via various applications to a number of bounded random variables, including Bernoulli, beta, binomial, uniform, Kumaraswamy, and triangular distributions.
Type de document :
Pré-publication, Document de travail
2019
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01998252
Contributeur : Olivier Marchal <>
Soumis le : mardi 29 janvier 2019 - 15:07:28
Dernière modification le : mardi 5 février 2019 - 01:07:38

Fichier

OnStrictSubGaussianityOptimalP...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01998252, version 1

Citation

Julyan Arbel, Olivier Marchal, Hien Nguyen. On strict sub-Gaussianity, optimal proxy variance and symmetry for bounded random variables. 2019. 〈hal-01998252〉

Partager

Métriques

Consultations de la notice

58

Téléchargements de fichiers

12