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Abstract A formulation of the Taylor expansion with symmetric polynomial algebra
allows to compute the coefficients of compact finite difference schemes, which solve
the Poisson equation at an arbitrary order of accuracy on a uniform Cartesian grid in
arbitrary dimensions. This construction produces original high order schemes which
respect the Discrete Maximum Principle: a tenth order scheme in dimension three and
several sixth order schemes in arbitrary dimension. Numerical experiments validate
the accuracy of these schemes.
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Introduction

In his book Numerische Behandlung von Differentialgleichungen written in 1951 and
translated into English in 1966 with the title The numerical treatment of differential
equations [3], Lothar Collatz introduced the idea of disturbing the right-hand member
of the Poisson equation:

∆u = v with ∆u =
d

∑
i=1

∂
2
i u (0.1)
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to increase the accuracy of the finite difference schemes on Cartesian grids with a
mesh h > 0, without increasing the size of the associated stencil (α`̀̀):

1
h2 ∑

`̀̀∈Zd

α`̀̀ u(xh + `̀̀h) = ∑
`̀̀∈Zd

β`̀̀ v(xh + `̀̀h), ∀xh ∈ Ω̊h. (0.2)

This kind of schemes is coined the “Mehrstellenverfahren” or Hermitian formulas, or
more simply compact finite difference scheme.

As explained in [3] the coefficients (α`̀̀) and (β`̀̀) are derived from the Taylor
formulae applied to u(x + `̀̀h) and v(x + `̀̀h) (with v supposedly equal to ∆u) by
canceling the terms up to the highest order in h as possible. He extended this principle
to other operators and other grids than the Cartesian one. In an appendix, he made a
list of two-dimensional schemes from [1] or that he had obtained, with their precise
accuracy errors.

The extension to the three-dimensional case is known as the HOC Stencil, stand-
ing for “High Order Compact Stencil”. This was introduced in [1,19] and tested in
[21]. It allows the Poisson equation to be solved at the sixth order of accuracy; for a
smooth function the error behaves as O(h6).

This type of scheme is classical in Numerical Analysis manuals. The interests of
compact stencils compared to simple ones are discussed in reference articles such as
[13] or reference textbooks such as [11]. This latter proposes a very interesting fourth
order compact scheme in an arbitrary dimension as an exercise. It also states that “it
might require manipulation and unwieldy algebra” to generalize the “Mehrstellenver-
fahren” schemes, without indicating how to go further. In [17] the author considers
the case of grids with different mesh sizes depending on the direction. It generalizes
finite difference compact schemes to arbitrary dimensions while they remain accurate
to the fourth order.

Compared to the explicit Laplace discrete formulas, the valuable properties of
these numerical schemes are: the order of accuracy, the compactness, the robustness
in iterative algorithms and the spectral accuracy. The diameter of the stencil is critical
in adaptive grids where we do not want to fetch distant points.

But the most important property of the compact schemes, which greatly impact
their stability, is the ability of some of them to conserve the Maximum Principle [14]:
α000 < 0 and α`̀̀ ≥ 0 for `̀̀ 6= 000 in (0.2). Untill recently there was no available com-
pact scheme with this property with a better order than sixth in dimensions two and
three, and fourth order in dimensions larger than four. Thanks to the simplification
implied by the symmetric polynomials formulation, in the following manuscript we
establish such a tenth order scheme in dimension three and such sixth order schemes
in arbitrary dimension. These latter schemes are derived once and can be used for
any choice of dimension. And it seems that nothing impedes higher orders for the
construction of such compact schemes.

This research is motivated by applications such as ab initio chemistry [5] which
requires a very high accuracy on smooth solutions of the Poisson equation. With Fast
Multipole Method [6], finite difference compact schemes associated to multigrid al-
gorithms rank among the best solvers for elliptical equations [18,7,11,23,21]. In a
very near future we will extend the adaptive mesh refinement (AMR) fourth-order
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two-dimensional Poisson solver presented in [4] to higher order and higher dimen-
sions using the construction presented in this manuscript. These will make ab initio
chemistry computations possible on unbounded domains thanks to the zooming prop-
erty of the AMR.

As we will see here and in the AMR forthcoming manuscript, switching the or-
der of accuracy from sixth to tenth allows a gain of few orders of magnitude in the
accuracy. This justifies the theoretical developments here in.

Some attempts were made to automate the computation of the coefficients of
compact Poisson solvers with naive approaches [9]. But they remained unsuccessful
because the number of equations and coefficients makes the task tedious. In particu-
lar, it is difficult to see which coefficients should be activated in the sense possibly non
zero. In the following manuscript a large part of the complexity disappears thanks to
the symmetric Taylor expansion associated with the symmetric stencils that we con-
sider. Based on these considerations, we wrote a small Scilab script of approximately
120 lines to compute the systems of equations and the coefficients associated to any
symmetric stencils. This script is available on demand to the author. One can pass the
linear systems to Maple to find the coefficients under their rational forms as they are
presented in the manuscript.

In the first part of this manuscript we introduce the notations on symmetric sten-
cils and symmetric polynomials and detail the general construction of the compact
schemes for the Poisson equation. In the second part, we compute the coefficients
for some specific cases taken from the literature or not. And we list some important
properties the schemes should satisfy. Some of the resulting schemes are original and
much more accurate than the existing ones. In a third part, we numerically test these
compact schemes with the help of multigrid algorithms and prove that they are as
accurate as asserted.

1 Notations and preliminary results

1.1 Stencils in multidimensional grids

Since they give a good visualization of the stencil, we use the notations presented
in [3,11] for a multi-diagonal linear operator in a Cartesian grid. For instance the
original fourth order “Mehrstellenverfahren” scheme in two dimensions appears as:

1
6h2 −204

4

4

4

1

1

1

1

u =
1
12

1

181

1

v (1.1)
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and stands for:

1
6h2 (−20ui1,i2 +4ui1+1,i2 +4ui1−1,i2 +4ui1,i2+1 +4ui1,i2−1

+ui1+1,i2+1 +ui1−1,i2+1 +ui1+1,i2−1 +ui1−1,i2−1)

=
1

12
(8vi1,i2 + vi1+1,i2 + vi1−1,i2 + vi1,i2+1 + vi1,i2−1)

for all couples of integers (i1, i2) for which the terms vi1,i2 = v(i1h, i2h), vi1±1,i2 =
v(i1h±h, i2h) and vi1,i2±1 = v(i1h, i2h±h) are defined and ui1,i2 = u(i1h, i2h) that is
to be determined.

For solving the Poisson equation, scheme (1.1) performs much better than the non
compact scheme which results from the cumulation of the fourth order one dimen-
sional scheme

1
h2

[
− 1

12
,

4
3
,−5

2
,

4
3
,− 1

12

]
u = ∂

2
x u+O(h4)

in the directions x and y. The stencil of the latter is:

1
12h2 −6016

16

16

16

−1

−1

−1

−1 u = v. (1.2)

This latter scheme does not satisfy the maximum principle property: α[2 0] < 0. It
does not provide good spectral approximation [13] and it poorly preserves the spatial
isotropy in wave propagation problems [2].

In the manuscript, we denote A and B the operators attached to (α`̀̀) and (β`̀̀):

Au(x) = ∑
`̀̀∈Zd

α`̀̀ u(x+ `̀̀h) and Bv(x) = ∑
`̀̀∈Zd

β`̀̀ v(x+ `̀̀h).

1.2 Construction by tensorization of the one-dimensional case

Some authors, including [10], have constructed compact finite difference Poisson
solvers using tensorization of one dimensional second differentiations. Let p, La and
Lb be integers such that we have the following compact scheme for the second differ-
entiation:

(E)
1
h2

La

∑
`=−La

a`u` =
Lb

∑
`=−Lb

b`∂ 2u`+O
(
h2p) .
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Then we have

(E1)
1
h2

La

∑
`1=−La

a`1u`1`2 =
Lb

∑
`1=−Lb

b`1∂
2
x u`1`2 +O

(
h2p) , ∀`2 ∈ Z,

and

(E2)
1
h2

La

∑
`2=−La

a`2u`1`2 =
Lb

∑
`2=−Lb

b`2∂
2
y u`1`2 +O

(
h2p) , ∀`1 ∈ Z.

Taking
Lb

∑
`2=−Lb

b`2 (E1)`2
+

Lb

∑
`1=−Lb

b`1 (E2)`1
,

we obtain:

1
h2

(
Lb

∑
`2=−Lb

La

∑
`1=−La

b`2a`1u`1`2 +
Lb

∑
`1=−Lb

La

∑
`2=−La

b`1a`2u`1`2

)

=
Lb

∑
`2=−Lb

Lb

∑
`1=−Lb

b`2b`1∂
2
x u`1`2 +

Lb

∑
`1=−Lb

Lb

∑
`2=−Lb

b`1b`2∂
2
y u`1`2 +O

(
h2p)

=
Lb

∑
`1=−Lb

Lb

∑
`2=−Lb

b`1b`2∆u`1`2 +O
(
h2p) .

We can vary this construction. The stencils in the x and y directions do not have
to be the same. The authors of [10] exploit an even different construction which
allows them to construct compact finite differences on irregular stencils for immersed
boundaries.

In dimension two, let us assume we have a given stencil B = (β`1`2). In [10] it is
derived from the usual stencil B of the tensorized fourth order compact finite differ-
ence in the regular case. But it can be any stencil B. Then, following these authors,
we construct the fourth order one dimensional compact schemes (a1

`2`1
,β`1`2)`1 for

all `2, and (a2
`1`2

,β`1`2)`2 for all `1:

(
E1
`2

) 1
h2 ∑

`1

a1
`2`1

u`1`2 = ∑
`1

β`1`2∂
2
x u`1`2 +O

(
h4) , ∀`2,

(
E2
`1

) 1
h2 ∑

`2

a2
`1`2

u`1`2 = ∑
`2

β`1`2∂
2
y u`1`2 +O

(
h4) , ∀`1.

Then making
∑
`2

(
E1
`2

)
+∑

`1

(
E2
`1

)
,

we obtain:

1
h2

(
∑
`1

∑
`2

(
a1
`2`1

+a2
`1`2

)
u`1`2

)
= ∑

`1

∑
`2

β`1`2∆u`1`2 +O
(
h4) .
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All the symmetric stencils obtained by this method can be derived by the construction
proposed in the present manuscript. And the most interesting cases, in high dimen-
sions or for high orders, can not be derived by the tensorial method. In particular with
the tensorial method, the notion of minimal conditions on A does not appear and the
Discrete Maximum Principle is lost very fast.

1.3 Symmetry of the stencils

As we can see in Eq. (1.1) the coefficients of the approximation naturally follow the
symmetries of the Laplace operator. The stencil is invariant by permutation of the
axes and by symmetry with respect to any axis and to the origin.

Hence, similarly to [21], we consider the groups of points obtained by permuta-
tion π of the coordinates and symmetries Si along the axes (Oxi) for 1≤ i≤ d: e.g. in
three dimensions πσ : (x1,x2,x3) 7→ (xσ(1),xσ(2),xσ(3)) with σ : {1,2,3} → {1,2,3}
a permutation, and e.g. the symmetry S1 : (x1,x2,x3) 7→ (−x1,x2,x3). This means for
instance that π(±1,0,0) represents the following six points (±1,0,0), (0,±1,0) and
(0,0,±1).

We plotted various two-dimensional and three-dimensional symmetric groups of
points respectively in Fig. 1.1 and 1.2.

[2 1] [2 2](1 1) (0 2)

[1 0] [1 1] [2 0](1) (2) (0 1)

Fig. 1.1 Two-dimensional symmetric groups of points. The notation of [2] is indicated with brackets
while the notation independent of the dimensionality is indicated with parenthesis.

Contrary to the notation in [2] where a symmetric group of points is denoted
by the coordinates of its point which has all its coordinates positive and ordered
from the largest to the smallest, we use the notation introduced in [15] called multi-
plicity and independent of the dimensionality. We denote µ the multiplicity. So for
`̀̀ ∈ Nd , µ(`̀̀) counts the number of times each non zero integer occurs as a coor-
dinate. For instance, for d = 4, µ([2 1 1 0]) = (2 1). Sometimes the zeros or the
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[1 0 0] (1) [1 1 0] [1 1 1] (3)(2)

[2 1 0] (1 1)

Fig. 1.2 Instances of three-dimensional symmetric groups of points with the notation from [2] on the
upper left corner and the any-dimensional one on the upper right corner.

negative values are also counted, then we denote µ̃ the multiplicity with those in-
cluded, so µ̃([2 1 1 0]) = (1 2 1). Then we denote Σk as the group of points with k1
coordinates equal to ±1, k2 coordinates equal to ±2 and so on, that means k = µ(x)
where x is the denoting point from the notation [2]. So the group of points obtained
by permutation of the (±2,±1,±1,0) coordinates corresponds to k = (2,1). We de-
note ak as the coefficient in the left-hand member of the Eqn. (0.2) associated to the
Σk set and bk the coefficient in the right-hand member associated to this same set.
Hence in Eq. (0.2) we are interested in the symmetric stencils such that

∀k, ∀`̀̀ ∈ Σk, α`̀̀ = ak and β`̀̀ = bk.

Lemma 1.1 A simple count provides the cardinality of the Σk set for k=(k1, . . . ,kn) :

#(Σk) = Sk(1) = 2k
(

d
k

)
(1.3)

where

2k = 2∑
n
i=1 ki and

(
d
k

)
=

d!
∏

n
i=1 ki!(d−∑

n
i=1 ki)!

.

Proof : The number 2k corresponds to the number of sign changes in the point coordi-
nates,

(d
k
)

corresponds to the number of ways of choosing k1 terms equal to 1 among
d, then k2 terms equal to 2 among d− k1, and so on and so forth for ki terms among
(d− k1− ...− ki−1) until i reaches n.

We denote Sk(1) as this number because –as we will see latter– it is the weight of
the Σk set in the polynomial 1 when we make a Taylor expansion to the first order:

∑
`̀̀∈Σk

u(x+ `̀̀h) = Sk(1)u(x)+O(h).

1.4 The Taylor series in an arbitrary dimension

The Taylor series in an arbitrary dimension d is written for h ∈ Rd :

f (x+h) = ∑
p≥0

1
p!

(
d

∑
i=1

hi∂i

)p

f (x) = ∑
λλλ∈Nd

hλλλ

λλλ !
∂∂∂

λλλ f (x) (1.4)
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with

hλλλ =
d

∏
i=1

hλi
i , λλλ ! =

d

∏
i=1

λi! and ∂∂∂
λλλ =

d

∏
i=1

∂
λi
i .

This classical result is proven using the one-dimensional Taylor series. Below, as we
always take the point x as zero, we will write f instead of f (000).

1.5 Symmetric polynomials

In this part we use the notations from [12,20] where the interested reader could
find more details about symmetric polynomials and combinatorics. As the Σk sets
of points are symmetric, the Taylor series of ∑`̀̀∈Σk u(`̀̀h) only contains terms of even
degrees in ∂i i.e. in Eq. (1.4) all the ki values in ∏

d
i=1 ∂

ki
i are even. We are able to

group these polynomials in symmetric sets such as:
d

∑
i=1

∂
2
i ,

d

∑
i=1

∂
4
i , ∑

i< j
∂

2
i ∂

2
j , . . .

This drives us to consider the algebra of the symmetric polynomials noted R[s0, . . . ,sd ]
–where (sn) are the elementary symmetric polynomials defined underneath– for which
we have known the algebraic structure since Newton’s discoveries (cf Newton’s iden-
tities).

The fundamental theorem on symmetric polynomials indicates that the following
two sets of polynomials: both the set of the sums {∑d

i=1 xn
i }0≤n≤d and the set of the

elementary symmetric polynomials {sn = ∑i1<i2<···<in ∏
n
`=1 xi`}0≤n≤d form algebraic

bases for the symmetric polynomials in dimension d.
Let p∈N be the degree of a polynomial, and, following [15], let λλλ =(λ1,λ2, . . . ,λd)

be a partition of p. This means that (λi) are integers such that λ1 ≥ λ2 ≥ ·· · ≥ λd ≥ 0
and ∑

d
i=1 λi = p. We denote P(p) the set of all the partitions of p ∈ N. We denote

Sd as the set of permutations inside a set with d elements. The monomial symmetric
polynomials are symmetric polynomials generated from monomials:

mλλλ (x1, . . . ,xd) =
1

µ̃(λλλ )! ∑
σ∈Sd

d

∏
i=1

xλi
σ(i) (1.5)

where µ̃(λλλ ) = (µ0,µ1,µ2, . . .) denotes the multiplicity in λλλ (cf Part 1.3).

Theorem 1.1 (Symmetric stencil implies symmetric Taylor expansion) Let Σ[xxx]
denote the group of points obtained by permutation of the coordinates of the point
xxx = (x1,x2, . . . ,xd) ∈ Zd . Then the Taylor expansion of

∑
`̀̀∈Σ[xxx]

u(`̀̀h) =
1

µ̃(xxx)! ∑
σ∈Sd

u(xσ(1)h,xσ(2)h, . . . ,xσ(d)h)

is expressed in the basis of the symmetric monomials (mλλλ )λλλ∈P(p),p≥0 as

∑
`̀̀∈Σ[xxx]

u(`̀̀h) = ∑
p≥0

hp
∑

λλλ∈P(p)

µ̃(λλλ )!
λλλ !µ̃(xxx)!

mλλλ (xxx)mλλλ (∂1, . . . ,∂d)u. (1.6)
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Proof: This can be proved by direct computation thanks to Taylor expansion and
permutation of the sums and of the permutation operators.

∑
`̀̀∈Σ[xxx]

u(`̀̀h) =
1

µ̃(xxx)! ∑
σ∈Sd

∑
p≥0

hp

p!

(
d

∑
i=1

xσ(i)∂i

)p

u

=
1

µ̃(xxx)! ∑
p≥0

hp

p! ∑
σ∈Sd

(
d

∑
i=1

xi∂σ−1(i)

)p

u

=
1

µ̃(xxx)! ∑
p≥0

hp

p! ∑
σ∈Sd

(
d

∑
i=1

xi∂σ(i)

)p

u

=
1

µ̃(xxx)! ∑
p≥0

hp

p! ∑
σ∈Sd

∑
q∈Nd

|q|1=p

(
p
q

) d

∏
i=1

xqi
i ∂

qi
σ(i)u

=
1

µ̃(xxx)! ∑
p≥0

hp

p! ∑
σ∈Sd

∑
λλλ∈P(p)

1
µ̃(λλλ )! ∑

τ∈Sd

(
p

λλλ ◦ τ

) d

∏
i=1

x
λτ(i)
i ∂

λτ(i)
σ(i) u

=
1

µ̃(xxx)! ∑
p≥0

hp
∑

σ∈Sd

∑
λλλ∈P(p)

1
µ̃(λλλ )!λλλ ! ∑

τ∈Sd

d

∏
i=1

xλi
τ(i)∂

λi
σ◦τ(i)u

=
1

µ̃(xxx)! ∑
p≥0

hp
∑

λλλ∈P(p)

1
µ̃(λλλ )!λλλ ! ∑

τ∈Sd

∑
σ∈Sd

d

∏
i=1

xλi
τ(i)∂

λi
σ(i)u

=
1

µ̃(xxx)! ∑
p≥0

hp
∑

λλλ∈P(p)

1
µ̃(λλλ )!λλλ !

(
∑

τ∈Sd

d

∏
i=1

xλi
τ(i)

)(
∑

σ∈Sd

d

∏
i=1

∂
λi
σ(i)

)
u

=
1

µ̃(xxx)! ∑
p≥0

hp
∑

λλλ∈P(p)

µ̃(λλλ )!
λλλ !

mλλλ (xxx)mλλλ (∂∂∂ )u.

Further in Lemma 1.2 we derive an equivalent expression in the special case of an
additional± symmetry (hence the 2k factor and the exclusive even degree) to express
the Taylor expansion of the stencils Σk in the basis of the monomials of even degrees.

In Table 1.1, we list all the symmetric monomials according to their degree p.
Their cardinality is indicated in the last row and provides the number of equations that
coefficients (ak) and (bk) have to satisfy for each elevation of order. A new column
p is formed by considering the first number q going from p to 1, then completing it
with the groups starting at the most by q in the column p−q. This table can also be
found in the textbook [20] p287.

The symmetric monomials have the property that their multiplication does not
depend on the dimensionality. For instance, for any d ≥ 2, we have m2

1 = m2 +2m11
which stands for (

d

∑
i=1

xi

)2

=
d

∑
i=1

x2
i +2 ∑

i< j
xix j.
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Table 1.1 A summary table of all the monomial symmetric polynomials mλλλ of degree inferior or equal to
5 in an arbitrary dimension. A finite dimension d restricts the number of terms in a group to d.

degree p 0 1 2 3 4 5
/0 1 2 3 4 5

indices 11 21 31 41
λλλ in the 111 22 32

polynomials 211 311
mλλλ 1111 221

2111
11111

# 1 1 2 3 5 7

We will use symmetric polynomials for xi = ∂ 2
i , 1≤ i≤ d.

Their cardinality is independent from the dimension, and relatively moderate
compared to all the polynomials appearing in the Taylor series (1.4). This allows
that when we write Eq. (0.2) in the vectorial basis of the symmetric even monomial
polynomials noted (mλλλ (∂∂∂

2)) short for (mλλλ (∂
2
1 , . . . ,∂

2
d )), we obtain:

1
h2 ∑

λ1≥···≥λd≥0
cu

λλλ

h2|λλλ |

(2λλλ )!
mλλλ (∂∂∂

2)u = ∑
λ1≥···≥λd≥0

cv
λλλ

h2|λλλ |

(2λλλ )!
mλλλ (∂∂∂

2)v (1.7)

with |λλλ | = ∑
n
i=1 λi. Replacing the coefficients cu

λλλ
and cv

λλλ
by their respective expres-

sions ∑k Sk(mλλλ )ak and ∑k Sk(mλλλ )bk and taking v as ∆u = m1(∂∂∂
2)u, we solve the

system of equations formed on the coefficients ak and bk:

∑
λ1≥···≥λd≥0

(
∑

k∈{0,...,d}n
akSk(mλλλ (∂∂∂

2))

)
mλλλ (∂∂∂

2)u
(2λλλ )!

= ∑
λ1≥···≥λd≥0

(
∑

k∈{0,...,d}n
bkSk(mλλλ (∂∂∂

2))

)
mλλλ (∂∂∂

2)m1(∂∂∂
2)u

(2λλλ )!
(1.8)

with Sk(mλλλ (∂∂∂
2)) being coefficients that we are going to explicitly compute in Eq. (1.9).

To simplify, as it does not play any role, in Eq. (1.8) we consider h = 1.

1.6 Taylor series of the sums on Σk expressed in the symmetric polynomials basis

For Σk a given symmetric group of points with k a tuple of integers, we aim to
express the Taylor series ∑`̀̀∈Σk u(`̀̀h) with the help of the symmetric polynomi-

als. If we denote mλλλ as the symmetric monomial which contains xλ1
1 . . .xλd

d with
λ1 ≥ λ2 ≥ ·· · ≥ λd ≥ 0 then

∑
`̀̀∈Σk

u(`̀̀h) = ∑
λ1≥λ2≥···≥λd≥0

Sk(mλλλ (∂
2
1 , . . . ,∂

2
d ))

h2λλλ

(2λλλ )!
mλλλ (∂

2
1 , . . . ,∂

2
d )u,

with the Sk(mλλλ ) values given by the following lemma:
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Lemma 1.2 For 1≤ n≤ d and λ1≥ λ2≥ ·· ·≥ λn≥ 1 the computation of Sk(mλλλ (∂∂∂
2))

is given by the formula:

Sk(mλλλ (∂
2
1 , . . . ,∂

2
d )) = Sk(∂

2λ1
1 . . .∂ 2λn

n )

= 2k
q

∑
i1=1
· · ·

q

∑
in=1

(
n

∏
r=1

i2λr
r

)(
d−n

k−µ(iii)

)
, (1.9)

with q ∈ N, k = (k1,k2, . . . ,kq) and with
( d−n

k−µ(iii)

)
equal to zero if one of the terms

d−n, k`−µ`(iii) for 1≤ `≤ q or d−n−∑`(k`−µ`(iii)) is strictly negative.

Proof: For i1, i2, . . . , in ≥ 1 being given, we count the number of points of Σk
which are of the type (±i1,±i2, . . . ,±in, in+1, . . . , id) i.e. which have a factor ∏

n
r=1 i2λr

r

in front of the partial derivative ∂
2λ1
1 . . .∂ 2λn

n in their Taylor series. 2k possibilities are
offered by the sign changes, and for each value of `≥ 1, k`−#{r, ir = `} terms equal
to ` remains and have to be placed in the d − n coordinates (in+1, . . . , id). Hence,
we obtain this particularly useful expression, which can be easily implemented and
allows an automatic computation of the coefficients Sk(mλλλ (∂

2
1 , . . . ,∂

2
d )). The n = 0

case corresponding to m /0 = 1 is given by Lemma 1.1.

1.7 Identification of the terms for the equation ∆u = v

To identify the terms of the Taylor series

1
h2 ∑

k
ak ∑

`̀̀∈Σkh
u(`̀̀h) =

1
h2 ∑

λ1≥···≥λd≥0
cu

λλλ

h2|λλλ |

(2λλλ )!
mλλλ (∂∂∂

2)u (1.10)

and

∑
k

bk ∑
`̀̀∈Σkh

v(`̀̀h) = ∑
λ1≥···≥λd≥0

cv
λλλ

h2|λλλ |

(2λλλ )!
mλλλ (∂∂∂

2)v (1.11)

using symmetric polynomials, we replace v by ∆u = m1(∂
2
1 , . . . ,∂

2
d )u = ∑

d
i=1 ∂ 2

i u in
its Taylor series. This is equivalent to multiplying each symmetric polynomial on the
right-hand side of Eq. (1.11) by m1 = ∑

d
i=1 ∂ 2

i .
In Table 1.2 we identify the equalities between the terms of the symmetric Taylor

series on u and the terms of the symmetric Taylor series on v. The symmetric poly-
nomials issued from v are multiplied by m1 in a way that is independent from the
dimensionality. The symmetric polynomials coefficients cv

λλλ
of the Taylor series on v

are set in front to those of u with, next to them, the multiplication factors: the one
coming from the multiplication by m1 and the one coming from the Taylor expansion
coefficient 1

(2λλλ )! .
Hence, each row corresponds to a condition applying to the coefficients (ak) and

(bk), knowing that if the number of components of a symmetric polynomial in a row
exceeds the dimensionality, it disappears. As a result, including the normalization
condition (cf Theorem 1.2), in dimension three, 17 equations are required to reach
the 10th order.
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Table 1.2 Table summarizing the conditions on the coefficients cu
λλλ

and cv
λλλ

in front of the symmetric
polynomials mλλλ in the Taylor series for u and v in (1.7) with their various factors.

(2λλλ )! λλλ (u) m1× λλλ (v) (2λλλ (u))!/(2λλλ (v))!

2nd order m1×m /0 = m1
1 u 0
2 1 v 2

4th order m1×m1 = m2 +2m11
4! 2 1 12
4 11 ×2 1 2

m1×m2 = m3 +m21
6th order m1×m11 = m21 +3m111

6! 3 2 30
2 ·4! 21 2+11 2+12

8 111 ×3 11 2

m1×m3 = m4 +m31
8th order m1×m21 = m31 +2m22 +2m211

m1×m111 = m211 +4m1111
8! 4 3 56

2 ·6! 31 3+21 2+30
4!2 22 ×2 21 12

4 ·4! 211 21︸︷︷︸
×2

+111 2+12

24 1111 ×4 111 2

m1×m4 = m5 +m41
m1×m31 = m32 +m41 +2m311

10th order m1×m22 = m32 +m221
m1×m211 = m311 +2m221 +3m2111

m1×m1111 = m2111 +5m11111
10! 5 4 90

2 ·8! 41 4+31 2+56
6! ·4! 32 31+22 12+30
6! ·4 311 31︸︷︷︸

×2

+211 2+30

4!2 ·2 221 22+ 211︸︷︷︸
×2

2+12

8 ·4! 2111 211︸︷︷︸
×3

+1111 2+12

25 11111 ×5 1111 2

For instance, the first row corresponds to λλλ (u) = /0 i.e. to the sum of the coeffi-
cients applied to u:

∑
k

Sk(1)ak = 0. (1.12)

The second row, as m1×m /0 = m1, provides:

∑
k

Sk(∂
2
1 )ak = 2∑

k
Sk(1)bk.
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For the following rows we observed that m1×m1 = m2 +2m11 independently of the
dimension, hence we deduce the third row:

∑
k

Sk(∂
4
1 )ak = 12∑

k
Sk(∂

2
1 )bk,

and the fourth row:
∑
k

Sk(∂
2
1 ∂

2
2 )ak = 4∑

k
Sk(∂

2
1 )bk.

This allows us to state the main result of this manuscript:

Theorem 1.2 (Arbitrary order of the Mehrstellenverfahren scheme in an arbi-
trary dimension) Let the coefficients (ak) and (bk) satisfy both the equations induced
by Table 1.2 and its continuation until a given arbitrary order and:

∑
k

Sk(
d

∑
i=1

∂
2
i )ak 6= 0, (1.13)

with the coefficients Sk defined in Lemmas 1.1 and 1.2. In Eq. (0.2), they form a
compact finite difference scheme of arbitrary order in an arbitrary dimension to solve
the Poisson equation ∆u = v on a uniform Cartesian grid.

Proof: This theorem follows on from what was explained previously. The functions u
and v are supposed to be very smooth so that the sums (1.10) and (1.11) are developed
in the Taylor series for which we regroup the derivatives in monomial symmetric
polynomials in ∂ 2

i .
The identification of these developments is given in Table 1.2. If all the conditions

are satisfied then the residual is of degree 12 in h, which divided by h2 provides a 10th
order. The rows of this table may be continued, to reach higher orders.

To solve ∆u = v and discard the 1/h2 Au = O(h2) = Bv for all functions u and v
case, we add the condition Eq. (1.13) that guarantees that 1/h2 Au = K ∆u+O(h2) =
K v+O(h2) = Bv with K 6= 0. In this whole manuscript, we normalize the coefficients
to obtain K = 1.

2 Computation of the coefficients in particular cases

Before computing new high order schemes, we reviewed various previously pub-
lished compact finite difference schemes on uniform Cartesian grids [1,3,11,17,19,
21,22]. Theorem 1.2 allows these schemes to be recovered.

2.1 Compact finite difference Poisson solvers extracted from the literature

2.1.1 Sixth order schemes in dimension two

For d = 2, we compare the results of the present method with the compact finite dif-
ference approximations introduced in [3,1,22] back to years 1951, 1953 and 1980
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respectively. The coefficients a0, a1, a2, b0, b1, b2 and b01 correspond to the sym-
metric stencils respectively associated to α[0 0], α[1 0], α[1 1], β[0 0], β[1 0], β[1 1] and
β[2 0] if we apply for the Greek letters a notation consistent with the one used in [2].
These stencils are represented in Fig. 1.1 where the correspondence between the two
notations is indicated. Then the first seven rows of Table 1.2 provide the six equations
concerning ak and bk coefficients:

a0 +4∗a1 +4∗a2 = 0 (2.1)
a1 +2∗a2 = b0 +4∗b1 +4∗b2 +4∗b01 (2.2)
a1 +2∗a2 = 12∗b1 +24∗b2 +48∗b01 (2.3)

a2 = 2∗b1 +4∗b2 +8∗b01 (2.4)
a1 +2∗a2 = 30∗b1 +60∗b2 +480∗b01 (2.5)

a2 = b1 +14∗b2 +16∗b01. (2.6)

We add the equation corresponding to 1/h2 Au = ∆u+O(h2) to these to be sure that
we solve the Poisson equation:

a1 +2∗a2 = 1. (2.7)

This normalizes the coefficients.
Eqns. (2.1), (2.3)−6×(2.4) and (2.7) imply:

a0 =−
10
3
, a1 =

2
3
, a2 =

1
6
.

Next comes:

b0 =
119
180

, b1 =
7
90

, b2 =
1
90

, b01 =−
1

240
.

We can visualize this scheme as follows:

1
6h2 −204

4

4

4

1

1

1

1

u =
1

720 476 5656

56

568

8 8

8

−3

−3

−3

−3 v. (2.8)

We see that if v = 0, we can solve the Laplace equation ∆u = 0 at the sixth order,
whereas for any regular function f , the ∆ f approximation A f without perturbation is
only second order.

If instead of b01 we had activated a01, we would have obtained the scheme pre-
sented in the appendix of the book by L. Collatz [3] p 543:

a0 =−
7
3
, a1 =

4
15

, a2 =
4
15

, a01 =
1
20
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and

b0 =
23
45

, b1 =
1
9
, b2 =

1
90

.

This scheme can be visualized as follows:

1
60h2 16

161616

16

16 16

3

3

3

3

16

−140 u =
1

90
46 10

10

10

10 1

11

1

v. (2.9)

2.1.2 Sixth order scheme in dimension three: the HOC Stencil

For d = 3, if we activate the coefficients a0, a1, a2, a3, b0, b1, b2, b3 and b01, the first
seven rows of Table 1.2 give the equations:

a0 +6∗a1 +12∗a2 +8∗a3 = 0
a1 +4∗a2 +4∗a3 = b0 +6∗b1 +12∗b2 +8∗b3 +6∗b01

a1 +4∗a2 +4∗a3 = 12∗b1 +48∗b2 +48∗b3 +48∗b01

a2 +2∗a3 = 2∗b1 +8∗b2 +8∗b3 +8∗b01

a1 +4∗a2 +4∗a3 = 30∗b1 +120∗b2 +120∗b3 +480∗b01

a2 +2∗a3 = b1 +16∗b2 +28∗b3 +16∗b01

a3 = 3∗b2 +6∗b3.

To these we add the normalization equation

a1 +4∗a2 +4∗a3 = 1.

Then, the general solution of this system is given by:

a0 =−
64
15

, a1 =
7
15

, a2 =
1
10

, a3 =
1
30

, (2.10)

and we obtain:

b0 =−8∗β +
67
120

, b1 = 4∗β +
1

18
, b2 =−2∗β +

1
90

, b3 = β , b01 =−
1

240
(2.11)

for any β ∈ R.
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With β = 0 this three dimensional scheme can be visualized as:

1
30h2

−128

14

14

1414

14

14

3 3

33

3

3

3

3

3

3

3

3

1 1

1 1

1 1

11

u=
1

720

40

8

8

8

8

40

8

8

8

8

−3

−3

402 40

40

40

40

8

8 8

8

−3

−3

−3 −3

v.

(2.12)
This scheme was introduced in [19], at least regarding (ak) and then extended

with the addition of (bk) and tested in [21].

2.1.3 Fourth order scheme in an arbitrary dimension

In an arbitrary dimension, the fourth order is provided by the first four rows of Table
1.2, that is for λλλ (u) = /0,1,2 and 11.
If we only activate the first rank of k, k = (k1) = (k), then for the symmetric mono-
mial mλλλ containing ∂

2λ1
1 . . .∂ 2λn

n (case i = (1, . . . ,1︸ ︷︷ ︸
n times

) in Eq. (1.9)),

Sk(mλλλ ) = Sn
k = 2k

(
d−n
k−n

)
. (2.13)

Table 1.2 provides the equations

d

∑
k=0

S0
kak = 0, (2.14)

d

∑
k=1

S1
kak = 2

d

∑
k=0

S0
kbk = 2, (2.15)
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d

∑
k=1

S1
kak = 12

d

∑
k=1

S1
kbk, (2.16)

d

∑
k=2

S2
kak = 4

d

∑
k=1

S1
kbk. (2.17)

Hence the coefficients (ak) are given by the equations:

d

∑
k=0

S0
kak = 0,

d

∑
k=1

S1
kak = 2,

d

∑
k=2

S2
kak =

2
3
.

If we activate the coefficients a0, a1, a2, ad , we need to compute the following values
of (Sn

k):
S0

0 = 1, S0
1 = 2d, S0

2 = 2d(d−1), S0
d = 2d , S1

0 = 0,

S1
1 = 2, S1

2 = 4(d−1), S1
d = 2d , S2

2 = 4, S2
d = 2d .

Then the equations (2.18) become:
a0 +2d a1 +2d(d−1)a2 +2d ad = 0

2a1 +4(d−1)a2 +2d ad = 2

4a2 +2d ad = 2
3

.

For ad = 0, we find the scheme presented in the book by Samarskii [17] p297 with
varying mesh sizes depending on the direction. Provided they are taken back to the
uniform grid, they are given by:

a0 =
d(d−7)

3
, a1 =

4−d
3

, a2 =
1
6
.

Then the coefficients (bk) have to satisfy:

d

∑
k=0

S0
kbk = 1,

d

∑
k=1

S1
kbk =

1
6
.

Activating the coefficients b0 and b1, we obtain the equations:
b0 +2d b1 = 1

2b1 =
1
6

for which the solution is:

b0 =
6−d

6
, b1 =

1
12

.

The trouble with such a scheme is that for d ≥ 4, a1 ≤ 0 which hampers the use of an
iterative solver of the Gauss-Seidel type.
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If we take a2 = 0 in Eq. (2.18), we find the following scheme extracted from the
book by Iserles [17] (exercise 7.11 p134):

a0 =−
2(2d +1)

3
, a1 =

2
3
, ad =

1
3 ·2d−1 .

It circumvents the problem of the previous scheme since whatever the value of d,
its only strictly negative coefficient is a0. The same previous conditions apply to the
coefficients (bk) so we can take

b0 =
6−d

6
, b1 =

1
12

.

2.2 Minimal conditions on the coefficients (ak) of the operator A

Finding the minimal conditions that the coefficients (ak) have to satisfy indepen-
dently of the coefficients (bk) corresponds to the design of a discrete solver for the
Laplace equation: ∆u = 0 [11].

Let xi = ∂ 2
i and (si)0≤i≤d denote the elementary symmetric polynomials defined

in Part 1.5. If we assume that in Eq. (1.8) the right-hand member generates s1R[s0, . . . ,sd ]
and the left-hand member R[s0, . . . ,sd ], we deduce the monomials that impose strict
conditions on the coefficients (ak): s0 = m /0 = 1, s2 = m11, s3 = m111 until sd = m1...1
with as many 1’s as there are dimensions plus the algebra they generate, hence in-
cluding m2

11, m11m111 etc.
First of all, there is one condition owing on (ak) from Au = h2∆u+o(h3) for any

smooth function u. Hence in dimension two, there are two conditions acting on the
coefficients (ak) to reach the second order (including the one imposed by 1), three for
the 4th and 6th orders (including the one imposed by m11) and four for the 8th and
10th orders (adding m2

11). In contrast, in dimension three there are two conditions for
the second order (from 1 and m1), three for the fourth order (addition of m11), four
for the 6th order (addition of m111), five for the 8th order (addition of m2

11) and six
for the 10th order (addition of m11m111).

In practice, we eliminate the cv
λλλ

terms from the equations of Table 1.2 by linear
combinations of the lines so we obtain conditions only on cu

λλλ
.

Then depending on which ak points we choose to activate, these conditions vary.
When we solve the system, the number of indices k for which ak are activated is
taken equal to the number of linear equations. In dimension two, the activation of
the first rank (k has only one component k1) allows the 6th order to be reached. The
associated conditions are given for the second order by:

a0 +4a1 +4a2 = 0,

a1 +2a2 = 1

and for the fourth and sixth orders by:

a1−4a2 = 0.
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The activation of the second rank allows the sixth order to be passed and the 18th
order to be reached (see Part 2.4). The conditions for the second order become:

a0 +4a1 +4a2 +4a01 +8a11 +4a02 = 0, (2.18)

a1 +2a2 +4a01 +10a11 +8a02 = 1. (2.19)

To which, for the 4th and 6th orders we have to add:

a1−4a2 +16a01−14a11−64a02 = 0. (2.20)

To reach the 8th and 10th orders, we also have to add:

a1 +16a2 +256a01−1054a11 +4096a02 = 0. (2.21)

These equations produce the 10th order schemes presented and tested in [22] for the
Laplace equation.

In dimension three, if we only activate the coefficients k = (k1) of the first rank,
we reach the second order under the conditions:

a0 +6a1 +12a2 +8a3 = 0,

a1 +4a2 +4a3 = 1,

the fourth order by adding:
a1−2a2−8a3 = 0

and the sixth order thanks to:

a1−26a2 +64a3 = 0.

If these three conditions are verified, we find the HOC Stencil from [19], see section
2.1.2.

If we now activate all the points of the first and second ranks k = (k1,k2), we
obtain the four conditions:

a0 +6a1 +12a2 +8a3 +6a01 +24a11 +24a21 +12a02 +24a12 +8a03 = 0,
(2.22)

a1 +4a2 +4a3 +4a01 +20a11 +24a21 +16a02 +36a12 +16a03 = 1,
(2.23)

a1−2a2−8a3 +16a01 +20a11−36a21−32a02−156a12−128a03 = 0,
(2.24)

a1−26a2 +64a3 +64a01−340a11 +444a21−1664a02 +1236a12 +4096a03 = 0.
(2.25)

To reach the 8th order, we have to add to these conditions:

a1+18a2+32a3+256a01−540a11−2076a21+4608a02+6084a12+8192a03 = 0
(2.26)
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and to reach the 10th order:

a1−2a2−512a3+1024a01−12580a11+25164a21−2048a02+59316a12−524288a03 = 0.
(2.27)

We still need to determine the coefficients (bk) whose distribution area should be
much wider than that of (ak).

The following theorem indicates that even if the number of a(k1) coefficients for
0≤ k1 ≤ d increases with the number of dimensions (d), while the number of equa-
tions they have to satisfy stays still, the order of the compact solver Au= Bv is limited
to the sixth one as long as we only activate the first rank k = (k1) coefficients in A.

Theorem 2.1 (maximal sixth order for the strictly compact finite difference schemes)
For d ≥ 2 any numerical scheme for the Poisson equation relying on a symmetric
strictly compact finite difference scheme, which means whose (ak) stencil only uses
points of the k = (k1) first rank is at most sixth order.

Proof: For k = (k1), 0 ≤ n ≤ d and λλλ = (λ1, . . . ,λn) with λ1 ≥ ·· · ≥ λn ≥ 1 we use
the coefficients (Sk(mλλλ ))λλλ ,k = (2k1

( d−n
k1−n

)
)n,k1 , which only depend on n and k1. Table

1.2 provides the twelve conditions required to reach the 8th order:

cu
/0 = 0

cu
1 = 2cv

/0 6= 0
cu

2 = 12cv
1 (2.28)

cu
11 = 4cv

1 (2.29)
cu

3 = 30cv
2

cu
21 = 2cv

2 +12cv
11

cu
111 = 6cv

11

cu
4 = 56cv

3 (2.30)
cu

31 = 2cv
3 +30cv

21 (2.31)
cu

22 = 24cv
21 (2.32)

cu
211 = 4cv

21 +12cv
111

cu
1111 = 8cv

111.

As k= (k1), the lines cu
λλλ

only depend on n the number of non-zero λi (see Eq. (2.13)).
Hence, we deduce cu

1 = cu
2 = cu

3 = cu
4 6= 0, cu

11 = cu
21 = cu

31 = cu
22 and cu

111 = cu
211. For

d ≥ 2, Eqns. (2.28) and (2.29) imply that cu
2 = 3cu

11 and Eqns. (2.30), (2.31) and
(2.32) imply that cu

31 =
1

28 cu
4 +

5
4 cu

22. So taken together, it means that cu
1 = 0 which is

excluded. Hence, the sixth order limitation.

2.3 Useful properties of the compact schemes for applications

The method presented in this manuscript and providing Theorem 1.2 allows the con-
ception of a large number of various compact finite difference schemes to solve the
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Poisson equation. According to the context, some properties of these solvers are in-
valuable: the number m of activated ranks (k = (k1,k2 . . . ,km)), the number of coef-
ficients in A or B, the sign and distribution of the coefficients ak (for the Discrete
Maximum Principle, a000 < 0 and ak ≥ 0, ∀k 6= 000) or the possibility of tensorizing the
computation of u 7→ Au.

2.3.1 Number of active points in A

The introduction of non-periodic boundary conditions may limit the number of ac-
tivated ranks to one. Then, in a dimension of at least two, limiting k to (k1) for A
implies limiting the order of the solver to the sixth order whatever the dimensional-
ity as proven in Section 2.2. Limiting both the A and B coefficients to the first rank
restrains the maximal order to the fourth one, as we will see below in Eqn. (2.48).
In the case of refinement domain boundaries, the number of activated ranks is not
limited. Hence the interest of higher order compact schemes for the Adaptive Mesh
Refinement framework.

To bound the number of elementary operations in the computer program, it can
be interesting to minimize the number of active points in A. For each parameter k,
the number of elements of the symmetric group Σk is given by Lemma 1.1 : Sk(1) =
2k(d

k
)
.

2.3.2 Signs of the coefficients ak

Ideally, to apply the iterative Gauss-Seidel method to solve system (0.2) we need that
the compact scheme satisfies the Discrete Maximum Principle and more precisely
that a0 < 0 be as small as possible and all the other ak coefficients be ≥ 0 if k 6= 0,
in particular the a1 coefficient related to the points next to 000 should be as large as
possible. This optimizes the iterative algorithm relying on the matrix A to solve the
linear system Au = f = Bv.

2.3.3 Distribution of the coefficients

To multiply by two the speed of convergence of the iterative multigrid method with
Gauss-Seidel as smoothing, it suffices to update only a part of the values in u. For
instance, in dimension two, we compute all the new iterates of ui j for even values of
i+ j and then for odd-numbered i+ j parameters. This is called red-black ordering
[7]. To apply this technique efficiently, we need the condition 0≤ ak� a1 for all even
∑i i∗ ki to be satisfied (ak = 0 for all even ∑i i∗ ki even conserves the symmetries of
the numerical problem).

2.3.4 The possibility to compute u 7→ Au, direction by direction

When the number of dimensions d increases, the Sk(1) number of points of Σk where
Sk(1) = 2k(d

k
)
, rises dramatically. Summing so many points may be algorithmically

and computationally exhausting. A way to simplify this step is to tensorize the op-
erator A, direction by direction, at least partially. This allows the implementation
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complexity and the computational time to be reduced. This will be presented in Part
2.6.

2.4 A two dimensional 18th order compact scheme for the Laplace equation

In [22], the author only considers points along the axes and the diagonals. It allows
him to disclose a two dimensional 14th order compact scheme for the Laplace equa-
tion. Using a more general geometry we are able to obtain a 18th order compact
scheme for the Laplace equation. We activate the two ranks of coefficients in the
matrix A: a0, a1, a2, a01, a11 and a02.

In addition to the four conditions (2.18), (2.19), (2.20) and (2.21) from Section
2.2, to reach the 14th order we must add a linear combination of rows 6, 51, 42 and
33 of the continuation of Table 1.2:

cu
6−66cu

51 +495cu
42−462cu

33 = 0

which provides the condition:

a1−64∗a2 +4096∗a01 +23506∗a11−262144∗a02 = 0.

The last condition allowing the 18th order to be reached is given by a linear combi-
nation of rows 8, 71, 62, 53 and 44:

cu
8−120cu

71 +10920cu
62−48048cu

53−38610cu
44 = 0

which provides the condition:

a1 +2726∗a2 +65536∗a01 +20988226∗a11 +178651136∗a02 = 0.

We add the normalization of the coefficients by 1
h2 Au = ∆u+o(h). It translates into:

a1 +2∗a2 +4∗a01 +10∗a11 +8∗a02 = 1.

Then we obtain the coefficients:

a0 =−
2838953
817278

, a1 =
889264
1225917

, a2 =
549184

3677751
, (2.33)

a01 =−
18881

2451834
, a11 =

392
525393

, a02 =−
233

2674728
. (2.34)

This stencil can be visualized as:
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2.5 A three dimensional tenth order compact scheme for the Poisson equation

In dimension three we reach the tenth order when we activate the 59 points of the
stencil corresponding to the coefficients a0, a1, a2, a3, a21 and a03. Then, solving the
five Eqns. (2.22)–(2.27), for A we find:

a0 =−
11755
2814

, a1 =
3152
7035

, a2 =
752

7035
, a3 =

29
1407

, (2.35)

a21 =
4

2345
, a03 =

1
16080

. (2.36)

These coefficients provide a matrix A that satisfies the Discrete Maximum Principle:
a0 is the only negative coefficient. Hence it is well-conditioned to apply the Gauss-
Seidel method.

The bottom half of this symmetric three-dimensional stencil can be visualized as:
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Moreover if we activate the 113 points of the stencil corresponding to the coeffi-
cients b0, b1, b2, b3, b01, b11, b02, b03, b001, b101, b0001 for B, then we find:

b0 =
10666253
20260800

, b1 =
130433

2170800
, b2 =

160117
15195600

, b3 =
182

45225
, (2.37)

b01 =−
17021

2701440
, b11 =−

22
37989

, b02 =−
743

243129600
, b03 =

1013
162086400

, (2.38)

b001 =
18883

21273840
, b101 =

221
4341600

, b0001 =−
10781

141825600
. (2.39)

2.6 Sixth order compact schemes in arbitrary dimensions

In this part of the manuscript, we will explicitly compute the coefficients of the oper-
ators A and B that form a sixth order compact finite difference scheme in Eq. (0.2) in
an arbitrary dimension d. This generalizes the three-dimensional HOC stencil. Mean-
while we will show the necessity to activate the second rank of coefficients in B (or in
A, but this is less interesting) to pass from the fourth order to the sixth. We will also
give a partially tensorized solution, which presents numerous practical advantages.

We look for solutions A and B to problem (1.8) where the coefficients (ak) and
(bk) apply to symmetric groups of points in Eq. (0.2). We only activate first rank
coefficients for ak i.e. ak with 0 ≤ k ≤ d and we activate bk for 0 ≤ k ≤ d as well as
b01.

Lemmas 1.1 and 1.2 allow an explicit computation of the coefficients Sk(mλλλ ) for
0≤ k ≤ d, 0≤ n≤ d and λλλ = (λ1,λ2, . . . ,λn) ∈ N∗n:

Sk(mλλλ ) = Sn
k = 2k

(
d−n
k−n

)
, (2.40)

as well as S01(1) = 2d, S01(∂
2
1 ) = 8, S01(∂

4
1 ) = 32 and S01(∂

2
1 ∂ 2

2 ) = 0 for k =
(k1,k2) = (0 1).

The first seven rows of Table 1.2 give the Eqns. (2.14), (2.15), (2.16) and (2.17),
for which we have to add the term in b01 except for (2.14), then

d

∑
k=0

S0
kak = 0, (2.41)

d

∑
k=1

S1
kak = 2

d

∑
k=0

S0
kbk +2S0

01b01 = 2, (2.42)

d

∑
k=1

S1
kak = 12

d

∑
k=1

S1
kbk +12S01(∂

2
1 )b01, (2.43)

d

∑
k=2

S2
kak = 4

d

∑
k=1

S1
kbk +4S01(∂

2
1 )b01 (2.44)
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for the fourth order; plus

d

∑
k=1

S1
kak = 30

d

∑
k=1

S1
kbk +30S01(∂

4
1 )b01, (2.45)

d

∑
k=2

S2
kak = 2

d

∑
k=1

S1
kbk +2S01(∂

4
1 )b01 +12

d

∑
k=2

S2
kbk +12S01(∂

2
1 ∂

2
2 )b01, (2.46)

d

∑
k=3

S3
kak = 6

d

∑
k=2

S2
kbk +6S01(∂

2
1 ∂

2
2 )b01, (2.47)

for the sixth order.
If we carry out the combination 5×(2.43)−2×(2.45), we obtain directly the co-

efficient b01:

b01 =−
1

240
. (2.48)

As it is necessarily not zero, this shows that there is no sixth order symmetric strictly
compact scheme for A and for B.

Considering Eqns. (2.41), (2.42) and performing the linear combinations (2.43)−3×(2.44)
and 15×(2.46)−30×(2.47)−(2.45), we obtain the following equations on (ak):

d

∑
k=0

S0
kak = 0,

d

∑
k=1

S1
kak = 2,

d

∑
k=1

S1
kak = 3

d

∑
k=2

S2
kak,

15
d

∑
k=2

S2
kak = 30

d

∑
k=3

S3
kak +

d

∑
k=1

S1
kak.

Solving this system and replacing Sn
k by their binomial expressions we obtain:

d

∑
k=0

2k
(

d
k

)
ak = 0,

d

∑
k=1

2k
(

d−1
k−1

)
ak = 2, (2.49)

d

∑
k=2

2k
(

d−2
k−2

)
ak =

2
3
,

d

∑
k=3

2k
(

d−3
k−3

)
ak =

4
15

. (2.50)

For d ≤ 9 we minimize the number of points of the stencil in A by activating a0, a1,
a2 and ad . This choice provides:

a0 =
3d2−29d−4

15
, a1 =

16−3d
15

, a2 =
1
10

, ad =
22−d

15
. (2.51)

We can see that for d ≥ 6 the coefficient a1 becomes negative, which hampers the
application of the Gauss-Seidel method. For d ≥ 10, a0 is positive, which is even
more problematic.
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Regarding (bk), we activate b0, b1 and b2 in addition to b01. Eqns. (2.47) then
(2.44) and finally (2.42) provide:

b0 =
8d2−77d +360

360
, b1 =

11−2d
90

, b2 =
1
90

, b01 =−
1

240
. (2.52)

As the number of points in the stencil increases considerably with the number of
dimensions, we consider an operator A with a stencil of the form:

A = α[p 1 p]d +

γ

|
γ−β − γ

|
γ

(2.53)

that means

a0 = α +β , a1 = α p+ γ, and ak = α pk for k ≥ 2.

Then Eqns. (2.49) and (2.50) provide

d

∑
k=0

2k
(

d
k

)
ak = α

d

∑
k=0

(
d
k

)
(2p)k +2dγ +β = α(1+2p)d +2dγ +β = 0, (2.54)

d

∑
k=1

2k
(

d−1
k−1

)
ak = 2α p

d

∑
k=1

(
d−1
k−1

)
(2p)k−1 +2γ = 2α p(1+2p)d−1 +2γ = 2,

(2.55)
d

∑
k=2

2k
(

d−2
k−2

)
ak = 4α p2

d

∑
k=2

(
d−2
k−2

)
(2p)k−2 = 4α p2(1+2p)d−2 =

2
3
, (2.56)

d

∑
k=3

2k
(

d−3
k−3

)
ak = 8α p3

d

∑
k=3

(
d−3
k−3

)
(2p)k−3 = 8α p3(1+2p)d−3 =

4
15

. (2.57)

Dividing Eq. (2.57) by Eq. (2.56) we obtain 2p
1+2p = 2

5 so

p =
1
3
.

Reintroducing this quantity into Eq. (2.56) we obtain 4
9 α
(
1+ 2

3

)d−2
= 2

3 so

α =
3
2

(
3
5

)d−2

, ak =
3d−k−1

2 ·5d−2 for 2≤ k ≤ d.

Replacing p and α by their actual values in (2.55) we obtain γ:

γ =
1
6
.

This provides:

a1 =
1
6
+

1
2

(
3
5

)d−2

.
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Finally, Eq. (2.54) allows computation of β :

β =−25+2d
6

.

This implies:

a0 =
3
2

(
3
5

)d−2

− 25+2d
6

.

We verify that for d = 3 we recover the HOC stencil.
The number of operations for one iteration of the Gauss-Seidel method is 1+

2d2 + 2d per point in the case of the smallest stencil (2.51), while it is 1+ 5d in the
tensorized case (2.53). Even when we take into account the fact that we cannot use
red-black ordering in this latest case, it remains more interesting as soon as d ≥ 4.
Moreover it is easier to implement and better conditioned.

To these (ak) values we can associate (bk) from expressions (2.52) or we can look
forward to a tensorized version of the form:

B = ω[q 1 q]d +

b01
|
0
|

b01−0−λ −0−b01
|
0
|

b01

which corresponds to b0 = λ +ω and bk = ω qk for k ≥ 1.
Using what we have already computed including b01 = − 1

240 , we obtain the fol-
lowing conditions:

d

∑
k=0

2k
(

d
k

)
bk = 1+

d
120

,

d

∑
k=1

2k
(

d−1
k−1

)
bk =

1
5
,

d

∑
k=2

2k
(

d−2
k−2

)
bk =

2
45

.

We solve these equations as we did previously for (ak). Then we find:

q =
1
7
, ω =

9
10

(
7
9

)d

and λ =
1

10
+

d
120

.

These correspond to

b0 =
1

10
+

d
120

+
9
10

(
7
9

)d

, bk =
9
10

(
7
9

)d 1
7k for k ≥ 1
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and b01 =−
1

240
.

For d = 3, this corresponds to the parameter β = 1
810 in the HOC Stencil, see Sec.

2.1.2.

3 Numerical experiments

We test the schemes we obtained in Sections 2.5 and 2.6. First the tenth order scheme
in dimension three compared to lesser order schemes, then the sixth order tensorized
scheme in dimensions two, three, four, five and six. With the help of these compact
schemes, we solve the equation ∆u = v on [0,1]d with periodic boundary conditions
and with:

v(x) =
d

∏
i=1

sin(2π xi +1).

We compare the numerical result to the exact solution:

u(x) =− 1
4π2d

d

∏
i=1

sin(2π xi +1).

Then we plot the error.
The convergence to the numerical solution of the compact scheme is performed

by a Gauss-Seidel method associated with multigrid algorithms following [7] and [4].
The convergence rate of the Gauss-Seidel method remains close to 0.2 per iteration.
At each iteration, the residual is divided by five. Hence we need approximately 20
iterations to converge up to the computer rounding error.

Note that the final destination of these compact schemes is to solve the Poisson
equation with an adaptive grid as presented in [4]. Here we just test their claimed
accuracy.

3.1 Testing the tenth order scheme in dimension three

To carry out this test, we use the code and algorithms developed in [4]. This code
includes the implementation of an octree that is useful to test schemes requiring a
multigrid method. Obtaining the 113 neighboring points of the stencil for B and the
59 neighboring points of the stencil for A requires care but it can be implemented
without difficulty. To keep things simple, we used a basic test case without bound-
ary conditions or mesh refinement. These extensions will be described separately in
a forthcoming manuscript. Nevertheless, the principles to achieve them are already
presented in [4] for the fourth order and two-dimensional case.

The tenth order accuracy is perfectly validated, as is shown in Fig. 3.1. Each time
h is divided by two, the difference from the exact solution is divided by one thousand
in infinity norm. It converges up to the computer rounding error. We also display the
errors for other schemes of lesser order:

– the usual second order scheme with a0 =−6, a1 = 1 and b0 = 1,
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Fig. 3.1 Test of the tenth order scheme in dimension three presented in Section 2.5. Comparison with
other schemes of lesser orders.

– a fourth order scheme extracted from [1] with

a0 =−4, a1 =
1
3
, a2 =

1
6
, b0 =

1
2

and b1 =
1

12
,

– the sixth order HOC Stencil from Part 2.6 (the same as the one used in Fig. 3.2).

It shows the advantage of a higher order: the approximation reaches the exact solution
up to machine rounding much faster.

3.2 Test of the tensorized sixth order scheme in an arbitrary dimension

The code from [4] allows any dimensional case from one to six to be treated. We have
taken advantage of this to test the convergence of the tensorized scheme in Section
2.6, for which we expect a sixth order accuracy.

In Fig. 3.2 we demonstrate the expected order of accuracy except in the six-
dimensional case for which there is a kind of hyperconvergence. Nevertheless, the
small number of samples in this latest case prevents us from drawing any conclu-
sions. When we switch to the slightly different condition

v(x) = sin(4π x1 +1)
d

∏
i=2

sin(2π xi +1),

we obtain the sixth order convergence for the six-dimensional case.
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Fig. 3.2 Test of the sixth order scheme presented in Section 2.6 in various dimensions.

Conclusion

In this manuscript we have presented an original method using the symmetric poly-
nomial algebra rather than Padé approximants [21] to compute the coefficients of
compact finite difference schemes solving the Poisson equation. Meanwhile we have
disclosed higher order schemes with relative ease. We have tested these conclusively
in Section 3, which is dedicated to numerical experiments.

The increase in the order of accuracy for such a fundamental equation as the
Poisson equation is of interest to many domains of Physics, such as magnetic recon-
nection [4] or ab initio chemistry [5]. In these domains the quality of the solutions
depends crucially on the accuracy of the computations.

The joint use of high order schemes with AMR and multigrid techniques [23,
4] offers promising perspectives to solve problems in Physics which need high per-
formance computing. Other perspectives include the application of the same kind of
techniques to create original compact finite difference schemes for other operators
than the Laplace operator (such as the Bilaplacian operator [3]), or for non Cartesian
regular meshes [1,3] in arbitrary dimension. It is also possible to derive similar com-
putations on irregular grids with minimal conditions on A in arbitrary dimension and
to improve and generalize boundary stencils [10] for immersed boundary methods.
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