
HAL Id: hal-01998101
https://hal.science/hal-01998101v2

Preprint submitted on 11 Jun 2019 (v2), last revised 18 Dec 2019 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Unsupervised Scalable Representation Learning for
Multivariate Time Series

Jean-Yves Franceschi, Aymeric Dieuleveut, Martin Jaggi

To cite this version:
Jean-Yves Franceschi, Aymeric Dieuleveut, Martin Jaggi. Unsupervised Scalable Representation
Learning for Multivariate Time Series. 2019. �hal-01998101v2�

https://hal.science/hal-01998101v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Unsupervised Scalable Representation Learning
for Multivariate Time Series

Jean-Yves Franceschi∗
Sorbonne Université, CNRS, Laboratoire d’informatique de Paris 6, LIP6, F-75005 Paris, France

jean-yves.franceschi@lip6.fr

Aymeric Dieuleveut
MLO, EPFL, Lausanne CH-1015, Switzerland
CMAP, Ecole Polytechnique, Palaiseau, France
aymeric.dieuleveut@polytechnique.edu

Martin Jaggi
MLO, EPFL,

Lausanne CH-1015, Switzerland
martin.jaggi@epfl.ch

Abstract

Time series constitute a challenging data type for machine learning algorithms,
due to their highly variable lengths and sparse labeling in practice. In this paper,
we tackle this challenge by proposing an unsupervised method to learn universal
embeddings of time series. Unlike previous works, it is scalable with respect to
their length and we demonstrate the quality, transferability and practicability of
the learned representations with thorough experiments and comparisons. To this
end, we combine an encoder based on causal dilated convolutions with a novel
triplet loss employing time-based negative sampling, obtaining general-purpose
representations for variable length and multivariate time series.

1 Introduction

We investigate in this work the topic of unsupervised general-purpose representation learning for time
series. In spite of the increasing amount of work about representation learning in fields like natural
language processing (Young et al., 2018) or videos (Denton & Birodkar, 2017), few articles explicitly
deal with general-purpose representation learning for time series without structural assumption on
non-temporal data.

This problem is indeed challenging for various reasons. First, real-life time series are rarely or
sparsely labeled. Therefore, unsupervised representation learning would be strongly preferred.
Second, methods need to deliver compatible representations while allowing the input time series to
have unequal lengths. Third, scalability and efficiency both at training and inference time is crucial,
in the sense that the techniques must work for both short and long time series encountered in practice.

Hence, we propose in the following an unsupervised method to learn general-purpose representations
for multivariate time series that comply with the issues of varying and potentially high lengths of the
studied time series. To this end, we introduce a novel unsupervised loss training a scalable encoder,
shaped as a deep convolutional neural network with dilated convolutions (Oord et al., 2016) and
outputting fixed-length vector representations regardless of the length of its output. This loss is built
as a triplet loss employing time-based negative sampling, taking advantage of the encoder resilience
to time series of unequal lengths. To our knowledge, it is the first fully unsupervised triplet loss in the
literature of time series.

We assess the quality of the learned representations on various datasets to ensure their universality.
In particular, we test how our representations can be used for classification tasks on the standard

∗Work partially done while studying at ENS de Lyon and MLO, EPFL.

Preprint. Under review.



datasets in the time series literature, compiled in the UCR repository (Dau et al., 2018). We show
that our representations are general and transferable, and that our method outperforms concurrent
unsupervised methods and even matches the state-of-the-art of non-ensemble supervised classification
techniques. Moreover, since UCR time series are exclusively univariate and mostly short, we also
evaluate our representations on the recent UEA multivariate time series repository (Bagnall et al.,
2018), as well as on a real-life dataset including very long time series, on which we demonstrate
scalability, performance and generalization ability across different tasks beyond classification.

This paper is organized as follows. Section 2 outlines previous works on unsupervised representation
learning, triplet losses and deep architectures for time series in the literature. Section 3 describes
the unsupervised training of the encoder, while Section 4 details its architecture. Finally, Section 5
provides results of the experiments that we conducted to evaluate our method.

2 Related Work

Unsupervised learning for time series. To our knowledge, apart from those dealing with videos
(Denton & Birodkar, 2017; Villegas et al., 2017; Srivastava et al., 2015), few recent works deal with
unsupervised representation learning for time series. Fortuin et al. (2019) deal with a related but
different problem to this work, by learning temporal representations of time series that represent well
their evolution. Hyvarinen & Morioka (2016) learn representations on evenly sized subdivisions
of time series by learning to discriminate between those subdivisions from these representations.
Lei et al. (2017) expose an unsupervised method designed so that the distances between learned
representations mimic a standard distance (Dynamic Time Warping, DTW) between time series.
Malhotra et al. (2017) design an encoder as a recurrent neural network, jointly trained with a decoder
as a sequence-to-sequence model to reconstruct the input time series from its learned representation.
Finally, Wu et al. (2018a) compute feature embeddings generated in the approximation of a carefully
designed and efficient kernel.

However, these methods either are not scalable nor suited to long time series (due to the sequential
nature of a recurrent network, or to the use of DTW with a quadratic complexity with respect to the
input length), are tested on no or very few standard datasets and with no publicly available code, or
do not provide sufficient comparison to assess the quality of the learned representations. Our scalable
model and extensive analysis aim at overcoming these issues, besides outperforming these methods.

Triplet losses. Triplet losses have recently been widely used in various forms for representation
learning in different domains (Mikolov et al., 2013; Schroff et al., 2015; Wu et al., 2018b) and have
also been theoretically studied (Arora et al., 2019), but have not found much use for time series apart
from audio (Bredin, 2017; Lu et al., 2017; Jansen et al., 2018), and never, to our knowledge, in a
fully unsupervised setting, as existing works assume the existence of class labels or annotations in
the training data. Closer to our work even though focusing on a different, more specific task, Turpault
et al. (2019) learn audio embeddings in a semi-supervised setting, while partially relying on specific
transformations of the training data to sample positive samples in the triplet loss; Logeswaran & Lee
(2018) train a sentence encoder to recognize, among randomly chosen sentences, the true context of
another sentence, which is a difficult method to adapt to time series. Our method instead relies on a
more natural choice of positive samples, learning similarities using subsampling.

Convolutional networks for time series. Deep convolutional neural networks have recently been
successfully applied to time series classification tasks (Cui et al., 2016; Wang et al., 2017), showing
competitive performance. Dilated convolutions, popularized by WaveNet (Oord et al., 2016) for
audio generation, have been used to improve their performance and were shown to perform well as
sequence-to-sequence models for time series forecasting (Bai et al., 2018) using an architecture that
inspired ours. These works particularly show that dilated convolutions help to build networks for
sequential tasks that are able to outperform recurrent neural networks in terms of both efficiency and
prediction performance.

3 Unsupervised Training

We seek to train an encoder-only architecture, avoiding the need to jointly train with a decoder as in
autoencoder-based standard representation learning methods as done by Malhotra et al. (2017), since

2



those would induce a larger computational cost. To this end, we introduce a novel triplet loss for time
series, inspired by the successful and by now classic word representation learning method known
as word2vec (Mikolov et al., 2013). The proposed triplet loss uses original time-based sampling
strategies to overcome the challenge of learning on unlabeled data. As far as we know, this work is
the first in the time series literature to rely on a triplet loss in a fully unsupervised setting.

yi

yj

Time

xneg

xpos xref

yk

Figure 1: Choices of xref , xpos and xneg.

The objective is to ensure that similar time series
obtain similar representations, with no supervi-
sion to learn such similarity. Triplet losses help
achieving the former (Schroff et al., 2015), but
require to provide pairs of similar inputs, thus
challenging the latter. While previous super-
vised works for time series using triplet losses
assume that data is annotated, we introduce an
unsupervised time-based criterion to select pairs
of similar time series and taking into account
time series of varying lengths, by following word2vec’s intuition. The assumption made in the CBOW
model of word2vec is twofold. The representation of the context of a word should probably be, on
one hand, close to the one of this word (Goldberg & Levy, 2014), and, on the other hand, distant
from the one of randomly chosen words, since they are probably unrelated to the original word’s
context. The corresponding loss then pushes pairs of (context, word) and (context, random word) to
be linearly separable. This is called negative sampling.

To adapt this principle to time series, we consider (see Figure 1 for an illustration) a random
subseries2 xref of a given time series yi. Then, on one hand, the representation of xref should
be close to the one of any of its own subseries xpos (a positive example). On the other hand, if
we consider another subseries xneg (a negative example) chosen at random (in a different random
time series yj if several series are available, or in the same time series if it is long enough and not
stationary), then its representation should be distant from the one of xref . Following the analogy
with word2vec, xpos corresponds to a word, xref to its context, and xneg to a random word. To
improve the stability and convergence of the training procedure as well as the experimental results of
our learned representations, we introduce, as in word2vec, several negative samples (xneg

k )
k∈J1,KK,

chosen independently at random.

The training objective to be minimized corresponding to these choices can be thought of the one of
word2vec with its shallow network replaced by a deep network f(·,θ) with parameters θ, or formally

− log
(
σ
(
f
(
xref ,θ

)>
f(xpos,θ)

))
−

K∑
k=1

log
(
σ
(
−f
(
xref ,θ

)>
f(xneg

k ,θ)
))

, (1)

where σ is the sigmoid function. This loss pushes the computed representations to distinguish
between xref and xneg, and to assimilate xref and xpos. Overall, the training procedure consists in
traveling through the training dataset for several epochs (possibly using mini-batches), picking tuples(
xref ,xpos, (xneg

k )
k

)
at random as detailed in Algorithm 1, and performing a minimization step on

the corresponding loss for each pair, until training ends. The overall computational and memory
cost is O (K · c (f)), where c (f) is the cost of evaluating and backpropagating through f on a time
series; thus this unsupervised training is scalable as long as the encoder architecture is scalable as
well.

The length of the negative examples is chosen at random in Algorithm 1 for the most general case;
however, their length can also be the same for all samples and equal to size (xpos). The latter case is
suitable when all time series in the dataset have equal lengths, and speeds up the training procedure
thanks to computation factorizations; the former case is only used when time series in the dataset do
not have the same lengths, as we saw no other difference than time efficiency between the two cases
in our experiments. In our experiments, we do not cap the lengths of xref , xpos and xneg since they
are already limited by the length of the train time series, which corresponds to scales of lengths on
which our representations are tested.

We highlight that this time-based triplet loss takes advantage of the ability of the chosen encoder to
take as input time series of different lengths. By training the encoder on a range of input lengths

2I.e., a subsequence of a time series composed by consecutive time steps of this time series.

3



Algorithm 1: Choices of xref , xpos and (xneg
k )

k ∈J1,KK for an epoch over the set (yi)i∈J1,NK.

1 for i ∈ J1, NK with si = size (yi) do
2 pick spos = size (xpos) in J1, siK and sref = size

(
xref

)
in Jspos, siK uniformly at random;

3 pick xref uniformly at random among subseries of yi of length sref ;
4 pick xpos uniformly at random among subseries of xref of length spos;
5 pick uniformly at random ik ∈ J1, NK, then snegk = size (xneg

k ) in J1, size (yk)K and finally xneg
k

among subseries of yk of length snegk , for k ∈ J1,KK.

going from one to the length of the longest time series in the train set, it becomes able to output
meaningful and transferable representations regardless of the input length, as shown in Section 5.

This training procedure is interesting in that it is efficient enough to be run over long time series
(see Section 5) with a scalable encoder (see Section 4), thanks to its decoder-less design and the
separability of the loss, on which a backpropagation per term can be performed to save memory.3

4 Encoder Architecture

We explain and present in this section our choice of architecture for the encoder, which is motivated
by three requirements: it must extract relevant information from time series; it needs to be time- and
memory-efficient, both for training and testing; and it has to allow variable-length inputs. We choose
to use deep neural networks with exponentially dilated causal convolutions to handle time series.
While they have been popularized in the context of sequence generation (Oord et al., 2016), they have
never been used for unsupervised time series representation learning. They offer several advantages.

Compared to recurrent neural networks, which are inherently designed for sequence-modeling tasks
and thus sequential, these networks are scalable as they allow efficient parallelization on modern
hardware such as GPUs. Besides this demonstrated efficiency, exponentially dilated convolutions
have also been introduced to better capture, compared to full convolutions, long-range dependencies
at constant depth by exponentially increasing the receptive field of the network (Oord et al., 2016; Yu
& Koltun, 2016; Bai et al., 2018).

Convolutional networks have also been demonstrated to be performant on various aspects for se-
quential data. For instance, recurrent networks are known to be subject to the issue of exploding and
vanishing gradients, due to their recurrent nature (Goodfellow et al., 2016, Chapter 10.9). While
significant work has been done to tackle it and improve their ability to capture long-term dependencies,
such as the LSTM (Hochreiter & Schmidhuber, 1997), recurrent networks are still outperformed
by convolutional networks on this aspect (Bai et al., 2018). On the specific domains of time series
classification, which is an essential part of our experimental evaluation, and forecasting, deep neural
networks have recently been successfully used (Bai et al., 2018; Ismail Fawaz et al., 2019).

Our model is particularly based on stacks of dilated causal convolutions (see Figure 2a), which map
a sequence to a sequence of the same length, such that the i-th element of the output sequence is
computed using only values up until the i-th element of the input sequence, for all i. It is thus called
causal, since the output value corresponding to a given time step is not computed using future input
values. Causal convolutions allow to alleviate the disadvantage of not using recurrent networks at
testing time. Indeed, recurrent networks can be used in an online fashion, thus saving memory and
computation time during testing. In our case, causal convolutions organize the computational graph
so that, in order to update its output when an element is added at the end of the input time series, one
only has to evaluate the highlighted graph shown in Figure 2a rather than the full graph.

Inspired by Bai et al. (2018), we build each layer of our network as a combination of causal convolu-
tions, weight normalizations (Salimans & Kingma, 2016), leaky ReLUs and residual connections (see
Figure 2b). Each of these layers is given an exponentially increasing dilation parameter (2i for the
i-th layer). The output of this causal network is then given to a global max pooling layer squeezing
the temporal dimension and aggregating all temporal information in a fixed-size vector (as proposed

3 We used this optimization for multivariate or long (with length higher than 10 000) time series.

4



Time

Dilation 21 = 2

Dilation 20 = 1

Dilation 22 = 4

Input

Output

(a)

Causal Convolution 1
Dilation 2i

Causal Convolution 2
Dilation 2i

Weight Norm

Weight Norm

Leaky ReLU

Leaky ReLU

Convolution
Kernel size 1
(if needed for
up- or down-

sampling)

(b)

Figure 2: (a) Illustration of three stacked dilated causal convolutions. Lines between each sequence
represent their computational graph. Red solid lines highlight the dependency graph for the computa-
tion of the last value of the output sequence, showing that no future value of the input time series is
used to compute it. (b) Composition of the i-th layer of the chosen architecture.

by Wang et al. (2017) in a supervised setting with full convolutions). A linear transformation of this
vector is then the output of the encoder, with a fixed, independent from the input length, size.

5 Experimental Results

We review in this section experiments conducted to investigate the relevance of the learned represen-
tations. Code corresponding to these experiments is publicly available.4 The full training process
and hyperparameter choices are detailed in the supplementary material, Sections S1 and S2. We
used Python 3 for implementation, with PyTorch 0.4.1 (Paszke et al., 2017) for neural networks and
scikit-learn (Pedregosa et al., 2011) for SVMs. Each encoder was trained using the Adam optimizer
(Kingma & Ba, 2015) on a single Nvidia Titan Xp GPU with CUDA 9.0, unless stated otherwise.

We highlight that we perform no hyperparameter optimization of the unsupervised encoder architec-
ture and training parameters for any task, unlike other unsupervised works such as TimeNet (Malhotra
et al., 2017); particularly, for classification tasks, no label was used during the encoder training.

5.1 Classification

We first assess the quality of our learned representations on supervised tasks in a standard manner
(Xu et al., 2003; Dosovitskiy et al., 2014) by using them for time series classification. In this setting,
we show that (1) our method outperforms the state-of-the-art unsupervised methods, and notably
achieves performance close to the supervised state-of-the-art, (2) strongly outperforms supervised
deep learning methods when data is only sparsely labeled, (3) produces transferable representations.

For each considered dataset with a train / test split, we unsupervisedly train an encoder using its train
set. We then train an SVM with radial basis function kernel on top of the learned features using the
train labels of the dataset, and output the corresponding classification score on the test set. As our
training procedure encourages representations of different time series to be separable, observing the
classification performance of a simple SVM on these features is a good mean to check their quality
(Wu et al., 2018a). Using SVMs also allows, when the encoder is trained, an efficient training both in
terms of time (training is a matter of minutes in most cases) and space.

As K has significant impact on the performance, we present a combined version of our method,
where representations computed by encoders trained with different values of K (see Section S2 for

4https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries.

5

https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries


Figure 3: Boxplot of the ratio of the accuracy
versus maximum achieved accuracy (higher is
better) for compared methods on the first 85 UCR
datasets.

Figure 4: Accuracy of ResNet and our method
with respect to the ratio of labeled data on TwoPat-
terns. Error bars correspond to the standard devi-
ation over five runs per point for each method.

more details) are concatenated. This enables our learned representations with different parameters to
complement each other, and to remove some noise in the classification scores.

5.1.1 Univariate Time Series

We present accuracy scores for all 128 datasets of the new iteration of the UCR archive (Dau et al.,
2018), which is a standard set of varied univariate datasets. We report in Table 1 scores for only some
UCR datasets, while scores for all datasets are reported in the supplementary material, Section S3.

We first compare our scores to the two concurrent methods of this work, TimeNet (Malhotra et al.,
2017) and RWS (Wu et al., 2018a), which are two unsupervised methods also training a simple
classifier on top of the learned representations, and reporting their results on a few UCR datasets. We
also compare on the first 85 datasets of the archive5 to the four best classifiers of the supervised state-
of-the-art studied in Bagnall et al. (2017): COTE – replaced by its improved version HIVE-COTE
(Lines et al., 2018) –, ST (Bostrom & Bagnall, 2015), BOSS (Schäfer, 2015) and EE (Lines & Bagnall,
2015). HIVE-COTE is a powerful ensemble method using many classifiers in a hierarchical voting
structure; EE is a simpler ensemble method; ST is based on shapelets and BOSS is a dictionary-based
classifier.6 We also add DTW (one-nearest neighbor classifier with DTW as measure) as a baseline.
HIVE-COTE includes ST, BOSS, EE and DTW in its ensemble, and is thus expected to outperform
them. Additionally, we compare our method to the ResNet method of Wang et al. (2017), which is
the best supervised neural network method studied in the review of Ismail Fawaz et al. (2019).

Performance. Comparison with the unsupervised state-of-the-art (Section S3, Table S3 of the
supplementary material), indicates that our method consistently matches or outperforms both unsu-
pervised methods TimeNet and RWS (on 11 out of 12 and 10 out of 11 UCR datasets), showing its
performance. Unlike our work, code and full results on the UCR archive are not provided for these
methods, hence the incomplete results.

When comparing to the supervised non-neural-network state-of-the-art, we observe (see Figures S2
and S3 in the supplementary material) that our method is globally second-to-best (with average rank
2.92), only beaten by HIVE-COTE (1.71) and equivalent to ST (2.95). Thus, our unsupervised method
beats several recognized supervised classifier, and is only preceded by a powerful ensemble method,

5The new UCR archive includes 43 new datasets on which no reproducible results of state-of-the-art methods
have been produced yet. Still, we provide complete results for our method on these datasets, in the supplementary
material, Section S3, Table S4, along with those of DTW, the only other method for which they were available.

6While ST and BOSS are also ensembles of classifiers, we chose not to qualify both of them as ensembles
since their ensemble only includes variations of the same novel classification method.

6



Table 1: Accuracy scores of variants of our method compared with other supervised and unsupervised
methods, on some UCR datasets. Results for the whole archive are available in the supplementary
material, Section S3, Tables S1, S2 and S4. Bold and underlined scores respectively indicate the best
and second-best (when there is no tie for first place) performing methods.

Dataset
Ours (unsupervised) Unsup. Supervised Supervised ensemble

K = 5 K = 10 Combined FordA DTW ST BOSS HIVE-COTE EE

DiatomSizeReduction 0.993 0.984 0.993 0.974 0.967 0.925 0.931 0.941 0.944

ECGFiveDays 1 1 1 1 1 0.984 1 1 0.82

FordB 0.781 0.793 0.81 0.798 0.62 0.807 0.711 0.823 0.662

Ham 0.657 0.724 0.695 0.533 0.467 0.686 0.667 0.667 0.571

Phoneme 0.249 0.276 0.289 0.196 0.228 0.321 0.265 0.382 0.305

SwedishLeaf 0.925 0.914 0.931 0.925 0.792 0.928 0.922 0.954 0.915

which was expected since it takes advantage of the numerous classifiers and data representations
it uses. Additionally, Figure 3 shows that our method has second-to-best median for the ratio of
accuracy over maximum achieved accuracy, behind HIVE-COTE and above ST. Finally, results
reported from the study of Ismail Fawaz et al. (2019) for the fully supervised ResNet (Section S3,
Table S3 of the supplementary material) show that it expectedly outperforms our method on 63%
out of 71 UCR datasets.7 Overall, our method achieves remarkable performance as it close to the
best supervised neural network, matches the second-to-best studied non-neural-network supervised
method, and in particular is at the level of the best performing method included in HIVE-COTE.8

Sparse Labeling. Taking advantage of their unsupervised training, we show that our representations
can be successfully used for sparsely labeled datasets compared to supervised methods, since only
the SVM has to be learned on only the portion of labeled data. Figure 4 shows that an SVM trained
on our representations of a randomly chosen labeled set consistently outperforms the supervised
neural network ResNet trained on a labeled set of the same size, especially when the percentage
of labeled data is small. For example, with only 1.5% of labeled data, we achieve an accuracy of
81%, against only 26% for ResNet, equivalent to a random classifier. Moreover, we exceed 99% of
accuracy starting from 11% of labeled data, while ResNet only achieves this level of accuracy with
more than 50% of labeled data. This shows the relevance of our method in semi-supervised settings,
compared to fully supervised methods.

Transferability. We include in the comparisons the classification accuracy for each dataset of an
SVM trained on this dataset using the representations computed by an encoder, which was trained on
another dataset (FordA, with K = 5), to test the transferability of our representations. We observe
that the scores achieved by this SVM trained on transferred representations are close to the scores
reported when the encoder is trained on the same dataset as the SVM, showing the transferability
of our representations from a dataset to another, and from time series to other time series with
different lengths. More generally, this transferability and the performance of simple classifiers on the
representations we learn indicate that they are universal and easy to make use of.

5.1.2 Multivariate Time Series

To complement our evalutation on the UCR archive which exclusively contains univariate series, we
tested our method on all 30 datasets of the newly released UEA archive (Bagnall et al., 2018). Full
accuracy scores are presented in the supplementary material, Section S4, Table S5.

The UEA archive has been designed as a first attempt to provide a standard archive for multivariate
time series classification such as the UCR one for univariate series. As it has only been released
recently, we could not compare our method to state-of-the-art classifiers for multivariate time series.
However, we provide a comparison with DTWD as baseline using results provided by Bagnall et al.

7Those results are incomplete as they performed their experiments on the old version of the archive, whereas
ours are performed on the new ones where some datasets were changed.

8Our method could be included in HIVE-COTE, which could improve its performance, but this is beyond the
scope of this work and requires technical work, as HIVE-COTE is implemented in Java and ours in Python.

7



Figure 5: Minute-averaged electricity consumption for a single day, with respect to the hour of the
day. Vertical lines and colors divide the day into six clusters, obtained with k-means clustering
based on representations computed on a day-long sliding window. The clustering divides the day in
meaningful portions (night, morning, afternoon, evening).

(2018). DTWD (dimension-Dependent DTW) is a possible extension of DTW in the multivariate
setting, and is the best baseline studied by Bagnall et al. (2018). Overall, our method matches or
outperforms DTWD on 69% of the UEA datasets, which indicates a good performance. As this
archive is destined to grow and evolve in the future, and without further comparisons, no additional
conclusion can be drawn.

5.2 Evaluation on Long Time Series

We show the applicability and scalability of our method on long time series without labeling for
regression tasks, which could correspond to an industrial application and complements the performed
tests on the UCR and UEA archives, whose datasets mostly contain short time series.

The Individual Household Electric Power Consumption (IHEPC) dataset from the UCI Machine
Learning Repository (Dheeru & Karra Taniskidou, 2017) is a single time series of length 2 075 259
monitoring the minute-averaged electricity consumption of one French household for four years. We
split this time series into train (first 5× 105 measurements, approximately a year) and test (remaining
measurements). The encoder is trained over the train time series on a single Nvidia Tesla P100 GPU
in no more than a few hours, showing that our training procedure is scalable to long time series.

We consider the learned encoder on two regression tasks involving two different input scales. We
compute, for each time step of the time series, the representations of the last window corresponding
to a day (1 440 measurements) and a quarter (12 · 7 · 1 440 measurements) using the same encoder.
An example of application of the day-long representations is shown on Figure 5. The considered tasks
consist in, for each time step, predicting the discrepancy between the mean value of the series for the
next time period (either a day or quarter) and the one for the previous period. We compare linear
regressors, trained using gradient descent, to minimize the mean squared error between the prediction
and the target, applied either on the raw time series or on the previously computed representations.

Table 2: Results obtained on the IHEPC dataset.

Task Metric Representations Raw values

Day
Test MSE 8.92 · 10−2 8.92 · 10−2

Wall time 12s 3min 1s

Quarter
Test MSE 7.26 · 10−2 6.26 · 10−2

Wall time 9s 1h 40min 15s

Results and execution times on a Nvidia Titan
Xp GPU are presented in Table 2.9 On both
scales of inputs, our representations induce only
a slightly degraded performance but provide a
large efficiency improvement, due to their small
size compared to the raw time series. This shows
that a single encoder trained minimizing our
time-based loss is able to output representations
for different scales of input lengths that are also
helpful for other tasks than classification, cor-
roborating their universality.

9While acting on representations of the same size, the quarterly linear regressor is slightly faster than the
daily one because the number of quarters in the considered time series is smaller than the number of days.

8



6 Conclusion

We present an unsupervised representation learning method for time series that is scalable and
produces high-quality and easy-to-use embeddings. They are generated by an encoder formed
by dilated convolutions that admits variable-length inputs, and trained with an efficient triplet
loss using novel time-based negative sampling for time series. Conducted experiments show that
these representations are universal and can easily and efficiently be used for diverse tasks such as
classification, for which we achieve state-of-the-art performance, and regression.

Acknowledgements

We would like to acknowledge Patrick Gallinari, Sylvain Lamprier, Mehdi Lamrayah, Etienne
Simon, Valentin Guiguet, Clara Gainon de Forsan de Gabriac, Eloi Zablocki, Antoine Saporta,
Edouard Delasalles, Sidak Pal Singh, Andreas Hug, Jean-Baptiste Cordonnier, Andreas Loukas and
François Fleuret for helpful comments and discussions at various stages of this project, as well as
all contributors to the datasets and archives we used for this project (Dau et al., 2018; Bagnall et al.,
2018; Dheeru & Karra Taniskidou, 2017).

References
Arora, S., Khandeparkar, H., Khodak, M., Plevrakis, O., and Saunshi, N. A theoretical analysis of

contrastive unsupervised representation learning. arXiv preprint arXiv:1902.09229, 2019.

Bagnall, A., Lines, J., Bostrom, A., Large, J., and Keogh, E. The great time series classification
bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and
Knowledge Discovery, 31(3):606–660, May 2017.

Bagnall, A., Dau, H. A., Lines, J., Flynn, M., Large, J., Bostrom, A., Southam, P., and Keogh, E. The
UEA multivariate time series classification archive, 2018. arXiv preprint arXiv:1811.00075, 2018.

Bai, S., Kolter, J. Z., and Koltun, V. An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Bostrom, A. and Bagnall, A. Binary shapelet transform for multiclass time series classification. In
Big Data Analytics and Knowledge Discovery, pp. 257–269, Cham, 2015. Springer International
Publishing. ISBN 978-3-319-22729-0.

Bredin, H. Tristounet: Triplet loss for speaker turn embedding. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5430–5434, March 2017.

Cui, Z., Chen, W., and Chen, Y. Multi-scale convolutional neural networks for time series classifica-
tion. arXiv preprint arXiv:1603.06995, 2016.

Dau, H. A., Keogh, E., Kamgar, K., Yeh, C.-C. M., Zhu, Y., Gharghabi, S., Ratanamahatana, C. A.,
Yanping, Hu, B., Begum, N., Bagnall, A., Mueen, A., and Batista, G. The UCR time series
classification archive, October 2018.

Demšar, J., Curk, T., Erjavec, A., Črt Gorup, Hočevar, T., Milutinovič, M., Možina, M., Polajnar, M.,
Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J., Žitnik, M., and Zupan, B.
Orange: Data mining toolbox in Python. Journal of Machine Learning Research, 14:2349–2353,
2013.

Denton, E. L. and Birodkar, V. Unsupervised learning of disentangled representations from video. In
Advances in Neural Information Processing Systems 30, pp. 4414–4423. Curran Associates, Inc.,
2017.

Dheeru, D. and Karra Taniskidou, E. UCI machine learning repository, 2017.

Dosovitskiy, A., Springenberg, J. T., Riedmiller, M., and Brox, T. Discriminative unsupervised
feature learning with convolutional neural networks. In Ghahramani, Z., Welling, M., Cortes,
C., Lawrence, N. D., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing
Systems 27, pp. 766–774. Curran Associates, Inc., 2014.

9



Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., and Rätsch, G. SOM-VAE: Interpretable discrete
representation learning on time series. In International Conference on Learning Representations,
2019.

Goldberg, Y. and Levy, O. word2vec explained: deriving Mikolov et al.’s negative-sampling word-
embedding method. arXiv preprint arXiv:1402.3722, 2014.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Hyvarinen, A. and Morioka, H. Unsupervised feature extraction by time-contrastive learning and
nonlinear ICA. In Advances in Neural Information Processing Systems 29, pp. 3765–3773. Curran
Associates, Inc., 2016.

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A. Deep learning for time
series classification: a review. Data Mining and Knowledge Discovery, March 2019.

Jansen, A., Plakal, M., Pandya, R., Ellis, D. P. W., Hershey, S., Liu, J., Moore, R. C., and Saurous,
R. A. Unsupervised learning of semantic audio representations. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 126–130, April 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

Lei, Q., Yi, J., Vaculin, R., Wu, L., and Dhillon, I. S. Similarity preserving representation learning
for time series analysis. arXiv preprint arXiv:1702.03584, 2017.

Lines, J. and Bagnall, A. Time series classification with ensembles of elastic distance measures. Data
Mining and Knowledge Discovery, 29(3):565–592, May 2015.

Lines, J., Taylor, S., and Bagnall, A. Time series classification with HIVE-COTE: The hierarchical
vote collective of transformation-based ensembles. ACM Transactions on Knowledge Discovery
from Data, 12(5):52:1–52:35, July 2018.

Logeswaran, L. and Lee, H. An efficient framework for learning sentence representations. In
International Conference on Learning Representations, 2018.

Lu, R., Wu, K., Duan, Z., and Zhang, C. Deep ranking: Triplet MatchNet for music metric learning.
In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
121–125, March 2017.

Malhotra, P., TV, V., Vig, L., Agarwal, P., and Shroff, G. TimeNet: Pre-trained deep recurrent neural
network for time series classification. arXiv preprint arXiv:1706.08838, 2017.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. Distributed representations of words
and phrases and their compositionality. In Advances in Neural Information Processing Systems 26,
pp. 3111–3119. Curran Associates, Inc., 2013.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N.,
Senior, A., and Kavukcuoglu, K. WaveNet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga,
L., and Lerer, A. Automatic differentiation in PyTorch. 2017.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

10

http://www.deeplearningbook.org
http://www.deeplearningbook.org


Salimans, T. and Kingma, D. P. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In Advances in Neural Information Processing Systems 29, pp.
901–909. Curran Associates, Inc., 2016.

Schäfer, P. The BOSS is concerned with time series classification in the presence of noise. Data
Mining and Knowledge Discovery, 29(6):1505–1530, Nov 2015.

Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A unified embedding for face recognition and
clustering. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
815–823, June 2015.

Srivastava, N., Mansimov, E., and Salakhudinov, R. Unsupervised learning of video representations
using LSTMs. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pp. 843–852, Lille, France, July 2015.
PMLR.

Turpault, N., Serizel, R., and Vincent, E. Semi-supervised triplet loss based learning of ambient audio
embeddings. In 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 760–764, May 2019.

Villegas, R., Yang, J., Hong, S., Lin, X., and Lee, H. Decomposing motion and content for natural
video sequence prediction. International Conference on Learning Representations, 2017.

Wang, Z., Yan, W., and Oates, T. Time series classification from scratch with deep neural networks:
A strong baseline. In 2017 International Joint Conference on Neural Networks (IJCNN), pp.
1578–1585, May 2017.

Wu, L., Yen, I. E.-H., Yi, J., Xu, F., Lei, Q., and Witbrock, M. Random Warping Series: A random
features method for time-series embedding. In Proceedings of the Twenty-First International
Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning
Research, pp. 793–802. PMLR, April 2018a.

Wu, L. Y., Fisch, A., Chopra, S., Adams, K., Bordes, A., and Weston, J. Starspace: Embed all the
things! In Thirty-Second AAAI Conference on Artificial Intelligence, 2018b.

Xu, W., Liu, X., and Gong, Y. Document clustering based on non-negative matrix factorization. In Pro-
ceedings of the 26th Annual International ACM SIGIR Conference on Research and Development
in Informaion Retrieval, SIGIR ’03, pp. 267–273, New York, NY, USA, 2003. ACM.

Young, T., Hazarika, D., Poria, S., and Cambria, E. Recent trends in deep learning based natural
language processing. IEEE Computational Intelligence Magazine, 13(3):55–75, August 2018.

Yu, F. and Koltun, V. Multi-scale context aggregation by dilated convolutions. In International
Conference on Learning Representations, 2016.

11



Appendices
In these appendices, we provide our detailed training procedure for classification tasks, choices
of hyperparameters, as well as the full experimental results of our method, compared to other
concurrent methods. Section S1 explains and discusses the exact training process for classification
tasks. Section S2 details the choices of hyperparameters in all presented experiments. Section S3
reports accuracy scores of all variants of our method on the whole UCR archive (Dau et al., 2018), as
well as comparisons with concurrent methods, when available. Finally, Section S4 provides accuracy
scores for our method on the whole UEA archive (Bagnall et al., 2018).

S1 Training Details

S1.1 Input Preprocessing

We preprocess datasets of the UCR archive that were not already normalized, as well as the IHEPC
dataset, so that the set of time series values for each dataset has zero mean and unit variance. For
each UEA dataset, each dimension of the time series was preprocessed independently from the other
dimensions by normalizing in the same way its mean and variance.

S1.2 SVM Training

In order to train an SVM on the computed representations of the elements of the train set, we perform
an hyperparameter optimization for the penalty C of the error term of the SVM by performing
cross-validation over the representations of the train set, thus only using the train labels. Note that if
the train set or the number of training samples per class are too small, we choose a penalty C =∞
for the SVM (which corresponds to no regularization).

S1.3 Behavior of the Learned Representations through Training

Classification accuracy evolution during training. As shown in Figure S1, our unsupervised
training clearly makes the classification accuracy of the trained SVM increase with the number of
optimization steps.

Numerical stability. The Risk R is defined as the expectation (taken over the random selec-
tion of the sequences {xref ,xpos,xneg}) of the loss defined in Equation (1). This risk may de-
crease if all the representations f (·,θ) are scaled by a positive large number. For example, if for
some θ0, for (almost surely) any sequences

{
xref ,xpos,xneg

}
, f
(
xref ,θ0

)>
f (xpos,θ0) ≥ 0 and

f
(
xref ,θ0

)>
f (xneg,θ0) ≤ 0, then

R(λ,θ0) := Exref ,xpos,xneg

[
− log

(
σ
(
λ2f

(
xref ,θ0

)>
f (xpos,θ0)

))
− log

(
σ
(
−λ2f

(
xref ,θ0

)>
f (xneg,θ0)

))]
(2)

is a decreasing function of λ, thus λ could diverge to infinity in order to minimize the loss. In
other words, the parameters in θ0 corresponding to the last linear layer could be linearly scaled up,
and representations would “explode” (their norm would always increase through training). Such a
phenomenon is not observed in practice, as the mean representation Euclidean norm lies around 20.
There are two possible explanations for that: either the condition above is not satisfied (more generally,
the loss is not reduced by increasing the representations) or the use of the sigmoid function, that has
vanishing gradients, results in an increase of the representations that is too slow to be observed, or
negligible with respect to other weight updates during optimization.

12



Figure S1: Evolution of the test accuracy during the training of the encoder on the CricketX dataset
from the UCR archive (withK = 10), with respect to the number of completed epochs. The test labels
were only used for monitoring purposes and the test accuracy was computed after each mini-batch
optimization. The vertical line marks the epoch at which 2000 optimization steps were performed, at
which point training is stopped in our tests. Test accuracy clearly increases during training.

S2 Hyperparameters

S2.1 Influence of K

As mentioned in Section 5, K can have a significant impact on the performance of the encoder. We
notably observed that K = 1 leads to statistically significantly lower scores compared to scores
obtained when trained withK > 1 on the UCR datasets, jutifying the use of several negative examples
during training. We did not observe any clear statistical difference between other values of K on
the whole archive; however, we nocited important differences between different values of K when
studying individual datasets. Therefore, we chose to combine several encoders trained with different
values of K in order to avoid selecting it as a fixed hyperparameter.

S2.2 Detailed Choices of Hyperparameters

We train our models with the following parameters for time series classification. Note that no
hyperparameter optimization was performed on the encoder hyperparameters.

• Optimizer: Adam (Kingma & Ba, 2015) with learning rate α = 0.001 and decay rates
β = (0.9, 0.999).

• SVM: penalty C ∈
{
10i | i ∈ J−4, 4K

}
∪ {∞}.

• Encoder training:
– number of negative samples: K ∈ {1, 2, 5, 10} for univariate time series, K ∈
{5, 10, 20} for multivariate ones;

– batch size: 10;
– number of optimizations steps: 2000 for K ≥ 10 (i.e., 20 epochs for a dataset of size
1000), 1500 otherwise.

• Architecture:
– number of channels in the intermediary layers of the causal network: 40;
– number of layers (depth of the causal network): 10;
– kernel size of all convolutions: 3;
– negative slope of the leaky ReLU: 0.01;
– number of output channels of the causal network (before max pooling): 320;
– dimension of the representations: 160.

13



Figure S2: Critical difference diagram of the average ranks of the compared classifiers for the
Nemenyi test, obtained with Orange (Demšar et al., 2013).

Figure S3: Distribution of ranks of compared methods for the first 85 UCR datasets.

For the Individual Household Electric Power Consumption dataset, changes are the following:

• number of negative samples: K = 10;

• batch size: 1;

• number of optimization steps: 400;

• number of channels in the intermediary layers of the causal network: 30;

• number of output channels of the causal network (before max pooling): 160;

• dimension of the representations: 80.

S3 Univariate Time Series

Full results corresponding to the first 85 UCR datasets for our method are presented in Table S1,
while comparisons with DTW, ST, BOSS, HIVE-COTE and EE are shown in Figures S2 and S3
and Table S2,S1 and comparisons with ResNet,S2 TimeNet and RWS are shown in Table S3. Ta-
ble S4 compiles the results of our method and of DTWS3 for the newest 43 UCR datasets (except
DodgerLoopDay, DodgerLoopGame and DodgerLoopWeekend which contain missing values).

S1Scores aken from http://www.timeseriesclassification.com/singleTrainTest.csv.
S2Scores taken from https://github.com/hfawaz/dl-4-tsc/blob/master/results/results-uea.csv (first iteration).
S3Scores taken from https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

14

http://www.timeseriesclassification.com/singleTrainTest.csv
https://github.com/hfawaz/dl-4-tsc/blob/master/results/results-uea.csv
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/


Standard deviation. All UCR datasets are provided with a unique train / test split that we used in
our experiments. Compared techniques (DTW, ST, BOSS, HIVE-COTE and EE) were also tested
on 100 random train / test splits of these datasets by (Bagnall et al., 2017) to produce a very strong
state-of-the-art evaluation, but we did not perform similar resamples as this is beyond the scope of
this work and would require much more computations. Note that the scores for these methods used in
this article are the ones corresponding to the original train / test split of the datasets.

As our method is based on random sampling, the reported scores may vary depending on the random
seed. While we do not report standard deviation, the large number of tested datasets prevents large
statiscal error in the global evaluation of our method. The order of magnitude of accuracy variation
between different runs of the combined version of our method is below 0.01 (for instance, on four
different runs, the corresponding standard variations for, respectively, datasets DiatomSizeReduction,
CricketX and UWaveGestureLibraryX are 0.0056, 0.0091 and 0.0053).

15



Table S1: Accuracy scores of variants of our method on the first 85 UCR datasets. Bold scores
indicate the best performing method.

Dataset
Ours (unsupervised)

K = 1 K = 2 K = 5 K = 10 Combined FordA (K = 5)

Adiac 0.734 0.711 0.703 0.675 0.716 0.76
ArrowHead 0.869 0.829 0.754 0.766 0.829 0.817

Beef 0.733 0.567 0.7 0.667 0.7 0.667

BeetleFly 0.9 0.8 0.9 0.8 0.9 0.8

BirdChicken 0.7 0.8 0.9 0.85 0.8 0.9
Car 0.75 0.767 0.633 0.833 0.817 0.85
CBF 0.982 0.991 0.99 0.983 0.994 0.988

ChlorineConcentration 0.719 0.747 0.739 0.749 0.782 0.688

CinCECGtorso 0.702 0.747 0.682 0.713 0.74 0.638

Coffee 0.964 1 1 1 1 1
Computers 0.688 0.644 0.676 0.664 0.628 0.648

CricketX 0.736 0.71 0.7 0.713 0.777 0.682

CricketY 0.682 0.664 0.695 0.728 0.767 0.667

CricketZ 0.721 0.71 0.726 0.708 0.764 0.656

DiatomSizeReduction 0.99 0.987 0.993 0.984 0.993 0.974

DistalPhalanxOutlineCorrect 0.761 0.746 0.775 0.775 0.768 0.764

DistalPhalanxOutlineAgeGroup 0.719 0.748 0.719 0.727 0.734 0.727

DistalPhalanxTW 0.698 0.676 0.662 0.676 0.676 0.669

Earthquakes 0.748 0.748 0.748 0.748 0.748 0.748
ECG200 0.87 0.9 0.86 0.94 0.9 0.83

ECG5000 0.939 0.939 0.937 0.933 0.936 0.94
ECGFiveDays 1 1 1 1 1 1
ElectricDevices 0.709 0.7 0.712 0.707 0.732 0.676

FaceAll 0.764 0.81 0.733 0.786 0.802 0.734

FaceFour 0.807 0.864 0.795 0.92 0.875 0.83

FacesUCR 0.885 0.871 0.886 0.884 0.918 0.835

FiftyWords 0.763 0.734 0.727 0.732 0.78 0.745

Fish 0.903 0.909 0.891 0.891 0.88 0.96
FordA 0.923 0.922 0.927 0.928 0.935 0.927

FordB 0.786 0.788 0.781 0.793 0.81 0.798

GunPoint 0.953 0.987 0.987 0.98 0.993 0.987

Ham 0.648 0.686 0.657 0.724 0.695 0.533

HandOutlines 0.922 0.919 0.908 0.922 0.922 0.919

Haptics 0.445 0.435 0.432 0.49 0.455 0.474

Herring 0.609 0.594 0.578 0.594 0.578 0.578

InlineSkate 0.425 0.429 0.427 0.371 0.447 0.444

InsectWingbeatSound 0.61 0.592 0.617 0.597 0.623 0.599

ItalyPowerDemand 0.94 0.927 0.928 0.954 0.925 0.929

LargeKitchenAppliances 0.797 0.827 0.843 0.789 0.848 0.765

Lightning2 0.869 0.836 0.852 0.869 0.918 0.787

Lightning7 0.795 0.822 0.822 0.795 0.795 0.74

Mallat 0.962 0.931 0.947 0.951 0.964 0.916

Meat 0.917 0.867 0.867 0.95 0.95 0.867

MedicalImages 0.738 0.768 0.77 0.75 0.784 0.725

MiddlePhalanxOutlineCorrect 0.749 0.818 0.777 0.825 0.814 0.787

MiddlePhalanxOutlineAgeGroup 0.617 0.662 0.656 0.656 0.656 0.623

MiddlePhalanxTW 0.604 0.61 0.61 0.591 0.61 0.584

MoteStrain 0.875 0.854 0.867 0.851 0.871 0.823

NonInvasiveFatalECGThorax1 0.912 0.911 0.904 0.878 0.91 0.925
NonInvasiveFatalECGThorax2 0.925 0.925 0.918 0.919 0.927 0.93
OliveOil 0.867 0.833 0.867 0.867 0.9 0.9
OSULeaf 0.719 0.694 0.793 0.76 0.831 0.736

16



Table S1: Accuracy scores of variants of our method on the first 85 UCR datasets. Bold scores
indicate the best performing method.

Dataset
Ours (unsupervised)

K = 1 K = 2 K = 5 K = 10 Combined FordA (K = 5)

PhalangesOutlinesCorrect 0.807 0.796 0.795 0.784 0.801 0.784

Phoneme 0.264 0.265 0.249 0.276 0.289 0.196

Plane 0.99 1 0.99 0.99 0.99 0.981

ProximalPhalanxOutlineCorrect 0.869 0.863 0.856 0.859 0.859 0.869
ProximalPhalanxOutlineAgeGroup 0.849 0.859 0.844 0.844 0.854 0.839

ProximalPhalanxTW 0.824 0.815 0.761 0.771 0.824 0.785

RefrigerationDevices 0.531 0.507 0.547 0.515 0.517 0.555
ScreenType 0.408 0.411 0.427 0.416 0.413 0.384

ShapeletSim 0.894 0.5 0.628 0.672 0.817 0.517

ShapesAll 0.847 0.84 0.857 0.848 0.875 0.837

SmallKitchenAppliances 0.68 0.667 0.715 0.677 0.715 0.731
SonyAIBORobotSurface1 0.93 0.89 0.85 0.902 0.897 0.84

SonyAIBORobotSurface2 0.885 0.933 0.928 0.889 0.934 0.832

StarlightCurves 0.96 0.966 0.958 0.964 0.965 0.968
Strawberry 0.951 0.946 0.954 0.954 0.946 0.946

SwedishLeaf 0.907 0.925 0.925 0.914 0.931 0.925

Symbols 0.937 0.931 0.965 0.963 0.965 0.945

SyntheticControl 0.98 0.983 0.987 0.987 0.983 0.977

ToeSegmentation1 0.868 0.961 0.93 0.939 0.952 0.899

ToeSegmentation2 0.869 0.892 0.838 0.9 0.885 0.9
Trace 1 1 1 0.99 1 1
TwoLeadECG 0.996 0.991 0.996 0.999 0.997 0.993

TwoPatterns 0.998 1 1 0.999 1 0.992

UWaveGestureLibraryX 0.795 0.791 0.806 0.785 0.811 0.784

UWaveGestureLibraryY 0.716 0.717 0.702 0.71 0.735 0.697

UWaveGestureLibraryZ 0.738 0.735 0.741 0.757 0.759 0.729

UWaveGestureLibraryAll 0.893 0.887 0.903 0.896 0.941 0.865

Wafer 0.991 0.995 0.993 0.992 0.993 0.995
Wine 0.704 0.815 0.852 0.815 0.87 0.685

WordSynonyms 0.63 0.646 0.676 0.691 0.704 0.641

Worms 0.662 0.74 0.688 0.727 0.714 0.688

WormsTwoClass 0.753 0.766 0.74 0.792 0.818 0.753

Yoga 0.824 0.854 0.831 0.837 0.878 0.828

17



Table S2: Accuracy scores of the combined version of our method compared with those of DTW
(unsupervised), ST and BOSS (supervised) and HIVE-COTE and EE (supervised ensemble methods),
on the first 85 UCR datasets (results on the full archive were not available for comparisons). Bold
scores indicate the best performing method.

Dataset
Ours (unsupervised) Unsupervised Supervised Supervised & ensemble

Combined DTW ST BOSS HIVE-COTE EE

Adiac 0.716 0.604 0.783 0.765 0.811 0.665

ArrowHead 0.829 0.703 0.737 0.834 0.863 0.811

Beef 0.7 0.633 0.9 0.8 0.933 0.633

BeetleFly 0.9 0.7 0.9 0.9 0.95 0.75

BirdChicken 0.8 0.75 0.8 0.95 0.85 0.8

Car 0.817 0.733 0.917 0.833 0.867 0.833

CBF 0.994 0.997 0.974 0.998 0.999 0.998

ChlorineConcentration 0.782 0.648 0.7 0.661 0.712 0.656

CinCECGtorso 0.74 0.651 0.954 0.887 0.996 0.942

Coffee 1 1 0.964 1 1 1
Computers 0.628 0.7 0.736 0.756 0.76 0.708

CricketX 0.777 0.754 0.772 0.736 0.823 0.813

CricketY 0.767 0.744 0.779 0.754 0.849 0.805

CricketZ 0.764 0.754 0.787 0.746 0.831 0.782

DiatomSizeReduction 0.993 0.967 0.925 0.931 0.941 0.944

DistalPhalanxOutlineCorrect 0.768 0.717 0.775 0.728 0.772 0.728

DistalPhalanxOutlineAgeGroup 0.734 0.77 0.77 0.748 0.763 0.691

DistalPhalanxTW 0.676 0.59 0.662 0.676 0.683 0.647

Earthquakes 0.748 0.719 0.741 0.748 0.748 0.741

ECG200 0.9 0.77 0.83 0.87 0.85 0.88

ECG5000 0.936 0.924 0.944 0.941 0.946 0.939

ECGFiveDays 1 0.768 0.984 1 1 0.82

ElectricDevices 0.732 0.602 0.747 0.799 0.77 0.663

FaceAll 0.802 0.808 0.779 0.782 0.803 0.849
FaceFour 0.875 0.83 0.852 1 0.955 0.909

FacesUCR 0.918 0.905 0.906 0.957 0.963 0.945

FiftyWords 0.78 0.69 0.705 0.705 0.809 0.82
Fish 0.88 0.823 0.989 0.989 0.989 0.966

FordA 0.935 0.555 0.971 0.93 0.964 0.738

FordB 0.81 0.62 0.807 0.711 0.823 0.662

GunPoint 0.993 0.907 1 1 1 0.993

Ham 0.695 0.467 0.686 0.667 0.667 0.571

HandOutlines 0.922 0.881 0.932 0.903 0.932 0.889

Haptics 0.455 0.377 0.523 0.461 0.519 0.393

Herring 0.578 0.531 0.672 0.547 0.688 0.578

InlineSkate 0.447 0.384 0.373 0.516 0.5 0.46

InsectWingbeatSound 0.623 0.355 0.627 0.523 0.655 0.595

ItalyPowerDemand 0.925 0.95 0.948 0.909 0.963 0.962

LargeKitchenAppliances 0.848 0.795 0.859 0.765 0.864 0.811

Lightning2 0.918 0.869 0.738 0.836 0.82 0.885

Lightning7 0.795 0.726 0.726 0.685 0.74 0.767

Mallat 0.964 0.934 0.964 0.938 0.962 0.94

Meat 0.95 0.933 0.85 0.9 0.933 0.933

MedicalImages 0.784 0.737 0.67 0.718 0.778 0.742

MiddlePhalanxOutlineCorrect 0.814 0.698 0.794 0.78 0.832 0.784

MiddlePhalanxOutlineAgeGroup 0.656 0.5 0.643 0.545 0.597 0.558

MiddlePhalanxTW 0.61 0.506 0.519 0.545 0.571 0.513

MoteStrain 0.871 0.835 0.897 0.879 0.933 0.883

NonInvasiveFatalECGThorax1 0.91 0.79 0.95 0.838 0.93 0.846

NonInvasiveFatalECGThorax2 0.927 0.865 0.951 0.901 0.945 0.913

18



Table S2: Accuracy scores of the combined version of our method compared with those of DTW
(unsupervised), ST and BOSS (supervised) and HIVE-COTE and EE (supervised ensemble methods),
on the first 85 UCR datasets (results on the full archive were not available for comparisons). Bold
scores indicate the best performing method.

Dataset
Ours (unsupervised) Unsupervised Supervised Supervised & ensemble

Combined DTW ST BOSS HIVE-COTE EE

OliveOil 0.9 0.833 0.9 0.867 0.9 0.867

OSULeaf 0.831 0.591 0.967 0.955 0.979 0.806

PhalangesOutlinesCorrect 0.801 0.728 0.763 0.772 0.807 0.773

Phoneme 0.289 0.228 0.321 0.265 0.382 0.305

Plane 0.99 1 1 1 1 1
ProximalPhalanxOutlineCorrect 0.859 0.784 0.883 0.849 0.88 0.808

ProximalPhalanxOutlineAgeGroup 0.854 0.805 0.844 0.834 0.859 0.805

ProximalPhalanxTW 0.824 0.761 0.805 0.8 0.815 0.766

RefrigerationDevices 0.517 0.464 0.581 0.499 0.557 0.437

ScreenType 0.413 0.397 0.52 0.464 0.589 0.445

ShapeletSim 0.817 0.65 0.956 1 1 0.817

ShapesAll 0.875 0.768 0.842 0.908 0.905 0.867

SmallKitchenAppliances 0.715 0.643 0.792 0.725 0.853 0.696

SonyAIBORobotSurface1 0.897 0.725 0.844 0.632 0.765 0.704

SonyAIBORobotSurface2 0.934 0.831 0.934 0.859 0.928 0.878

StarlightCurves 0.965 0.907 0.979 0.978 0.982 0.926

Strawberry 0.946 0.941 0.962 0.976 0.97 0.946

SwedishLeaf 0.931 0.792 0.928 0.922 0.954 0.915

Symbols 0.965 0.95 0.882 0.967 0.974 0.96

SyntheticControl 0.983 0.993 0.983 0.967 0.997 0.99

ToeSegmentation1 0.952 0.772 0.965 0.939 0.982 0.829

ToeSegmentation2 0.885 0.838 0.908 0.962 0.954 0.892

Trace 1 1 1 1 1 0.99

TwoLeadECG 0.997 0.905 0.997 0.981 0.996 0.971

TwoPatterns 1 1 0.955 0.993 1 1
UWaveGestureLibraryX 0.811 0.728 0.803 0.762 0.84 0.805

UWaveGestureLibraryY 0.735 0.634 0.73 0.685 0.765 0.726

UWaveGestureLibraryZ 0.759 0.658 0.748 0.695 0.783 0.724

UWaveGestureLibraryAll 0.941 0.892 0.942 0.939 0.968 0.968
Wafer 0.993 0.98 1 0.995 0.999 0.997

Wine 0.87 0.574 0.796 0.741 0.778 0.574

WordSynonyms 0.704 0.649 0.571 0.638 0.738 0.779
Worms 0.714 0.584 0.74 0.558 0.558 0.662

WormsTwoClass 0.818 0.623 0.831 0.831 0.779 0.688

Yoga 0.878 0.837 0.818 0.918 0.918 0.879

19



Table S3: Accuracy scores of the combined version of our method compared with those of ResNet
(supervised), TimeNet and RWS (unsupervised), when available. Bold scores indicate the best
performing method. ‘X’s indicate that a score was reported in the original paper, but was either
obtained using transferability or on a reversed train / test split of the dataset, thus not comparable to
other results for this dataset.

Dataset
Ours (unsupervised) Supervised Unsupervised

Combined ResNet TimeNet RWS

Adiac 0.716 0.831 0.565 -

ArrowHead 0.829 0.84 - -

Beef 0.7 0.767 - 0.733

BeetleFly 0.9 0.85 - -

BirdChicken 0.8 0.95 - -

Car 0.817 0.917 - -

CBF 0.994 0.989 - -

ChlorineConcentration 0.782 0.835 0.723 0.572

CinCECGtorso 0.74 0.838 - -

Coffee 1 1 - -

Computers 0.628 0.816 - -

CricketX 0.777 0.79 0.659 -

CricketY 0.767 0.805 X -

CricketZ 0.764 0.831 X -

DiatomSizeReduction 0.993 0.301 - -

DistalPhalanxOutlineCorrect 0.768 X X -

DistalPhalanxOutlineAgeGroup 0.734 X X -

DistalPhalanxTW 0.676 X X X

Earthquakes 0.748 X - -

ECG200 0.9 0.87 - -

ECG5000 0.936 0.935 0.934 0.933

ECGFiveDays 1 0.99 X -

ElectricDevices 0.732 0.735 0.665 -

FaceAll 0.802 0.855 - -

FaceFour 0.875 0.955 - -

FacesUCR 0.918 0.955 - -

FiftyWords 0.78 0.732 - -

Fish 0.88 0.977 - -

FordA 0.935 X X -

FordB 0.81 X X X

GunPoint 0.993 0.993 - -

Ham 0.695 0.8 - -

HandOutlines 0.922 X - X

Haptics 0.455 0.516 - -

Herring 0.578 0.641 - -

InlineSkate 0.447 0.378 - -

InsectWingbeatSound 0.623 0.506 - 0.619

ItalyPowerDemand 0.925 0.959 - 0.969
LargeKitchenAppliances 0.848 0.904 - 0.792

Lightning2 0.918 0.77 - -

Lightning7 0.795 0.863 - -

Mallat 0.964 0.966 - 0.937

Meat 0.95 0.983 - -

MedicalImages 0.784 0.762 0.753 -

MiddlePhalanxOutlineCorrect 0.814 X X X

MiddlePhalanxOutlineAgeGroup 0.656 X X -

MiddlePhalanxTW 0.61 X X -

MoteStrain 0.871 0.924 - -

NonInvasiveFatalECGThorax1 0.91 0.946 - 0.907

20



Table S3: Accuracy scores of the combined version of our method compared with those of ResNet
(supervised), TimeNet and RWS (unsupervised), when available. Bold scores indicate the best
performing method. ‘X’s indicate that a score was reported in the original paper, but was either
obtained using transferability or on a reversed train / test split of the dataset, thus not comparable to
other results for this dataset.

Dataset
Ours (unsupervised) Supervised Unsupervised

Combined ResNet TimeNet RWS

NonInvasiveFatalECGThorax2 0.927 0.944 - -

OliveOil 0.9 0.867 - -

OSULeaf 0.831 0.979 - -

PhalangesOutlinesCorrect 0.801 0.857 0.772 -

Phoneme 0.289 0.333 - -

Plane 0.99 1 - -

ProximalPhalanxOutlineCorrect 0.859 0.914 X 0.711

ProximalPhalanxOutlineAgeGroup 0.854 0.839 X X

ProximalPhalanxTW 0.824 X X -

RefrigerationDevices 0.517 0.517 - -

ScreenType 0.413 0.632 - -

ShapeletSim 0.817 1 - -

ShapesAll 0.875 0.917 - -

SmallKitchenAppliances 0.715 0.789 - -

SonyAIBORobotSurface1 0.897 0.968 - -

SonyAIBORobotSurface2 0.934 0.986 - -

StarlightCurves 0.965 0.972 - -

Strawberry 0.946 X X -

SwedishLeaf 0.931 0.955 0.901 -

Symbols 0.965 0.927 - -

SyntheticControl 0.983 1 0.983 -

ToeSegmentation1 0.952 0.969 - -

ToeSegmentation2 0.885 0.915 - -

Trace 1 1 - -

TwoLeadECG 0.997 1 - -

TwoPatterns 1 1 0.999 0.999

UWaveGestureLibraryX 0.811 0.78 - -

UWaveGestureLibraryY 0.735 0.675 - -

UWaveGestureLibraryZ 0.759 0.75 - -

UWaveGestureLibraryAll 0.941 0.862 - -

Wafer 0.993 0.998 0.994 0.993

Wine 0.87 0.611 - -

WordSynonyms 0.704 0.625 - -

Worms 0.714 X - -

WormsTwoClass 0.818 X - -

Yoga 0.878 0.857 0.866 -

21



Table S4: Accuracy scores of variants of our method and of DTW on the remaining 43 UCR datasets,
except DodgerLoopDay, DodgerLoopGame and DodgerLoopWeekend which contain missing values.
Bold scores indicate the best performing method.

Dataset
Ours (unsupervised) Unsupervised

K = 1 K = 2 K = 5 K = 10 Combined FordA (K = 5) DTW

ACSF1 0.91 0.87 0.86 0.9 0.81 0.73 0.64

AllGestureWiimoteX 0.721 0.746 0.747 0.763 0.779 0.693 0.716

AllGestureWiimoteY 0.741 0.744 0.759 0.726 0.793 0.713 0.729

AllGestureWiimoteZ 0.687 0.697 0.691 0.723 0.763 0.71 0.643

BME 0.993 0.993 0.987 0.993 0.993 0.96 0.9

Chinatown 0.951 0.951 0.942 0.951 0.962 0.962 0.957

Crop 0.728 0.726 0.728 0.722 0.746 0.727 0.665

EOGHorizontalSignal 0.552 0.566 0.536 0.605 0.588 0.47 0.503

EOGVerticalSignal 0.398 0.414 0.431 0.434 0.489 0.439 0.448

EthanolLevel 0.418 0.34 0.316 0.382 0.392 0.558 0.276

FreezerRegularTrain 0.986 0.988 0.979 0.956 0.955 0.992 0.899

FreezerSmallTrain 0.967 0.956 0.906 0.933 0.928 0.862 0.753

Fungi 1 1 1 1 1 0.925 0.839

GestureMidAirD1 0.638 0.577 0.592 0.608 0.615 0.608 0.569

GestureMidAirD2 0.508 0.515 0.523 0.546 0.508 0.538 0.608

GestureMidAirD3 0.269 0.331 0.308 0.285 0.331 0.292 0.323

GesturePebbleZ1 0.826 0.843 0.913 0.919 0.936 0.547 0.791

GesturePebbleZ2 0.861 0.873 0.88 0.899 0.88 0.538 0.671

GunPointAgeSpan 0.984 0.984 0.994 0.994 0.987 0.987 0.918

GunPointMaleVersusFemale 1 1 1 0.997 1 1 0.997

GunPointOldVersusYoung 1 1 1 1 1 1 0.838

HouseTwenty 0.95 0.933 0.916 0.933 0.95 0.882 0.924

InsectEPGRegularTrain 1 1 1 1 1 1 0.872

InsectEPGSmallTrain 1 1 1 1 1 1 0.735

MelbournePedestrian 0.949 0.946 0.943 0.944 0.951 0.947 0.791

MixedShapesRegularTrain 0.916 0.906 0.904 0.905 0.927 0.898 0.842

MixedShapesSmallTrain 0.864 0.857 0.871 0.86 0.877 0.861 0.78

PickupGestureWiimoteZ 0.72 0.8 0.78 0.74 0.78 0.74 0.66

PigAirwayPressure 0.385 0.452 0.51 0.51 0.486 0.317 0.106

PigArtPressure 0.88 0.933 0.942 0.928 0.933 0.591 0.245

PigCVP 0.404 0.548 0.62 0.788 0.712 0.534 0.154

PLAID 0.533 0.549 0.574 0.555 0.559 0.493 0.84
PowerCons 0.961 0.939 0.9 0.9 0.928 0.933 0.878

Rock 0.62 0.62 0.58 0.58 0.68 0.54 0.6

SemgHandGenderCh2 0.845 0.852 0.873 0.89 0.902 0.84 0.802

SemgHandMovementCh2 0.711 0.649 0.7 0.789 0.784 0.516 0.584

SemgHandSubjectCh2 0.767 0.816 0.851 0.853 0.876 0.591 0.727

ShakeGestureWiimoteZ 0.92 0.92 0.94 0.92 0.94 0.9 0.86

SmoothSubspace 0.933 0.96 0.94 0.96 0.953 0.94 0.827

UMD 0.979 0.986 0.993 0.993 0.993 0.986 0.993

22



S4 Multivariate Time Series

Full results corresponding to the UEA archive datasets for our method as well as the ones of DTWD
as reported by Bagnall et al. (2018) are presented in Table S5, for the unique train / test split provided
in the archive.

Table S5: Accuracy scores of variants of our method on all UEA datasets, compared to DTWD. Bold
scores indicate the best performing method.

Dataset
Ours Unsupervised

K = 5 K = 10 K = 20 Combined DTWD

ArticularyWordRecognition 0.967 0.973 0.943 0.987 0.987
AtrialFibrillation 0.2 0.067 0.133 0.133 0.2
BasicMotions 1 1 1 1 0.975

CharacterTrajectories 0.986 0.99 0.993 0.994 0.989

Cricket 0.958 0.972 0.972 0.986 1
DuckDuckGeese 0.6 0.675 0.65 0.675 0.6

EigenWorms 0.87 0.802 0.84 0.878 0.618

Epilepsy 0.971 0.971 0.971 0.957 0.964

Ering 0.133 0.133 0.133 0.133 0.133
EthanolConcentration 0.289 0.251 0.205 0.236 0.323
FaceDetection 0.522 0.525 0.513 0.528 0.529
FingerMovements 0.55 0.49 0.58 0.54 0.53

HandMovementDirection 0.311 0.297 0.351 0.27 0.231

Handwriting 0.447 0.464 0.451 0.533 0.286

Heartbeat 0.756 0.732 0.741 0.737 0.717

InsectWingbeat 0.159 0.158 0.156 0.16 -

JapaneseVowels 0.984 0.986 0.989 0.989 0.949

Libras 0.878 0.883 0.883 0.867 0.87

LSST 0.535 0.552 0.509 0.558 0.551

MotorImagery 0.53 0.54 0.58 0.54 0.5

NATOPS 0.933 0.917 0.917 0.944 0.883

PEMS-SF 0.636 0.671 0.676 0.688 0.711

PenDigits 0.985 0.979 0.981 0.983 0.977

Phoneme 0.216 0.214 0.222 0.246 0.151

RacketSports 0.776 0.836 0.855 0.862 0.803

SelfRegulationSCP1 0.795 0.826 0.843 0.846 0.775

SelfRegulationSCP2 0.55 0.539 0.539 0.556 0.539

SpokenArabicDigits 0.908 0.894 0.905 0.956 0.963
StandWalkJump 0.333 0.4 0.333 0.4 0.2

UWaveGestureLibrary 0.884 0.869 0.875 0.884 0.903

23


	Introduction
	Related Work
	Unsupervised Training
	Encoder Architecture
	Experimental Results
	Classification
	Univariate Time Series
	Multivariate Time Series

	Evaluation on Long Time Series

	Conclusion
	Training Details
	Input Preprocessing
	SVM Training
	Behavior of the Learned Representations through Training

	Hyperparameters
	Influence of K
	Detailed Choices of Hyperparameters

	Univariate Time Series
	Multivariate Time Series

