D. Eyre and G. Milton, A fast numerical scheme for computing the response of composites using grid refinement, J. Physique III, vol.6, pp.41-47, 1999.

S. Fisher, R. White, P. Cook, S. Bremier, R. Corcoran et al., Measurement and analysis of fission gas release from BNFL's SBR MOX fuel, J. Nucl. Mater, vol.306, pp.153-172, 2002.

F. Fritzen, S. Forest, T. Böhlke, D. Kondo, and T. Kanit, Computational homogenization of elasticplastic porous materials, Int. J. Plasticity, vol.29, pp.102-109, 2012.

T. Fuketa, Transient response of LWR fuels (RIA), Comprehensive Nuclear Materials, pp.579-593, 2012.

Y. Guérin, J. Noirot, D. Lespiaux, C. Struzik, P. Garcia et al., Microstructure evolution and in-reactor behaviour of MOX fuel, Proceedings of the International Topical Meeting on Light Water Reactor Fuel Performance, pp.10-13, 2000.

D. Jeulin, Random texture models for material structures, Stat. Comput, vol.10, issue.2, pp.121-132, 2000.

M. Kabel, T. Böhlke, and M. Schneider, Efficient fixed point and Newton-Krylov solvers for FFT-based homogenization of elasticity at large deformations, Comput. Mech, vol.54, pp.1497-1514, 2014.

Y. Koo, D. Sohn, and B. Volkov, A comparative analysis of UO2 and MOX fuel behavior under reactivity initiated accident, Ann. Nucl. Energy, vol.24, issue.11, pp.859-870, 1997.

C. Lantuejoul, Geostatistical Simulations Models and Algorithms, 2002.

R. Largenton, MOX fuel effective behavior modeling by a micro-mechanical nonuniform transformation field analysis. Thesis (in French), 2012.
URL : https://hal.archives-ouvertes.fr/tel-01337923

J. Leblond, G. Perrin, and P. Suquet, Exact results and approximate models for porous viscoplastic solids, Int. J. Plasticity, vol.10, pp.213-235, 1994.

A. R. Massih, Models for MOX fuel behavior, p.10, 2006.

G. Matheron, Eléments pour une théorie des milieux poreux, 1967.

G. Matheron, Random Set and Integral Geometry, 1975.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys, vol.21, issue.6, pp.1087-1092, 1953.

J. Michel and P. Suquet, The constitutive law of nonlinear viscous and porous materials, J. Mech. Phys. Solids, vol.40, issue.4, pp.783-812, 1992.

V. Monchiet and G. Bonnet, A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast, Int. J. Numer. Meth. Engng, vol.89, pp.1419-1436, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00687816

Y. Monerie and J. Gatt, Overall viscoplastic behavior of non-irradiated porous nuclear ceramics, Mech. Mater, vol.38, pp.608-619, 2006.

H. Moulinec and P. Suquet, A fast numerical method for computing the linear and the nonlinear mechanical properties of composites, C. R. Acad. Sci. Paris II, vol.318, pp.1417-1423, 1994.

H. Moulinec and P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng, vol.157, issue.1, pp.69-94, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01282728

H. Moulinec, P. Suquet, and G. Milton, Convergence of iterative methods based on Neumann series for composite materials: Theory and practice, Int. J. Numer. Meth. Engng, vol.114, pp.1103-1130, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01660853

D. E. Muller, A method for solving algebraic equations using an automatic computer, Math. Tables Other Aids Comput, vol.10, issue.56, pp.208-215, 1956.

W. Müller, Mathematical versus experimental stress analysis of inhomogeneities in solids, J. Physique IV, vol.6, pp.139-140, 1996.

J. Noirot, L. Desgranges, and J. Lamontagne, Detailed characterisations of high burn-up structures in oxide fuels, J. Nucl. Mater, vol.372, issue.2, pp.318-339, 2008.

G. Oudinet, I. Munoz-viallard, L. Aufore, M. Gotta, J. Becker et al., Characterization of plutonium distribution in MIMAS MOX by image analysis, J. Nucl. Mater, vol.375, issue.1, pp.86-94, 2008.

P. Castañeda and P. , The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids, vol.39, issue.1, pp.45-71, 1991.

P. Castañeda, P. Suquet, and P. , of Advances in Applied Mechanics, vol.34, pp.171-302, 1997.

J. T. Roberts and J. C. Voglewede, Application of deformation maps to the study of in-reactor behavior of oxide fuels, J. Am. Ceram. Soc. Ceramic Society, vol.56, issue.9, pp.472-475, 1973.

J. Routbort, N. Javed, and J. Voglewede, Compressive creep of mixed-oxide fuel pellets, J. Nucl. Mater, vol.44, pp.247-259, 1972.

J. Routbort and J. Voglewede, Creep of mixed-oxide fuel pellets at high stress, J. Am. Ceram. Soc, vol.56, issue.6, pp.330-333, 1973.

H. Sasajima, T. Fuketa, T. Nakamura, J. Nakamura, and K. Kikuchi, Behavior of irradiated ATR/MOX fuel under reactivity initiated accident conditions, J. Nucl. Sci. Technol, vol.37, issue.5, pp.455-464, 2000.

F. Schmitz and J. Papin, High burnup effects on fuel behaviour under accident conditions: the tests CABRI REP-Na, J. Nucl. Mater, vol.270, issue.1, pp.55-64, 1999.

M. Schneider, F. Ospald, and M. Kabel, Computational homogenization of elasticity on a staggered grid, Int. J. Numer. Meth. Engng, vol.105, issue.9, pp.693-720, 2016.

J. Serra, Image Analysis and Mathematical Morphology, vol.1, 1982.

O. Slagle, F. Bard, B. Gneiting, and J. Thielges, Fuel transient deformation, Nucl. Eng. Des, vol.79, issue.3, pp.301-307, 1984.

P. Suquet, On bounds for the overall potential of power law materials containing voids with an arbitrary shape, Mech. Res. Commun, vol.19, issue.1, pp.51-58, 1992.

M. Suzuki, T. Sugiyama, and T. Fuketa, Thermal stress analysis of high-burnup LWR fuel pellet pulseirradiated in Reactivity-Initiated Accident conditions, J. Nucl. Sci. Technol, vol.45, issue.11, pp.1155-1164, 2008.

S. Torquato, Random Heterogeneous Materials, 1982.

V. Tvergaard, On localization in ductile materials containing spherical voids, Int. J. Fract, vol.18, issue.4, pp.237-252, 1982.

P. Vincent, Y. Monerie, and P. Suquet, Porous materials with two populations of voids under internal pressure: I. instantaneous constitutive relations, Int. J. Solids Struct, vol.46, issue.3-4, pp.480-506, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00320833

P. Vincent, P. Suquet, Y. Monerie, and H. Moulinec, Effective flow surface of porous materials with two populations of voids under internal pressure: II. full-field simulations, Int. J. Plasti, vol.56, pp.74-98, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00912637

R. White, S. Fisher, P. Cook, R. Stratton, C. Walker et al., Measurement and analysis of fission gas release from BNFL's SBR MOX fuel, J. Nucl. Mater, vol.288, pp.43-56, 2001.

F. Willot, B. Abdallah, and Y. Pellegrini, Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields, Comp. Meth. Appl. Mech. Engng, vol.98, issue.7, pp.518-533, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00840986

K. Wojtacki, L. Daridon, and Y. Monerie, Computing the elastic properties of sandstone submitted to progressive dissolution, Int. J. Rock Mech. Min. Sci, vol.95, pp.16-25, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01502421

J. Zeman, J. Vond?ejc, J. Novák, and I. Marek, Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients, J. Comput. Phys, vol.229, issue.21, pp.8065-8071, 2010.