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Abstract

We analyze the insurance of nuclear liability risk, from theoretical
and applied standpoints. Firstly, we characterize the optimal insur-
ance scheme for a low-probability industrial accident, such as a nuclear
catastrophe, in a model of collective risk-sharing. Using catastrophe
bond data, we then evaluate the cost of capital sustaining such an
insurance mechanism. Finally, we characterize the individual lotteries
associated with the risk of a nuclear accident in France, and we esti-
mate the optimal coverage. We conclude that the corporate liability
limit currently in force is likely to be inferior to the socially optimal
level.
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1 Introduction
Low probability - high severity disaster risks, like nuclear catastrophes,1 cre-
ate enormous difficulties to governments looking for an optimal financial
coverage of losses incurred by their citizens. The Fukushima disaster that
occurred in March 2011 for instance, led the Japanese authorities to evacuate
150 000 people up to 20 kilometers around the damaged power plant. Solely
for the purpose of decontamination, indemnification and decommissioning,
the Japanese government expects a cost of 177 billion euros.2

Even-though a large fraction of this cost is diffuse and difficult to handle
through liability law, the severity of catastrophes such as Fukushima (both
in terms of number of victims and in terms of average loss), suggests that
large welfare gains can be expected from a well-designed insurance scheme.
However, as highlighted by Jaffee and Russel (1997), Froot (2001), Niehaus
(2002) and Zanjani (2002), the systemic aspect of such risks makes it diffi-
cult to provide insurance at reasonable prices, since costly capital must be
collateralized for the event of a catastrophe. A socially optimal insurance
scheme therefore results from the trade-off between a high demand for cov-
erage, created by the severity of potential accidents and the cost incurred by
the financial institutions to which such risks may be transferred. This article
focuses attention more specifically on the case of nuclear liability insurance.3

In most countries, nuclear operators have a limited liability for the dam-
ages they may cause. In western Europe, the conventions of Paris (1960)
and Brussels (1963) set a lower bound on the liability limit of the nuclear
operators. In order to cover their liability, operators consequently take out
third-party liability insurance. Currently, the minimal corporate liability,

1Large scale nuclear accidents are extreme examples of low probability - high severity
risks. Since 1952 and the beginnings of civil nuclear programs, only a handful of severe
nuclear accidents have been registered in the world. Fukushima (2011) was ranked at the
highest severity level on the International Nuclear Events Scale (INES). INES, engineered
by the International Atomic Energy Agency, ranges from 1 for mere anomalies to 7 for
major accidents. As of today, only Chernobyl (1986) and Fukushima (2011) were ranked
at the highest level 7. The accident of Kyshtym (1957), in Russia was ranked at level 6
and Windscale Pile (1957) in Canada, Chalk River (1952) in Great-Britain, Three-Mile
Island (1979) in the US have been ranked at level 5. The historical frequency of nuclear
accidents is estimated at 0.07% per year and per reactor (Rangel and Levêque (2014)).

2www.bbc.com/news/world-asia-38131248.
3Catastrophe risks may entail macroeconomic effects on asset prices (Rietz (1988),

Barro (2009), Gabaix (2012) and Farhi and Gabaix (2015)), business cycles (Gourio
(2012)), and welfare (Weitzman (2009)). For our part, we adopt a more normative perspec-
tive and we focus on the components of disaster risk that can be covered through liability
law. The other losses may be considered as a, potentially large, uninsurable correlated
background risk.
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imposed by the 2004 protocol to amend the Paris Convention, is set at 700
million euros per accident. In France, the operator’s liability is set at this
new 700 million euros lower bound, which contrasts with Germany, that has
adopted a 2.5 billion euros liability. In other countries such as Japan and
the United-States, nuclear liability is organized by national legislation. For
instance, the Price-Anderson Act provides for an overall coverage higher than
10 billion in the United-States.4

Our objective in this paper is twofold. Firstly, we develop a theoretical
analysis of optimal liability insurance for a low-probability industrial catas-
trophe. Secondly, we use this theoretical setting to characterize an optimal
nuclear liability insurance scheme in France. Our main conclusion is that the
current liability limit is likely to be inferior to the socially optimal level.

Our theoretical framework extends the canonical models of insurance de-
sign (Mossin (1968) and Raviv (1979)) to take into account the specificities of
nuclear catastrophe risk. More precisely, we consider the risk of a large scale
industrial catastrophe, such as a nuclear accident, that may affect the entire
population of a country. Should an accident occur, the firm has to indemnify
the victims according to liability law, and it purchases insurance to prevent
any insolvency. When the accident probability is very small, the optimal
insurance coverage is a straight deductible indemnity schedule, common to
all agents. From a theoretical perspective, this result extends Arrow’s (1963)
theorem on the optimality of deductibles for individual risks, to the case of
a socially optimal disaster insurance scheme. From a practical perspective,
it enables us to construct such a scheme.

There are three main building blocks in this construct: firstly, the assess-
ment of damages that may be caused by a nuclear accident, secondly, the
modelling of risk preferences, and finally, the cost of the capital needed to
sustain the insurance coverage of a non-diversifiable risk such as the nuclear
accident risk.

With regard to the two first points, our methodology builds on Eeckhoudt
et al. (2000), who try to evaluate the social cost of nuclear risk. Postulating a
Constant Relative Risk Aversion (CRRA) utility function, they conclude that
the cost estimate is strongly sensitive to the level of risk aversion. This lack of
robustness of the CRRA specification for cost-benefit analysis in the presence

4These figures suggest that, compared with the losses that a nuclear catastrophe may
cause, the current scope of legal nuclear liability is rather narrow. This tenuity reflects the
limits of liability mechanisms to compensate victims which is due, among other things,
to the difficulty to assess individual losses and their causes. For example, extending
the validity of health-related claims from 10 to 30 years triggered much protest among
major actors of the insurance industry, and endless discussions in the countries that are
signatories of the 2004 Protocol to amend the Paris convention.
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of catastrophe risk is also present in Weitzman’s (2009) dismal theorem. For
our part, we will use the more general Harmonic Absolute Risk Aversion
(HARA) functions, that have been shown to be more robust to tail risk
(Millner (2013), Ikefuji et al. (2015)).

Concerning the third building block, measuring the cost of capital leads
us to consider the Alternative Risk Transfer instruments, surveyed in Barrieu
and Cummins (2013). We elaborate on Lane (2000), Major and Kreps (2002),
Lane and Mahul (2008), and Braun (2015) to build a model of catastrophe
bond pricing.5 Our model differs from existing ones along two dimensions:
it allows for realistic price estimates for low-probability risks and for an in-
creasing marginal cost of capital. Our estimates are consistent with previous
studies, and our model’s performance compares favorably to existing models
on the probability interval for which observations are available, with much
more reasonable price predictions for low-probability events.

Using these three building blocks together, and considering the case of
France, allows us to evaluate the socially optimal liability insurance scheme
for nuclear risk. Our simulations suggest that the French nuclear liability law
should be more ambitious than it currently is, even after the 2004 revision
of the Paris Convention.6

The paper is organized as follows. Section 2 characterizes the optimal cor-
porate liability insurance when a large scale industrial accident may affect
the whole population of a country and the insurance pricing rule is taken as
given. Section 3 builds and estimates the model of capital cost that sustains
the insurance scheme. Section 4 builds the individual lotteries of individuals
who face a nuclear disaster risk. Section 5 simulates the corresponding opti-
mal coverage. Finally, Section 6 concludes and Section 7 is an appendix that
contains proofs, tables and additional robustness checks.

5Perez and Carayannopoulos (2015), have shown that cat bond returns feature little
correlation with other asset prices. This suggests that cat bonds could be used to secure
capital at reasonable prices, hence allowing for higher levels of coverage against catastro-
phes.

6Schneider and Zweifel (2004) have used a survey approach to evaluate the willingness
to pay for risk reduction and to infer the welfare gain that would result from an increase in
corporate nuclear liability in Switzerland. Although their methodology is deeply different
from ours, they obtain comparable estimates of the optimal level of coverage.
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2 Optimal catastrophic risk coverage for a
population

2.1 Catastrophic risk with corporate liability insur-
ance

With the case of nuclear accident risk in mind, we consider a population of
individuals who face the risk of a catastrophic event (called "the accident")
caused by a firm. Such an accident may affect the individuals differently,
according to their risk exposure and also to their good or bad luck. The
population is represented by a continuum of individuals with unit mass. It
is composed of n groups or types indexed by i = 1, ..., n, and a proportion
αi of the population belongs to group i, with α1 + α2 + ... + αn = 1. In the
case of a nuclear accident caused by a given reactor, the groups correspond
to various locations that may be more or less distant from the nuclear power
plant. The accident occurs with probability π. In the case of an accident,
a proportion qi ∈ [0, 1] of type i individuals suffers damage, with financial
damage x̃i for each individual in this subgroup of victims. x̃i is a random
variable, whose realization is denoted xi, and which is distributed over the
interval [0, xi] with c.d.f. Fi(xi) and density fi(xi) = F ′i (xi). The random
variables x̃i are independently distributed among type i individuals. Thus,
an accident induces a total cost per individual equal to

n∑
i=1

αiqi

[∫ xi

0
xifi(xi)dxi

]
=

n∑
i=1

αiqiEx̃i,

Under our assumptions, this total cost is given, but the distribution of loss
between members of each group is random. This provides a simple correlation
structure of losses. There is one single accident risk, which is thus non-
diversifiable. In the case of an accident, the losses per individual are equal
to qiEx̃i in each group i = 1, ..., n, and thus aggregate losses per individuals
L̃ are equal to ∑n

i=1 αiqiEx̃i with probability π, and L̃ = 0 with probability
1 − π. Hence, L̃ has expected value E(L̃) = π

∑n
i=1 αiqiEx̃i and standard

deviation σ(L̃) =
√
π(1− π)∑n

i=1 αiqiEx̃i, and its coefficient of variation is
CV (L̃) = σ(L̃)/E(L̃) =

√
(1− π)/π. CV (L̃) goes to infinity when π goes to

zero, which reflects the high volatility of the accident risk when its probability
is small.

Each type i individual is covered by an insurance contract that specifies
an indemnity Ii(xi) ≥ 0 for all xi in [0, xi]. This insurance coverage is taken
out by the firm at price P . The firm has to indemnify the victims according
to the legal rule Ii(xi) and also - in order to prevent any bankruptcy risk
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- it has to purchase insurance to cover its liability. Thus, Ii(xi) is at the
same time the payment by the firm to type i individuals and the transfer
from the insurer to the firm. The firm pays a premium P per individual,
and this premium is passed on to the prices of the firm’s product (say, on
to the consumers’ electricity bills). We assume that all consumers purchase
the same quantity of the firm’s products, and thus it is as if the insurance
premium were paid by the individuals themselves.

Assume that the insurer allocates an amount of capital per individual K
in order to pay indemnities, should an accident occur. The usual mutualiza-
tion mechanism cannot be effective in the case of a common exposure to a
single source of risk, and some alternative risk transfer is required. A sim-
ple approach (at least from a conceptual standpoint) consists in the insurer
issuing a cat bond with par value K. The cat bond will pay some return
(a spread above the risk-free rate of return), and will be reimbursed to in-
vestors only if no accident occurs. Otherwise, the cat bond will default, and
its proceeds will be used to cover the claims for victims’ compensation.7

We know from the law of large numbers that the average indemnity paid
to type i victims in the case of an accident is∫ xi

0
Ii(xi)fi(xi)dxi,

and thus the total indemnity payment can be financed if

K = (1 + λ)
n∑
i=1

αiqi

∫ xi

0
Ii(xi)fi(xi)dxi,

where λ is a loading factor that represents the claim handling costs that the
insurer faces beyond the indemnification costs. This cost of capital is covered
by the premiums raised by the insurer, so we have

P = c(π,K)

where c(π,K) is the cost of capital function, more precisely defined hereafter,
and such that c(π,K) is assumed twice continuously differentiable, c′K > 0,

7In practice, a Special Purpose Vehicle (SPV) is created by the sponsor (here, the
insurer) as a legal entity able to host the cat bond. This SPV acts as an insurer or
reinsurer with respect to the sponsor. It issues the bond, delivered to the investors in
exchange for the principal payment, which entitles them to a regular coupon. Upon the
occurrence of a contractually defined event, called the trigger, the bond defaults and the
sponsor gets to keep the principal. Cat bonds are used by insurers and reinsurers to hedge
against large losses among their portfolios of insured people, and by large corporations to
cover catastrophic events.
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c→ c(0, K) ≥ 0 and c′K → 0 when π → 0, c′π > 0, c′′K2 ≥ 0 and c′′πK ≥ 1.8
All individuals have the same initial wealth w and the same risk pref-

erences represented by utility function u, with u′ > 0, u′′ < 0. Let w1 and
w2i(xi) be the wealth of a type i individual if he is not affected by an acci-
dent (which occurs with probability 1 − πqi), and if he is affected with loss
xi (which occurs with probability πqi and conditional loss density fi(xi)),
respectively. We have

w1 = w − P,
w2i(xi) = w − P − xi + Ii(xi).

Let Ci be the certainty equivalent loss of type i individuals. The set of
feasible allocations {w1, w21(x1), ..., w2n(xn), C1, ..., Cn, K} is defined by

u(w − Ci) = (1− πqi)u(w1) + πqi

∫ x̄i

0
u(w2i(xi))fi(xi)dxi, (1)

w2i(xi)− w1 + xi ≥ 0 for all i = 1, ..., n, (2)

K = (1 + λ)
n∑
i=1

αiqi

∫ xi

0
Ii(xi)f(xi)dxi, (3)

w1 = w − c(π,K). (4)
Equation (1) defines Ci and equation (2) corresponds to the sign con-

straint Ii(xi) ≥ 0. (3) defines the capital required to pay indemnities, and
(4) follows from w1 = w − P and P = c(π,K).

2.2 Optimal contract
We consider a utilitarian regulator that designs the risk coverage mechanism
in order to minimize the social cost of an accident, which is the weighted sum
of certainty equivalent to individuals’ losses. The corresponding optimiza-
tion program is also a way of characterizing the Pareto optimal allocations
when ex-ante transfers between groups are possible.9 This may be written
as minimizing

n∑
i=1

αiCi,

8If capital is levied through a cat bond, then c(π,K)/K is the spread over LIBOR,
i.e. the compensation per euro required by investors for running the risk of losing their
capital with probability π. Under a zero risk-free interest rate, a risk neutral investor
would require c(π,K) = πK to accept this risk. Note that we may have c(0,K) > 0 if
levying capital K induces fixed costs. See Section 3 for further developments.

9See Proposition 2 in the appendix for details.
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with respect to {w1, w21(x1), ..., w2n(xn);C1, C2, ..., Cn, K}, subject to condi-
tions (1),(2), (3) and (4). Proposition 1 characterizes the optimal solution of
this problem when π goes to 0 and K > 0.10

Proposition 1 When π goes to zero with K > 0, all the optimal indem-
nity schedules Ii(xi) converge toward a common straight deductible indemnity
schedule I∗(xi) = max (xi − d∗, 0) and K converges toward K∗ defined by

u′(w − d∗) = (1 + λ)u′(w − c∗0)c′′πK(0, K∗),

K∗ = (1 + λ)
n∑
i=1

αiqi

[∫ xi

d∗
(xi − d∗)fi(xi)dxi

]
,

where c∗0 = c(0, K∗).

Proposition 1 shows that the optimal indemnity schedule for small π
involves full coverage of the victims above a straight deductible d∗ (the same
for all individuals whatever their type). This amounts to saying that the
victims should be ranked in order of priority on the basis of their losses:
the victims with loss xi should receive an indemnity only if the victims with
loss x′i larger than xi receive at least x′i− xi. This simple characterization of
optimal indemnification will be used in the simulation conducted in Section 5.
We may derive comparative statics properties for the asymptotic deductible
d∗. In particular, it is increasing in λ and, under DARA preferences, it is
increasing in wealth.

More importantly, Proposition 1 shows how d∗ and K∗ are affected by the
cost of capital. If the investors were risk neutral, we would have c(π,K) =
πK, i.e. the cost of capital would just be equal to the risk premium that com-
pensates for the expected loss due to the default. We would have c′′πK(π,K) =
1 and, in such a case, the cost of capital would not affect the optimal indem-
nity schedule.

However, as we will see in more detail in Section 3 with the example
of the cat bond market for low-probability triggers, because of the aversion
of investors towards risk, or for other reasons, it is much more realistic to
keep the cost of capital in a more general form c(π,K). In that case the

10When π goes to zero, the certainty equivalents Ci also tend to zero. However, they may
remain significant (for example in percentage of expected loss) for π small but positive.
Louaas and Picard (2018) show that this is the case under Decreasing Absolute Risk
Aversion if the index of absolute risk aversion is large in the loss state. The simulations
reported in Section 5 illustrate this result.
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cost of capital does affect the optimal indemnity schedule as highlighted in
Proposition 1.11

The optimality of straight deductible contracts was first established by
Arrow (1963)12 in a different perspective. While Arrow studied individual
insurance decisions, we are concerned with the design of a socially optimal
insurance scheme, where an entire population is exposed to a common source
of risk and the cost of insurance is uniformly spread among inhabitants. This
implies that there is cross-subsidization from the less exposed to the more
exposed individuals. In Arrow (1963), both the optimal price and deductible
depend on the risk profile of a particular agent. In contrast, Proposition 1
indicates that all indemnity schedules converge toward a single coverage rule,
characterized by d∗, K∗, and the associated premium P ∗ = c∗0. The fact that
the deductible does not depend on type i is true only asymptotically when
π −→ 0. Otherwise, the optimal indemnity schedule would involve type-
dependent deductibles di, with Ii(xi) = max{xi − di, 0}. This is because
lower deductibles would allow the regulator to transfer wealth from less to
more risky types (say, from the groups with qi low to the groups with qi high
if the conditional distribution of losses Fi(xi) is the same for all groups). For
low-probability risks, this compensatory effect vanishes as π goes to 0.

3 The cost of capital
Financial innovations have been developed during the last two decades in or-
der to transfer large scale catastrophic risks to financial markets.13 Focusing
attention on the cat bond market, we may write c(π,K) = s(π,K)K, where

11Note that c′′π,K(0,K∗) = limπ→0 (1− π)c′K(π,K∗)/π from L’hôpital’s rule. Then,
Proposition 1 yields, for π small enough

πu′(w − d∗)
(1− π)u′(w − c∗0) ≈ (1 + λ)c′K(π,K∗).

The left-hand side of this equality is the individual’s marginal rate of substitution between
the states where he receives an indemnity after an accident and where no accident occurs,
respectively. The right-hand side is the marginal cost of capital needed to sustain the in-
surance coverage, inflated by the loading factor λ. Hence, the first condition in Proposition
1 may be interpreted as the equality between marginal willingness to pay and marginal
cost of coverage. The second equation is just a rewriting of equation (3) for the indemnity
schedule I∗(xi).

12This result has been generalized in many directions. Gollier and Schlesinger (1996)
for example, demonstrate that a deductible second-degree stochastically dominates any
other feasible insurance policy. For more on the robustness of Arrow’s optimality result,
see Gollier (2013).

13See Barrieu and Cummins (2013).
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s(π,K) denotes the spread over LIBOR for a cat bond.
The empirical literature has developed a number of cat bond pricing mod-

els, of which we present four examples in Appendix 7.7. However, these
models suffer from a lack of theoretical foundations and they predict unre-
alistically high spreads for cat bonds with very low-probability triggers.14

We therefore develop in Appendix 7.2 a simple one factor cat bond pricing
model with the following features. The representative investor is assumed
to be risk averse. In addition to the compensation for his expected loss, he
therefore demands a premium for the systemic component of the risk that
is correlated with his own wealth. He also requires a compensation for the
underwriting and verification costs induced by the cat bond transaction. Our
predictions for low-probability cat bonds will therefore lie between two ex-
tremes. Spreads will be lower than those predicted by the existing models,
presented in Appendix 7.7, but higher than those predicted in a model with
risk neutral investors and no fixed cost.

Our pricing equation is as follows

s = π(1 + µ)E(ỹ) + ηκ(1 + µ)π[E(ỹ2)− π(Eỹ)2]K + D

K
, (5)

where ỹ is the fraction of the cat bond’s capital lost by investors when the cat
bond defaults, and η and κ respectively reflect the representative investor’s
degree of risk aversion and the exposure of his own wealth to the catastrophe.
Finally, µ is a loading that covers the verification costs that the investor
incurs when the cat bond defaults. While the first term of equation (5) is
the spread that would be required by a risk neutral investor, the second term
reflects a risk premium. Finally, D is a fixed underwriting cost independent
of the size K or probability π of a capital loss.

Based on this model, we estimate the following regression

sj = β0πjE(ỹj) + β1πj[E(ỹj2)− π(Eỹj)2]Kj +
β2(1 + γ′jXj)

Kj

+ εj, (6)

by using information from the Artemis database on cat bond transactions.15

sj denotes the spread over LIBOR of cat bond j = 1, ..., J . If m€Kj is issued
through cat bond j, the corresponding cost of capital incurred by the issuer is
cj = sjKj. The spread of cat bonds is explained by the probability of loss πj,
conditional expected loss per €, E(ỹj), conditional expected loss squared,16

14In these models, either c∗0 = c(0,K) is prohibitively large or c′′πK(0,K) = +∞, which
makes risk coverage unattractive when π is very small.

15http://www.artemis.bm/
16We only possess information on the expected value of the variables ỹj . We therefore
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capital issued Kj, and a vector of observable controls Xj, such as year of
issuance and zone of peril covered that may affect the fixed underwriting
cost.

The Artemis database contains more than two-hundred issues, some of
which are divided into several tranches, characterized by different levels of
risk, and therefore by different spreads. We restrict our analysis to 185 of
the most recent tranches, spanning an interval of six years (2011-2017), for
which we have complete information, including the nature of perils, types of
trigger, probability of a capital loss, expected loss,17 spreads, and identity of
sponsors. Relevant controls also include the year of issuance, the area of the
peril covered, and the type of trigger.18

Table 6 gives the main OLS estimates of regression (6).19

β0 β1 β2
Estimates 1.4693∗∗∗ 0.0027∗∗ 0.5129
t-stat (10.5472) (2.1438) (0.9366)
R2 0.7794

All parameters are positive and consistent with theory. The first param-
eter β0 is estimated to be 1.4693, which indicates the presence of a loading
around forty-seven percent. The second parameter β1, that identifies the rep-
resentative investor’s risk aversion, is statistically significant at a 5% level.
This second term will play an important role, due to the large values taken
by K, the cat bond’s capital. Finally, the third parameter β2, that captures
the cat bond’s fixed cost D, is estimated at 0.5129, which implies a fixed cost
of €512,900. For a 100 million euros cat bond, this corresponds to a spread
of 0.51% due to the fixed underwriting costs.20

Compared with alternative models, ours features three main differences
that should be emphasized. First, unlike competing models, we allow for a
cost of capital c = s(π,K)K which is non-linear in K, giving rise to increas-
ing marginal cost of capital. Secondly, when multiplied by K the positive
intercept of our regression is a fixed cost D (i.e. a component of the capital

compute E(ỹj2) by making the assumption that ỹj is uniformly distributed over an interval
[aj , 1]. We then calibrate aj to match the expected value of the uniform distribution with
its empirical counterpart E(ỹj).

17The probability of a capital loss and the distribution of losses are evaluated by mod-
eling companies independent from the sponsor and the investor.

18 Appendix 7.5 and 7.7 show that the cat bonds in our data set have characteristics
similar to those used in a recent study by Braun (2015).

19The full table, along with alternative specifications is reported in Appendix 7.6.
20This is probably a much more reasonable estimate than the 2.64% predicted by the

standard linear model of Mahul and Lane (2000). See Appendix 7.8.
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cost independent from π and K) that can be interpreted as an underwrit-
ing cost, absent from other models. The third difference lies in that our
model satisfies condition c′K → 0 when π → 0. Violation of this condition
in most competing models comes from the positive intercept in the spread
equation (or from a very concave relationship between the spread and the
loss probability) which has no theoretical foundation.21

In the model of section 2, we have assumed ỹ = 1, which, for our cat
bond,22 gives

c(π,K) = β0πK + β1π(1− π)K2 + β2, (7)
and in particular

c′′Kπ(0, K) = β0 + 2β1K,

which is an ingredient of the formula provided in Proposition 1.

4 Individual lotteries
As in Eeckhoudt et al. (2000), we make use of the aggregate information on
costs and probabilities drawn from Probabilistic Safety Assessment (PSA)
studies23 to construct individual lotteries. We consider the risk associated
with one major accident on the French territory.24 The 58 French nuclear
reactors are gathered into 19 power plants. Based on Eeckhoudt et al. (2000),
we assume that 2 million people live around each power plant. Therefore 38
million people are located near a power plant (less than 100km) and 28 million
people live further away. We index these two groups by i = 1, 2, with shares
in the population α1 = 38/66 and α2 = 28/66, respectively. We let π denote

21Appendix (7.8) shows that our model compares favorably with competing models in
the literature.

22For simplicity, we have designed a simple cat bond that defaults entirely in case of
a catastrophe. In addition, the cat bond we are interested in belongs, by design, to the
reference group of our econometric specification, which is why the dummy controls do not
appear in equation (7).

23The Probabilistic Safety Assessment (PSA) studies assess the odds and the stakes of
a major accident along several dimensions: sanitary, environmental, economic, etc. They
deliver probability and cost estimates for various accident scenarios, presented in Dreicer
et al. (1995) and Markandya (1995). Additional studies from international agencies, such
as the French Institute for Radioprotection and Nuclear Safety (IRSN, 2013) and the
Nuclear Energy Agency (NEA, 2000), also develop the methodology for estimating the
costs associated with the various accident scenarios predicted by PSA studies.

24The PSA studies, produced by nuclear safety agencies, develop scenarios of accident.
Among these, the ST21 scenario is often used as a benchmark. We therefore use this
scenario to calibrate the number of direct victims in our baseline scenario. The PSA
studies referenced in the previous footnote provide the technical background on which
ST21 relies.
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the probability that a major nuclear accident affects the territory. Most PSA
studies provide very low estimates ranging from 10−4 to 10−9 per year and
per reactor. We will use in our computation π = 58 ∗ 10−5,25 but since we
approximate the optimal level of capital by its limit value, this calibration
does not affect our results about the optimal coverage and deductible K∗,
d∗, but it does affect the capital cost c(π,K∗) and thus the premium P .

For any individual, the potential direct consequences of a nuclear accident
may include financial losses, severe disease and death,26 and it is these losses
that may be subject to compensation under corporate liability law. Other
losses are supposed to be evenly spread over the whole population. When
an accident occurs, an individual of group 1 has a probability 1/19 of living
nearby the damaged power plant (< 100 km),27 in which case he can die,
or suffer a severe disease, or a financial loss if he is located in the plume
of radioactivity. With probability 18/19, he lives away from the damaged
power plant (≥ 100 km), similar to a person from group 2, and can die or
suffer a severe disease. The direct financial losses are incurred only by people
in group 1, and may result from the impossibility to stay in a contaminated
area.

We use figures similar to Eeckhoudt et al. (2000) to calibrate our baseline
scenario. The number of direct victims in the baseline scenario (scenario 1)
is summarized in Table 1.

Table 1: Repartition of losses in scenario 1

Distance Population Financial loss Death Severe disease
< 100 km 2 million 10,000 500 1,000
≥ 100 km 64 million 0 3,000 6,000

We assume that each person in the most exposed group (i.e. individuals
from group 1, living within 100 km of a power plant) can potentially be in
6 distinct states (3 health states × 2 financial states) s1 = 1, ..., 6. Other
individuals never incur the direct financial loss, so they can only be in three
different health states s2 = 1, ..., 3. The lotteries associated with the baseline
scenario are summarized in Tables 2 and 3. The initial wealth w is calibrated
in euros, as the sum of the asset value currently held, plus the expected

25We neglect the possibility that accidents may occur simultaneously in several power
plants.

26Severe disease and death occur due to over-exposure to radioactive material. The event
of an immediate death is very unlikely and the number of deaths used in our scenarios
account for the medium and long-run increase in mortality due to radiation exposure.

27For simplicity, we assume that the 19 power plants have the same number of reactors.
This approximation has very little impact on our results.
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discounted future wealth of the average French citizen, which yields w =
875, 310 euros.28

People from group 1 die in states s1 = 1 and 2. They also suffer a
financial loss in state s1 = 1 (and not in state s1 = 2). The worst possible
case is represented by the loss of a fraction 1 − ω of total wealth, where
ω can be interpreted as a bequest parameter. We choose the parameter ω
so as to match the value of a statistical life (VSL) recommended for cost-
benefit analysis with a HARA utility function.29 In particular, our baseline
calibration with ω = 10% implies Values of a Statistical Life between 3 and
4 million euros, consistent with the estimates provided in Viscusi and Aldi’s
(2003) meta-analysis and with Quinet (2013), which sets the standard for
cost-benefit analysis in France.30

People in state s1 = 3 do not die but they face the combined consequences
of a severe disease and financial losses. In states s1 = 4 and s1 = 5, they
suffer either the severe disease or the financial shock, respectively, while in
state s1 = 6 they do not incur direct losses. Table 2 presents these loss levels
and the corresponding probability conditional on the occurrence of a nuclear
accident.31

Concerning group 2, individuals die in state s2 = 1, suffer a severe disease
in state s2 = 2 and face no direct loss in state s2 = 3.

Table 2: Lotteries for type i = 1

State Description of direct losses Direct loss Total loss Probability
s1 = 1 Death + financial loss 787,780 787,780 7.8947e-08
s1 = 2 Death 717,780 719,220 5.7513e-05
s1 = 3 Disease + financial loss 330,000 331,440 1.3158e-07
s1 = 4 Disease 260,000 261,440 1.1500e-04
s1 = 5 Financial loss 70,000 71,440 2.6297e-04
s1 = 6 No direct loss 0 1,440 9.996e-01

To these direct consequences, subject to compensation under corporate
liability law, one must add more diffuse economic costs that are qualified as
indirect costs in Schneider (1998) and subsequent studies. They are difficult
to quantify and attribute to a given individual. Examples of such costs are:

28The details of this calibration are presented in Appendix 7.4.
29In most cases, the HARA utility function does not display a divergent index of absolute

risk aversion when ω goes to zero. A notable exception is the CRRA case). See equation
8 below.

30Appendix 7.9 shows the robustness of our analysis to a change in the parameter ω.
31The state probabilities in Tables 2 and 3 are also conditional on belonging to group 1

and 2, respectively.
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the loss of attractiveness of an impacted territory, loss in terms of image for
the industrial sector, etc.32 For simplicity, we assume that these costs are
evenly shared by all individuals in the economy33 and we keep the total cost
of the accident fixed at 100 billion euros. Individuals from group 1 in state
s1 = 6 and individuals from group 2 in state s2 = 3 only face the indirect loss
from the accident. Total losses are obtained by adding direct and indirect
losses.

Alternative scenarios (scenario 2,3,4 and 5) are generated by multiplying
the number of direct victims considered in Table 1 by 2,3,4 and 5, respectively,
while reducing the value of indirect losses so as to keep the total cost fixed at
100 billion euros. Total direct losses range from 5 billion euros in scenario 1
to approximately 25 billion euros in scenario 5. Total indirect losses therefore
vary between 75 and 95 billion euros. In tune with the more recent studies
on nuclear risk (Rabl and Rabl (2013)), we consider scenario 3 as the central
scenario and baseline scenario 1 as a lower bound on the consequences of a
large-scale accident. Because we assume that indirect losses are mutualized,
they only marginally affect the optimal coverage level. Hence, as far as
corporate liability is concerned, the assumption that total cost is 100 billion
euros is innocuous.34

Table 3: Lotteries for type i = 2

State Description of direct losses Direct loss Total loss Probability
s2 = 1 Death 717,780 719,220 4.6875e-05
s2 = 2 Disease 260,000 261,440 9.3750e-05
s2 = 3 No direct loss 0 1,440 9.999e-01

5 Optimal coverage
We postulate a harmonic absolute risk aversion (HARA) utility function

u(x) = γ

1− γ
(
η + x

γ

)1−γ
,

32Here, we do not discuss the effect of the catastrophe on growth, as the literature has
not reached a consensus on the growth effect of disasters. For example, Gignoux and
Menéndez (2016) find a positive effect for the case of an earthquake in India, while Strobl
(2012) finds a negative effect for the case of hurricanes in the Caribbean.

33We could also treat these indirect costs as uninsurable background risks. Under the
risk vulnerability assumption, these background risks would increase the degree of risk
aversion to insurable risks.

34In particular, assuming a total cost of 50 or 200 billion euros would not significantly
modify our results.
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whose domain is such that η + (x/γ) > 0, and u is increasing and concave.
With affine risk tolerance T (x) = 1/A(x) = η+x/γ, the coefficient of relative
risk aversion is

R(x) = x
(
η + x

γ

)−1
. (8)

The HARA class nests the constant relative risk aversion (CRRA) case when
η = 0, and the constant absolute risk aversion (CARA) case when γ →
+∞. Except for the limit case of CARA, HARA functions satisfy decreasing
absolute risk aversion. In addition, when η > 0, HARA functions also display
increasing relative risk aversion. Studies on individual data, such as Levy
(1994) and Szpiro (1986), have isolated a plausible range between 1 and 5
for the index of relative risk aversion. We therefore perform simulations over
this plausible range of values.

The optimal values of the deductible and capital are deduced from Propo-
sition 1 and Section 3. They are reported in Table 4 for a level of relative
risk aversion R := R(w) = 2, which is our baseline assumption.35 Since
the relative risk aversion has two degrees of freedom in the HARA case, we
let R := R(w − L), where L is the loss incurred in state s1 = 1 by group
1 individuals, vary across columns.36 The scenario considered varies across
lines.

Optimal levels of coverage (in billion euros) and their associated welfare
gains are read from the top panel of Table 4. Annual premiums (in millions
of euros) and deductibles (in hundreds of thousands of euros) are read from
the bottom panel. The shaded cells highlights the results for a central set
of assumptions with scenario 3, R = 2 and R = 2 (i.e. the CRRA case), we
find an optimal level of coverage K∗ equal to e1.3740 billion, an associated
welfare gain of 14.72%, a deductible of e618, 550 per inhabitant, and an
annual premium of e4.6588 million (just below 7 cents per person). This
yields a spread s = 4.6588/1374 = 0.34%37 that is one order of magnitude
above the spread that a risk neutral investor would require in the absence
of underwriting costs. In principle, these fixed underwriting costs can be an
issue for the insurability of low-probability events, but in our setting they are

35A wider set of assumptions, with an index of relative risk aversion R varying from 1
to 5, is considered in Appendix 7.9.

36In other words, R and R denote the index of relative risk aversion, in the no accident
state and in the worst case state, respectively.

37This total spread is composed of the several components of regression (6). In par-
ticular, the spread that is due to the presence of fixed underwriting costs is equal to β2
divided by the size, in hundred million euros, (13.47) of the cat-bond. This yields a spread
of 0.038% due to the fixed costs. Put differently, the fixed cost component of the spread
represents roughly ten percent of the total spread on a cat-bond of optimal size.
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Table 4: Optimal cover (in ebillion), Welfare gain, Annual premium (in
emillions), Deductible (in ehundreds of thousands), R = 2

R 1 2
Scenario Cover Welfare Cover Welfare

1 0.6982 0.0562 0.7636 0.0791
2 0.9829 0.0825 1.1204 0.1213
3 1.1693 0.0972 1.3740 0.1472
4 1.3060 0.1056 1.5726 0.1637
5 1.4125 0.1030 1.7360 0.1742
R 1 2

Scenario Premium Deductible Premium Deductible
1 1.8759 5.6588 2.0825 5.5150
2 2.8731 6.1122 3.4459 5.9612
3 3.6640 6.3355 4.6588 6.1855
4 4.3138 6.4742 5.7502 6.3278
5 4.8604 6.5708 6.7409 6.4286

divided among a large number of agents and therefore have a small impact
on each agent.

Table 4 highlights the dependence of the coverage and annual premium on
the catastrophe scenario. When R = 1 and R = 2, multiplying the number of
people in each category of loss by 5 (i.e. comparing scenario 1 and 5) induces
an increase in cover and premium by a factor 2.02 and 2.60, respectively. The
fact that coverage increases at a slower pace than direct losses is an intuitive
result that is due to the increasing marginal cost of capital.

The deductible varies between e551, 500 and e657, 080 in Table 4. This
represents more than half of the individual’s wealth, which implies that only
people in the worst states (s1 = 1, 2 for group 1 and s2 = 1 for group 2)
are indemnified. Table 4 also confirms the intuition that deductibles should
decrease with risk aversion, but the effect is quantitatively limited. Finally,
the deductible increases with the severity of the loss scenario, which reflects
our previous remark on the effect of increasing marginal cost of capital on
optimal coverage. As more capital is needed to compensate the victims with
the largest losses, it is optimal to increase the deductible in order to avoid a
sharp increase in premiums.

The welfare gain is computed as the reduction in the loss certainty equiv-
alent induced by the cover in comparison with the case without any compen-
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sation.38 The welfare gain is therefore estimated at least at 14.72% under
scenario 3 with R = 2 and R = 2. This means that the average monetary
equivalent cost of the nuclear risk is lowered by 14.72% thanks to the indem-
nity schedule when K∗ = e1.3740 billion. Of course, welfare gains for group
2, taken separately, would be higher. Higher values for the coefficients of
relative risk aversion, or a more pessimistic loss scenario would lead to much
higher values of K∗ and substantially higher welfare gains.

Note finally that in scenario 3, K∗ is substantially higher than the lower
bound of nuclear operator’s liability adopted in 2004 through the revision of
the Paris convention, which is e700 million for each accident. Only scenario
1 under the assumption R = 1 and R = 2 yields an optimal liability slightly
lower than e700 million, while all other cases considered here deliver higher
values. The fact that several other European countries39 have set nuclear
corporate liability at higher levels is coherent with such a conclusion.

6 Conclusion
The purpose of this paper was to characterize the socially optimal insurance
scheme against nuclear disasters. We have shown that, in the case of a
large-scale low-probability industrial catastrophe, the asymptotic indemnity
schedule is characterized by a straight deductible, common to all individuals.

Based on this result, we have analyzed the features of an optimal insur-
ance scheme that covers the nuclear corporate liability, in which the risk is
transferred to financial markets through cat bonds. Using recent cat bond
data and safety studies on nuclear reactors allows us to compute the optimal
level of coverage. Our results, calibrated with French data, suggest that the
nuclear liability law should be more ambitious than it currently is, unlike in
other countries, such as Germany, where this liability has been extended far

38Since group 1 and group 2 do not face the same risk exposure, this reduction differs
from one group to the other. The figure presented in Table 4 is an average of these two
gains weighted by group size.

39Countries have their own legislation, in line with international conventions. For in-
stance, in Germany, the nuclear corporate liability is set at e2.5 billion for each accident.
This could be rationalized in our model with scenarios more severe than our scenario 5, or
with higher levels of risk aversion, such as the ones considered in Appendix 7.9. Note that
the Paris convention also specifies tranches of liability born by governments, so that total
liability toward the victims are at least e1.5 billion. These additional coverage tranches
however, are also intended to indemnify victims across the borders of the state where the
accident occurred. The Paris and Brussels conventions indeed provide that the state where
the accident took place is liable toward foreign victims. We therefore consider in this pa-
per that only the tranche supported by the operators and secured by a proper insurance
scheme represent a coverage available to the citizens of a country.
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beyond the requirements of international conventions. In France, the ratifi-
cation of the 2004 Protocol was made difficult by the large induced capital
costs, but also by the insurers’ reluctance to extend the validity of health-
related claims to thirty years and by the conservative position of the nuclear
industry.

Our analysis presents a certain number of limits that we shall now discuss.
First, we have implicitly assumed that market insurance is the only tool
available to deal with catastrophic risk. In practice, individuals and societies
have other means at their disposal. The effect of self-insurance -a reduction
in the size of the loss- and self-protection -a reduction in the loss probability-
were studied in a seminal paper by Ehrlich and Becker (1972). Because
market insurance and self-insurance are perfect complements, our theoretical
results could be readily adapted to self-insurance. On the other hand, Ehrlich
and Becker have shown that self-protection and market insurance, can be
complements. The complex analysis of the interaction between self-insurance,
self-protection and market insurance for catastrophic risk is not addressed in
our model and is left for further research.

Our conclusions should also be put in the broader context of how law -
be it in the common law or civil law traditions - defines corporate liability,
and how the liability regime affects the role of insurance.40 Based on the in-
ternational conventions on nuclear tort law, we have assumed that liability is
strict. As opposed to a negligence rule, strict liability dictates that a nuclear
operator must indemnify victims in case of accident, whether or not he was
negligent. This strict liability avoids time-consuming litigation about who
the liable entity is, hence facilitating a prompt indemnification of victims.
Another approach would consist in adopting the negligence rule, according
to which the operator of the nuclear installation is held liable for accident
losses only if it exercised a level of care lower than a level specified by courts,
hence without liability cost for a firm that complied with safety regulation.
The main drawbacks of the negligence rule when applied to corporate nu-
clear liability are related to the difficulties for courts to establish that the
nuclear operator did not exercise due care levels. This weakens the incentives
for risk prevention and, furthermore, it opens the door to legal actions that
create obstacles to the rapid compensation of victims. If, after an accident,
the court considers that the operator has not been negligent and should be
exonerated from liability, then the negligence rule shifts the compensation
of victims from corporate liability insurance onto the government’s budget.
The cost of public fund would then be a key ingredient of the optimal liability

40For more on the impact of tort law on incentives, see Shavell (1987) and Cooter and
Ulen (2004).
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level.
In a dynamic model with uninsurable risk, prudent agents save to con-

stitute a buffer stock, used in case of loss. If market insurance is sold at
actuarially fair prices, expected utility maximizing agents should purchase
full insurance and make no precautionary savings. However, positive insur-
ance loadings may lower the demand for market insurance, substituted with
precautionary savings. Gollier (2003) showed, with a calibrated example,
that the demand for market insurance may become quite low whenever as-
sets enable agents to transfer wealth across periods. However, his example
only discusses the case of small losses. The strategy of substituting mar-
ket insurance with precautionary savings would not be feasible at the level
of individual agents who risk up to their lives. It could more realistically
be set up at the level of a state who would face a choice between a funded
and a pay-as-you-go system, in which it simply borrows when a catastrophe
occurs. Both strategies would entail benefits comparable to the insurance
scheme proposed in our paper but would involve a cost of public fund. In
this regard, Borensztein et al. (2017) show that cat bonds may yield sub-
stantial gains to governments, for they lower their risk of default in case of
catastrophe. This suggests that funding the coverage of catastrophic risks
through cat bonds, and transferring losses to future periods through credit
markets should not be seen as substitutes: they are complements.
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7 Appendix

7.1 Complement to section 2.1
Let us assume that the government can redistribute wealth between groups
through ex ante lump sum transfers. We denote ti the net transfer paid to
each individual of group i, the government budget constraint being written
as

n∑
i=1

αiti = 0.

Now we have

w1 = w − P + ti,

w2i(xi) = w − P − xi + Ii(xi) + ti.

and the certainty equivalent loss incurred by type i individuals is still denoted
by Ci, with

u(w − Ci + ti) = (1− πqi)u(w1 + ti)

+πqi
∫ xi

0
u(w2i(xi) + ti)f(xi)dxi. (9)

An allocation is written asA ={w1, w21(x1), ..., w2n(xn), C1, ..., Cn, t1, ..., tn, K},
and A is feasible if (2), (3),(4) and (9) are satisfied.

Definition 1 A is Pareto-optimal if it is feasible and if there does not exist
another feasible allocation Â={ŵ1, ŵ21(x1), ..., ŵ2n(xn), Ĉ1, ..., Ĉn, t̂1, ..., t̂n, K̂}
such that Ĉi− t̂i ≤ Ci− ti for all i = 1, ..., n, with Ĉi0 − t̂i0 < Ci0 − ti0 for at
least one group i0.

Proposition 2 A ={w1, w21(x1), ..., w2n(xn), C1, ..., Cn, t1, ..., tn, K} is a Pareto-
optimal allocation if and only if it minimizes ∑n

i=1 αiCi in the set of feasible
allocations.

7.2 A cat bond pricing model
This section presents the cat bond pricing model. The cat bond is issued at
t = 0. Part of its capital is used at time t = 0 to pay the underwriting costs
and the remainder constitutes the principal. At time t = 1 the principal
K is returned to the investor if the accident did not occur. In the opposite
case, the cat bond defaults and the sponsor uses a fraction ỹ of the capital
to indemnify the victims. The remaining portion of capital is returned to
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the investors. From the standpoint of the investor, the cat bond ’s payoff is
therefore

q̃ =
{

(1 +R)K − (1 + µ)ỹK with probability π,
(1 +R)K with probability 1− π.

In compensation for the option to default on the principal, the investors
require a coupon of rate R = r + s, where r denotes the risk free rate and s
denotes the spread. We let D/(1 + r) be the value of the underwriting costs
(i.e. D is the corresponding value at time t = 1), and µ is a loading that
covers the verification costs.

Let CE be the certainty equivalent of the cat bond payoff q̃ to investors
at time t = 1. Following the Consumption Capital Asset Pricing Model, we
write

CE = Eq̃ − ηcov(z̃, q̃),
where z̃ denotes the wealth of the representative investor at t = 1, and η
reflects his risk aversion. There are two states: with probability π, the acci-
dent occurs, the cat bond defaults and investors suffer a loss (1+µ)ỹK; with
probability 1− π, the accident does not occur and the principal is returned
to the investor. In both cases, the coupon RK is paid to the investor.41 We
assume that the representative investor bears a fraction κ of the underlying
loss.42 We therefore write

z̃ =
{
w − κKỹ with probability π,

w with probability 1− π.

Thus

Eq̃ = [R + 1− π(1 + µ)E(ỹ)]K,
cov(z̃, q̃) = (1 + µ)κπ[E(ỹ2)− π(Eỹ)2]K2.

and

CE = [R + 1− π(1 + µ)E(ỹ)]K − η(1 + µ)κπ[E(ỹ2)− π(Eỹ)2]K2.

41Hence we assume that default affects the repayment of the capital to the investor first.
The coupon payment is affected only when the loss ỹ is very large and 1−(1+µ)ỹ becomes
negative. This assumption is made for simplicity, but of course other definitions of cat
bonds are possible.

42We do not restrict κ and will estimate it from the data. From a theoretical perspec-
tive, the precise value of κ depends on the identity of the representative investor. If the
representative investor is not exposed to the underlying risk transferred by the cat bond,
we should have κ ≡ 0.
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Purchasing the cat bond is analogous to making an investment K with
additional cost D/(1 + r) at t = 0 and random payoff q̃, with certainty
equivalent CE, at t = 1. Thus, in the absence of arbitrage, we have

K + D

1 + r
= CE

1 + r
,

which may be rewritten as

K(1 + r) = [R + 1− π(1 + µ)E(ỹ)]K − η(1 + µ)κπ[E(ỹ2)− π(Eỹ)2]K2 −D.

Let s = R− r be the spread over the risk-free rate. We obtain

s = π(1 + µ)E(ỹ) + ηκ(1 + µ)π[E(ỹ2)− π(Eỹ)2]K + D

K
. (10)

In order to estimate this equation on our data set, we assume each ỹj is
uniformly distributed in an interval [aj, 1]. This enables us to find E(ỹj2)
which, in turn, leads to the regression performed in section 3.43 We only
have one loss scenario in our numerical analysis. Hence, the cat bond must
completely default in case of accident, which implies that E(ỹ) = 1 for our
cat bond. The cost of capital c(π,K) ≡ s(π,K)K is therefore

c(π,K) = π(1 + µ)K + ηκ(1 + µ)π(1− π)K2 +D,

which is coherent with the assumptions used to derive Proposition 1.

7.3 Proofs

Proof of Proposition 1

The planner’s program is to minimize ∑i αiCi under constraints (1), (2),
(3) and (4). The Kuhn-Tucker multipliers associated with each set of con-
straints are respectively γi, φi(xi), η and ρ. The optimality conditions are

αi − γiu′(w − Ci) = 0 (11)
γiπqiu

′(w2i(xi))fi(xi)− η(1 + λ)αiqifi(xi) + φi(xi) = 0, (12)

u′(w1)
n∑
i=1

(1− πqi)γi −
n∑
i=1

∫ x̄i

0
φi(xi)dxi − ρ+ η(1 + λ)

n∑
i=1

αiqi = 0, (13)

−η + ρc′K(π,K) = 0, (14)
φi(xi) ≥ 0 and φi(xi) = 0 if w2i(xi)− w1 + xi > 0 ∀i. (15)

43The Artemis data base provides πj and Eỹj for each cat bond j in the sample. We
deduce E(ỹj)2.
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Let xi be such that w2i(xi)− w1 + xi > 0. Thus, we have φi(xi) = 0 from
(15), and (12) gives

πγiu
′(w2i(xi)) = η(1 + λ)αi. (16)

(11) and (16) yield

u′(w2i(xi)) = η

π
(1 + λ)u′(w − Ci). (17)

Hence, if there exist x0
i , x

1
i ∈ [0, x̄i] such that w2i(x0

i ) − w1 + x0
i > 0 and

w2i(x1
i )− w1 + x1

i > 0, then we must have

u′(w2i(x0
i )) = u′(w2i(x1

i )),

which implies
w2i(x0

i ) = w2i(x1
i ).

Consequently, w2i(xi) is constant over the set of xi for which w2i(xi)− w1 +
xi > 0, and we can write

w2i(xi) = w1 − di,

with di < xi for all xi in this set, and from 17 we have

u′(w1 − di) = η

π
(1 + λ)u′(w − Ci). (18)

Now let xi be such that w2i(xi)− w1 + xi = 0. Using (11), (12) and (15)
allows us to write

u′(w2i(xi)) = u′(w1 − xi) ≤
η

π
(1 + λ)u′(w − Ci).

Using (17), and u′′ < 0 we deduce xi ≤ di. Thus, we have established that
there exists di such that

w2i(xi) = w1 − di if xi > di, (19)
w2i(xi) = w1 − xi if xi ≤ di. (20)

Let K → K∗ when π → 0 and c∗0 ≡ limπ→0 c(π,K∗). When π → 0, we have
w1 −→ w − c∗0 and Ci −→ c∗0 from (4) and (1) respectively. (18) then gives
di −→ d∗ ∀i with

u′(w − d∗) = (1 + λ)u′(w − c∗0) lim
π→0

η

π
. (21)
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Using (11), (13), (14) and ∑n
i=1 αi = 1 imply

lim
π→0

[
1− η

c′K(π,K∗) + η(1 + λ)
n∑
i=1

αiqi −
n∑
i=1

∫ x̄i

0
φi(xi)dxi

]
= 0. (22)

Suppose that η does not go to zero when π does. In such a case, we would
have η/c′K(π,K∗) −→ +∞ when π −→ 0 since c′K(π,K∗) −→ 0, and thus

lim
π→0

[η[ 1
c′K(π,K∗) − (1 + λ)

n∑
i=1

αiqi]] = +∞.

Since φi(xi) ≥ 0 ∀i, this is in contradiction with (22). Thus, we have

lim
π−→0

[
1− η

c′K(π,K∗) −
n∑
i=1

∫ x̄i

0
φi(xi)dxi

]
= 0. (23)

If di ≤ 0, we have w2i(xi)− w1 + xi > 0 and φi(xi) = 0 ∀xi > 0. Hence∫ x̄i

0
φi(xi) = 0.

If di > 0, we have φi(xi) = 0 for xi > di, and thus (11), (12) and (20) give∫ x̄i

0
φi(xi)dxi =

∫ di

0
φi(xi)dxi (24)

= −παiqi
∫ di

0
[ u
′(w − xi)
u′(w − Ci)

− η

π
(1 + λ)]fi(xi)dxi. (25)

Using the fact that η −→ 0 when π −→ 0 gives

lim
π→0

∫ x̄i

0
φi(xi)dxi = 0,

and from (23) we derive

lim
π→0

η

c′K(π,K∗) = 1.

Using (21) together with L’hôpital’s rule, we finally deduce

u′(w − d∗) = (1 + λ)u′(w − c∗0)c′′πK(0, K∗)
> u′(w),

where the last inequality derives from λ > 0 and c
′′
πK(0, K∗) ≥ 1. Using

u′′ < 0 gives d∗ > 0. Since Ii(xi) = w2i(xi) + xi − w1, we deduce that
Ii(xi) −→ I∗(xi) = max (xi − d∗, 0) when π −→ 0.
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Proof of Proposition 2

Assume that A minimizes ∑n
i=1 αiCi in the set of feasible allocations, and

suppose that it is not Pareto-optimal, then there exists a feasible allocation
Â and a group i0 such that Ĉi− t̂i ≤ Ci− ti for all i and Ĉi0 − t̂i0 < Ci0 − ti0 .
Consequently,

n∑
i=1

αi(Ĉi − t̂i) <
n∑
i=1

αi(Ci − ti). (26)

Since A and Â are feasible, we have
n∑
i=1

αiti =
n∑
i=1

αit̂i = 0, (27)

and thus (26) and (27) give
n∑
i=1

αiĈi <
n∑
i=1

αiCi,

which contradicts the fact that A minimizes ∑n
i=1 αiCi in the set of feasible

allocations.
Conversely, assume that A is a Pareto-optimal allocation, and suppose

that it does not minimize ∑n
i=1 αiCi in the set of feasible allocations. Thus

there exists a feasible allocation Â such that ∑n
i=1 αiĈi <

∑n
i=1 αiCi, and

thus
n∑
i=1

αi(Ĉi − t̂i) <
n∑
i=1

αi(Ci − ti). (28)

Let us choose t̂i such that

t̂i = Ĉi + ti − Ci

for all i 6= ii0 , which does not contradict the feasibility of Â if we choose

t̂i0 = −
∑

i 6=i0
t̂i. (29)

We have
Ĉi − t̂i = Ci − ti for all i 6= i0. (30)

Furthermore, (28),(29) and (30) give

Ĉi0 − t̂i0 < Ci0 − ti0 . (31)

(30) and (31) contradict the fact that A is Pareto-optimal.
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7.4 Calibration of initial wealth and losses
INSEE, the French national statistical agency, provides an average estimated
Gross National Product per capita of 32,227 euros44 and an average age of
39.2 year old45. The French National Institute on Demographics (INED)
provides an estimated life expectancy of 73.2 for the average 39.246 years old
citizen. Lifetime wealth is obtained as the annual GDP per capita discounted
at a 2% rate on a 34 year horizon. This yields an expected discounted fu-
ture wealth of 805,310 euros. INSEE also provides an estimated average of
70,000 euros of current assets, which will be the financial loss that victims
may incur. We therefore consider that initial wealth is 875,310 euros.

7.4.1 Group 1

The worst case scenario is a fatal outcome that occurs in states s1 = 1 and
2. As in Eeckhoudt et al. (2000) we assume that when this worst state
materializes, the individual (in practice, her heir) is only able to retain a
fraction, equal to ω = 10% of her initial wealth, that can be interpreted as
a bequest parameter. In state s1 = 2, the agent dies but does not suffer the
financial loss. Direct losses in these catastrophic states are therefore equal
to 875, 310(1− ω) = 787, 780 in state s1 = 1 and 875, 310(1− ω)− 70, 000 =
717, 780 in state s1 = 2. In state s1 = 3, the agent suffers a severe health
loss due to exposure to radioactivity, as well as a direct financial loss of all
her financial assets. The cost of health treatment and the health induced
reduction in future income is estimated in Eeckhoudt et al.(2000) at 260,000
euros. The direct loss in this state is therefore equal to 330,000 euros. In
state s1 = 4, the agent faces the 260, 000 euros health loss and in state s1 = 5,
he faces the 70,000 euros financial loss.

Total losses are obtained by adding to the direct losses the indirect cost of
the accident, assumed to be mutualized between all the agents who did not
die. In the baseline scenario, the indirect loss is 1,440 euros per inhabitant.

7.4.2 Group 2

Agents in group 2 die in state s2 = 1, face a severe disease in state s2 = 2 and
a financial loss in state s2 = 3. Their direct losses are therefore calibrated at
717,780 and 260,000 euros.

44http://www.bdm.insee.fr
45http://www.insee.fr/
46http://www.ined.fr/
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Table 5: Descriptive statistics for the 185 cat bonds

Variable Mean Median S.D. Max Min
Spread 0.0638 0.0525 0.0392 0.2000 0.0175
Expected loss 0.0235 0.0160 0.0232 0.1306 0.0001
Size (€million) 134.86 108.8984 113.6927 1128.8 17.9453

7.5 Descriptive statistics
Table 5 provides the summary statistics for the main variables. At 6.38%,
the average spread is lower than in Braun (2015) who finds an average of
8.18% for the period 1997-2012. Average expected loss is very close to Braun
(2015) (2.35% versus 2.08%) and the average value of capital issued (size) is
higher in our data set (134.86 €million versus 97.34 €million), perhaps due
to our inability to observe small private transactions.

7.6 OLS Estimates
Table 6 provides the estimates of regression (6) for our fully specified model,
by excluding the fixed cost and/or the risk premium among the explanatory
variables. Our preferred specification, used to compute the cost of capital
in the main text, is given in the three first columns. Expected loss, Risk
premium and Size, respectively represent the terms πjE(ỹj), πj[E(ỹj2) −
πj(Eỹj)2]Kj, and K−1

j . 2017, Europe and Indemnity are the reference groups
for the times dummies, the geographical area covered, and the trigger types,
respectively. The coefficient estimates of Expected loss and Risk premium are
positive and significant across the four specifications. Concerning the control
variables, 2012 was a period of high prices, followed by a decline from 2013
to 2016. The geographical dummies point at the fact that cat bonds covering
perils in the US are more expensive than in other countries. This is in accor-
dance with Braun (2015). Table 6 also shows that parametric triggers have a
lower spread than indemnity triggers, which may be explained by the lower
moral hazard entailed by parametric triggers. Finally, the variables RMS,
EQECAT and MILL (Milliman) represent three of the four risk modelers
that were in charge of the deal. The reference group was taken to be the risk
modeler AIR.

The four regressions highlight the important role played by the risk pre-
mium term. We report, in the penultimate line of each table, the optimal
level of coverage under scenario 3 and assumption R = R = 2. Without the
risk premium term, the marginal cost of capital would be constant, hence
the higher levels of coverage reporter at the bottom of columns 8 and 11. On
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the other hand, the fixed cost term does not play a quantitatively important
role. It is indeed divided among a large number of people, and therefore
represents only a few cents per person. The last lines of each table report
the premium paid under the same set of assumptions.
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7.7 Comparison with alternative data set
This section compares our data set with Braun (2015)’s. In order to do so,
we compare the four cat bond pricing models estimated in Braun (2015),
on a sample of 466 cat bond tranches covering a period from 1997 to 2012
(Table 7), with the same models estimated on our data set (Table 8). The
first model specifies spreads as a linear function of expected loss

sj = α̂ + β̂πjE(ỹj). (32)

The second model has spread as a polynomial of the natural logarithm of the
expected loss

sj = α̂ + β̂ ln πjE(ỹj) + γ̂[ln πjE(ỹj)]2. (33)
The third model is from Lane (2000) and specifies

sj = πjE(ỹj) + α̂πβ̂j E(ỹj)γ̂. (34)

Finally, Major and Kreps’ (2002) model posits

sj = α̂(πjE(ỹj))β̂. (35)

For comparison purposes, spreads are converted into basis points and ex-
pected losses are expressed in percentage points. Tables 7 and 8 display very
similar estimates. All variables are significant, except γ̂ estimated in Lane’s
(2000) model, both with our own and Braun’s (2015) data sets.

7.8 Comparison with alternative models
This section compares our model to alternative models reviewed in Braun
(2015). These models mostly aim at reflecting the practice of commercial
reinsurers concerned by the comparative costs of various risk transfer instru-
ments. In particular, Major and Kreps (2002) consider simultaneously the
pricing of reinsurance and cat bond tranches. Models (32), (33), (34) and
(35) are estimated on our data base (Table 10) and compared to our pre-
ferred specification (Table 6). To allow for a fair comparison, we augment
models (32), (33), (34) and (35) with the same controls as in our preferred
specification.

Table 9 summarizes our preferred specification to the alternative models
in terms of adjustedR2, sum of the squared residuals (s2), Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC). The four mea-
sures yield the same ordering. Our preferred specification performs slightly
below models (32), (33) but significantly higher than models (34) and (35).
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Table 9: Model comparisons

Model (6) (32) (33) (34) (35)
AdjustedR2 0.7794 0.8391 0.8146 0.5613 0.7244
s2(×10−04) 3.3951 2.4764 2.8531 1188 927
AIC(×10−04) 3.7051 2.6894 3.1137 1296 1007
BIC(×10−04) 4.9811 3.5532 4.1860 1743 1330

7.9 Robustness analysis
Finally, Tables 11 to 20 summarize the robustness of our numerical results
of section 3. Each table presents either optimal coverage or welfare gain for
a given set of hypotheses. The cost of handling claims is set to λ = 0.3,
which is viewed as a reasonable estimate in the literature. However, changes
in this parameter have a very limited impact on the simulation results. The
scenarios that are considered vary across lines. All results are expressed in
euros. Within each table, we fix R and let R vary through the columns.
From left to right, we therefore increase the agent’s risk aversion. For each
level of R we provide two tables. The first delivers our estimates for the
optimal level of coverage and the second computes the welfare gain relative
to the no-coverage situation.

The most sensitive parameter is usually the subsistence level ω. Our
results indicate that, while the optimal coverage is robust to changes in ω,
the estimated welfare gains are quite sensitive. As expected, optimal coverage
increases with the severity of the scenario under consideration and with the
degree of risk aversion.
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7.9.1 Optimal coverage and welfare gains with ω = 0.90

Table 11: Coverage, R = 1

R 1
Scenario Cover Welfare

1 0.2865 0.0102
2 0.3538 0.0131
3 0.3883 0.0144
4 0.4097 0.0151
5 0.4244 0.0154

Table 12: Coverage, R = 2

R 1 2
Scenario Cover Welfare Cover Welfare

1 0.6982 0.0562 0.7636 0.0791
2 0.9829 0.0825 1.1204 0.1213
3 1.1693 0.0972 1.3740 0.1472
4 1.3060 0.1056 1.5726 0.1637
5 1.4125 0.1103 1.7360 0.1742

Table 13: Coverage, R = 3

R 1 2 3
Scenario Cover Welfare Cover Welfare Cover Welfare

1 1.0323 0.1481 1.1132 0.2319 1.1407 0.2822
2 1.5700 0.2213 1.7583 0.3419 1.8239 0.4077
3 1.9657 0.2615 2.2658 0.4022 2.3724 0.4744
4 2.2824 0.2842 2.6944 0.4373 2.8434 0.5130
5 2.5472 0.2967 3.0697 0.4583 3.2615 0.5364
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7.9.2 Optimal coverage and welfare gains with ω = 0.975

Table 16: Coverage, R = 1

R 1
Scenario Cover Welfare

1 0.4132 0.0204
2 0.5504 0.0288
3 0.6342 0.0336
4 0.6930 0.0366
5 0.7192 0.0384

Table 17: Coverage, R = 2

R 1 2
Scenario Cover Welfare Cover Welfare

1 0.9278 0.1436 0.9469 0.1661
2 1.4136 0.2203 1.4569 0.2545
3 1.7824 0.2668 1.8509 0.3081
4 2.0868 0.2962 2.1807 0.3424
5 2.3484 0.3153 2.4677 0.3651

Table 18: Coverage, R = 3

R 1 2 3
Scenario Cover Welfare Cover Welfare Cover Welfare

1 1.3251 0.4429 1.3471 0.5303 1.3544 0.5669
2 2.1618 0.5841 2.2156 0.6691 2.2337 0.7024
3 2.8528 0.6484 2.9418 0.7284 2.9718 0.7594
4 3.4589 0.6823 3.5852 0.7594 3.6277 0.7891
5 4.0068 0.7014 4.1716 0.7769 4.2272 0.8062
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