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Abstract

In this paper, we consider a unidimensional piecewise deterministic Markov process
(PDMP), with homogeneous jump rate λ(x) . This process is observed continuously, so
the flow φ is known. To estimate nonparametrically the jump rate, we first construct
an adaptive estimator of the stationary density, then we derive a quotient estimator
λ̂n of λ. Under some ergodicity conditions, we bound the risk of these estimators (and
give a uniform bound on a small class of functions), and prove that the estimator of
the jump rate is nearly minimax (up to a ln2(n) factor). The simulations illustrate our
theoretical results.

Keywords: Piecewise deterministic Markov processes, model selection, nonparametric esti-
mation
Mathematical Subject Classification: 62G05, 62G07, 62M05, 60J25

1 Introduction

Piecewise deterministic Markov processes are a large class of continuous-time stochastic
models first introduced by Davis [13]. They are used to model deterministic phenomenons in
which randomness appears as point events. They are not diffusions, which adds complexity to
their study. This family of stochastic processes is well adapted to model various problems in
biology (see for instance Cloez et al. [10], Rudnicki and Tyran-Kamińska [29]), neuroscience
(Höpfner et al [22], Renault et al [28]), physics (Blanchard and Jadczyk [9]), reliability
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†Laboratoire Paul Painlevé Université des Sciences et Technologies de Lille, Bureau 314, Bâtiment M3,
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(De Saporta et al. [14]), optimal consumption and exploration (Farid and David [18]), risk
insurance, seismology,. . . . See also the references in the survey Azäıs et al. [4].

In this article, we consider a filtered piecewise deterministic Markov process (PDMP)
(Xt)t≥0 taking values in R+, with flow φ, transition measure Q(x, dy) and homogeneous
jump rate λ(x). Starting from initial value x0, the process follows the flow φ until the
first jump time T1 which occurs spontaneously in a Poisson-like fashion with rate λ(φ(x, t)).
The post-jump location of the process at time T1 is governed by the transition distribution
Q(φ(x0, T1), dy) and the motion restarts from this new point as before.

To fix the ideas, let us consider two major examples of unidimensional PDMP.
The TCP (transmission control protocol) (see Dumas et al. [17], Guillemin et al. [20] for

instance) is one of the main data transmission protocol in Internet. The maximum number
of packets that can be sent at time tk in a round is a random variable Xtk . If the transmission
is successful, then the maximum number of packets is increased by one: Xtk+1

= Xtk + 1. If
the transmission fails, then we set Xtk+1

= κXtk with κ ∈ (0, 1). A correct scaling of this
process leads to a piecewise deterministic Markov process (Xt) with flow φ(x, t) = x + ct
and deterministic transition measure Q(x, y) = 1l{y=κx}. This process grows linearly (by
construction) and the constant κ can be configured in the server implementation (so it is
also known), but the moment when the transmission fails is of course unknown. In the
literature it is usually supposed that the jump rate satisfies λ(x) = x, but with this work we
can check whether it is a realistic assumption or not.

Another example of PDMP is the size of a marked bacteria (see Doumic et al. [16], Robert
et al. [26], Laurençot and Perthame [25]). We randomly choose a bacteria, and follow its
growth, until it divides in two. Then we randomly choose one of its daughters, and so on.
Between the jumps, the bacteria grows exponentially: φ(x, t) = xect. The size of the bacteria
after the division is random, as the bacteria does not divide itself in two equal parts.

The process (Xt) is observed continuously without errors (so the flow φ is known); it is
assumed to be ergodic, with fast convergence toward the stationary measure, and exponen-
tially β-mixing. We denote by (T1, . . . , Tn) the jump times and consider the Markov chain
(Z0 = x0, (Yk = XT−k

, Zk = XTk)k∈N). Our aim is to construct a non-parametric adaptive
estimator of the jump rate λ on a compact interval.

There exist few results concerning PDMP’s estimation. Azäıs et al. [5] and Azäıs and
Muller-Gueudin [3] consider a more general model, for a multidimensional PDMP. They
construct a quotient of kernel estimators, which estimate the compound function λ(φ(x, t)).
Their estimator is consistent ([5]), asymptotically normal, and its pointwise rate of conver-
gence depends on the bandwidth of the kernel (see [3]). They explain how to construct an
adaptive estimator, but do not bound its risk.

Doumic et al. [16] and Hodara et al. [21] also consider multi-dimensional PDMPs but for
very specific biological models.

Fujii [19] and Krell [24] both consider unidimensional PDMP, and provide estimators of
λ(x). [19] constructs an estimator of λ(x) thanks to a Rice formula, by estimating local
times. He proves the consistency of his estimators. [24] considers a deterministic transition
measure (so Yk is a function of Zk). Her estimator of λ is a quotient of a kernel estimator
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of the stationary density of Zk and an empirical estimator D̂n of another function D with
the parametric rate of convergence n1/2. This nonparametric estimator is asymptotically
normal, and bounds for the pointwise risk are provided. In a very recent article, Azäıs and
Genadot [2] construct a nonparametric estimator of λ(x) for a multidimensional PDMP and
prove its consistency.

This article is an extension of the work of [24]. We consider a wider class of models
(in particular, the transition measure Q does not need to be deterministic any more). We
bound the L2 risk of the adaptive estimator, whereas [24] only considers the pointwise risk
of the nonparametric estimator with fixed bandwidth h. We also prove that our estimator
is minimax (up to a ln2(n) factor).

For this purpose, in analogy with [24], we use the equality

λ(x) =
ν(x)

D(x)

where ν is the stationary density of pre-jump locations Yk (see Assumption A2 for the
existence of this stationary density) and D a function defined in equation (5). We get an
estimator D̂n(x), which converges with rate n1/2. To estimate the density function ν, we
use a projection method. We obtain a series of estimators (ν̂0, ν̂1, . . . , ν̂m, . . .) of ν. Then we
choose the ”best” estimator by a penalization method, in the same way as Barron et al. [6],
and give an oracle inequality for the adaptive estimator ν̂m̂. The constant in the penalty
term is intractable, but can be estimated thanks to a slope heuristic. Finally, we construct
a quotient estimator of λ, λ̂ = ν̂m̂/D̂n, and bound its L2-risk. In Section 2, we specify the
model and its assumptions. The main results are stated in Section 3. Proofs are gathered
in Section 4 and in Appendix A for the technical results. In Appendix B, some simulations
for the TCP protocol and the bacterial growth are provided, with various functions λ. The
outcomes are consistent with the theoretical results.

2 PDMP

A piecewise deterministic Markov process (PDMP) is defined by its local characteristics,
namely, the jump rate λ, the flow φ and the transition measure Q according to which the
location of the process is chosen after the jump. In this article, we consider a unidimensional
PDMP {X(t)}t≥0. More precisely,

Assumption A1.

a. The flow φ : R+ × R+ 7→ R+ is a one-parameter group of homeomorphisms: φ is
C1, for each t ∈ R+, φ(., t) is an homeomorphism satisfying the semigroup property:
φ(., t + s) = φ(φ(., s), t) and for each x ∈ R+, φx(.) := φ(x, .) is an increasing C1-
diffeormorphism. This implies that φ(x, 0) = x.
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b. The jump rate λ : R+ → R+ is a measurable function satisfying

∀x ∈ R+, ∃ ε′ > 0 such that

∫ ε′

0

λ(φ(x, s))ds <∞

that is, the jump rate does not explode.

c. ∀x ∈ R+, Q(x,R+ \ {x}) = 1.

For instance, we can take φ(x, t) = x + ct (linear flow) or φ(x, t) = xect (exponential
flow). The transition measure may be continuous with respect to the Lebesgue measure or
deterministic (Q(x, {y}) = 1l{y=f(x)}).

Given these three characteristics, it can be shown (Davis [13, p62-66]), that there exists
a filtered probability space (Ω,F , {Ft}, {Px}) such that the motion of the process {X(t)}t≥0

starting from a point x0 ∈ R+ may be constructed as follows. Consider a random variable
T1 with survival function

P (T1 > t|X0 = x0) = e−Λ(x0,t), where Λ(x, t) =

∫ t

0

λ(φ(x, s))ds. (1)

If T1 is equal to infinity, then the process {X(t)}t≥0 follows the flow, i.e. for t ∈ R+,
X(t) = φ(x0, t). Otherwise let Y1 = φ(x0, T

−
1 ) the pre-jump location and Z1 the post-jump

location. Z1 is defined through the transition kernel Q: P (Z1 ∈ A|Y1 = y) =
∫
A
Q(y, dz).

The trajectory of {X(t)} starting at x0, for t ∈ [0, T1], is given by

X(t) =

{
φ(x0, t) for t < T1,

Z1 for t = T1.

Inductively starting from X(Tn) = Zn, we now select the next inter-jump time Tn+1−Tn and
post-jump location X(Tn+1) = Zn+1 in a similar way. This construction properly defines a
strong Markov process {X(t)}t≥0 with jump times {Tk}k∈N (where T0 = 0). A very natural
Markov chain is linked to {X(t)}t≥0, namely the jump chain {Yn, Zn}n∈N (or, equivalently,
{Tn, Zn}n∈N).

To simplify the notations, let us set φx(t) = φ(x, t) and z0 = x0. By (1),

P (Y1 > y|Z0 = z0) = P
(
T1 > (φz0)

−1(y)
∣∣Z0 = z0

)
= exp

(
−
∫ (φz0 )−1(y)

0

λ(φz0(s))ds

)
1l{y≥z0}

and by the change of variable u = φz0(s) (we recall that for any z ∈ R+, φz is a monotonic
function), we get

P (Y1 > y|Z0 = z0) = exp

(
−
∫ y

z0

λ(u)
(
φ−1
z0

)′
(u)du

)
1l{y≥z0}. (2)
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Figure 1: Examples of simulations of processes {Xt}t≥0 and {Zk}k∈N
TCP protocol Bacterial growth
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φ(x, t) = x+ t, Zk = Yk/2, φ(x, t) = xet, Zk = YkU , U ∼ β(20, 20),
λ(x) =

√
x λ(x) = x2

• : process {Zk}k∈N − : process {X(t)}t≥0

If the function λ(y)(φ−1
z0

)′(y) is finite, we obtain the conditional density:

P(z0, y) := λ(y)(φ−1
z0

)′(y)e
−

∫ y
z0
λ(u)(φ−1

z0
)′(u)du

1l{y≥z0}. (3)

By analogy, we set P(z0, dy) = P (Y1 ∈ dy|Z0 = z0).
Our aim is to estimate the jump rate λ on the compact interval I := [i1, i2] ⊂ (0,∞).
The ergodicity is often a keystone in statistical inference for Markov processes. We also

assume fast convergence toward the stationary density.

Assumption A2.

a. The jump rate does not explode before i2: for all x ≤ i1,
∫ i1

0
λ(y)(φ−1

x )′(y)dy <∞ and
supy∈[i1,i2] λ(y) <∞.

b. The process (Yk, Zk) is recurrent positive and strongly ergodic. We denote by ν the
stationary measure of Yk, by µ that of Zk, by ρ the stationary measure of the couple
(Yk, Zk) and by ξ that of (Zk, Yk+1). We have that:

µ(dz) =

∫
R+

ν(dy)Q(y, dz) =

∫
R+

ρ(dy, dz), ρ(dy, dz) = ν(dy)Q(y, dz),

ν(dy) =

∫
R+

ξ(dx, dy) =

∫
R+

P(z, dy)µ(dz), ξ(dz, dy) = µ(dz)P(z, dy). (4)

c. There exist a function Vλ greater than 1, two constants γ ∈]0, 1[, R ∈ R+∗ such that,
for any function ψ : (R+)2 7→ R+, |ψ| ≤ Vλ, for any integer k:

|E (ψ(Yk, Zk)|Z0 = z0)− Eρ (ψ(Y1, Z1))| ≤ RVλ(z0)γk.

The inequality |ψ| ≤ Vλ means that, for any (y, z) ∈ (R+)2, |ψ(y, z)| ≤ Vλ(z). This
inequality is true in particular for any function ψ bounded by 1 and for ψ(y, z) = Vλ(z).
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Under Assumption A2a, the conditional measure P is continuous with respect to the
Lebesgue measure on [0, i2] × [i1, i2] and supx,y∈[0,i2]×[i1,i2]P(x, y) < ∞. So is y → ν(y):
ν(dy) = ν(y)dy. Moreover,

sup
y∈[i1,i2]

ν(y) = sup
y∈[i1,i2]

∫ i2

0

P(z, y)µ(dz) <∞.

We can also remark that, for any x > 0, |Eµ (Vλ(Z1)) | ≤ Vλ(x) +RVλ(x) <∞.
Let us set Ez0 (U) = E (U |Z0 = z0). Under Assumption A2, the empirical mean is close

to its expectation under the stationary density, as shown by the following lemma (proved in
the Appendix).

Lemma 1. Under Assumptions A1-A2, for any bounded function s:∣∣∣∣∣Ez0
(

1

n

n∑
k=1

s(Yk, Zk)

)
−
∫
s(y, z)ρ(dy, dz)

∣∣∣∣∣ ≤ ‖s‖∞ RVλ(z0)

n(1− γ)

and

Varz0

(
1

n

n∑
k=1

s(Yk, Zk)

)
≤ 1

n

∫
s2(y, z)ρ(dy, dz)

+
‖s‖∞
n

∫
|s(y, z)|Gλ(z)ρ(dy, dz) +

cλ ‖s‖2
∞

n2

where Gλ(z) = R
1−γ

(
Vλ(z) +

∫
Vλ(u)µ(du)

)
and cλ depends explicitly on (γ,R,Vλ). We can

remark that Cλ :=
∫
Gλ(z)µ(dz) = 2R

1−γ

∫
Vλ(z)µ(dz).

In the bound of the variance, the first term is the same as for i.i.d variables. The second
term is due to covariance terms (we found a similar term for stationary β-mixing processes),
the third comes from the non-stationarity of the random vectors (Yk, Zk).

To study an adaptive estimator of ν, we need to prove that the Markov chain (Yk, Zk) is
weakly dependent. It is the case if the process is β-mixing.

Definition 2. Let (Xk)k≥0 be a Markov process. Let us define the σ-algebra

Ob
a = σ({Xj1 ∈ I1, . . . , Xjn ∈ In}, a ≤ j1 ≤ . . . ≤ jn ≤ b,n ∈ N, Ik ∈ B(R+)).

The β-mixing coefficient of the Markov chain (Xk) is

βX(t) = sup
k

sup
E∈Ok0×O∞t+k

|POk0 ,O
∞
t+k

(E)− POk0
⊗ PO∞t+k

(E)|

where PO,S is the joint law of an event on O ×S . The β-mixing coefficient characterizes
the dependence between what happens before Tk and what happens after Tt+k. The process
(Xk)k≥0 is β-mixing if limk→∞ βX(k) = 0. It is exponentially (or geometrically) β-mixing if
there exists two positive constants c, β such that βX(k) ≤ ce−βk.
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The following lemma is a consequence of Assumption A2. It is proved in the Appendix.

Lemma 3. Under Assumptions A1-A2, the Markov chain (Yk, Zk) is geometrically β-mixing.
Moreover, its β-mixing coefficient satisfies: ∀k ∈ N:

βY,Z(k) ≤ cγk where c = R

∫
Vλ(z)µ(dz) +R(1 +R)Vλ(x0).

Estimating directly λ is difficult, but we can construct a quotient estimator. By (2) and
(3), we get that, for any y ∈ I,

λ(y)(φ−1
z0

)′(y)1l{z0≤y}P (Y1 > y|Z0 = z0) = P(z0, y)

λ(y)E
(

1l{Z0≤y<Y1}(φ
−1
Z0

)′(y)
∣∣Z0 = z0

)
= P(z0, y)

and we integrate with respect to the stationary distribution µ of Z0

λ(y)Eξ
((
φ−1
Z0

)′
(y)1l{Z0≤y<Y1}

)
=

∫
P(z, y)µ(dz) = ν(y)

recalling that ξ is the stationary measure of the couple (Z0, Y1). Let us set

D(y) := Eξ
(
(φ−1

Z0
)′(y)1l{Z0≤y<Y1}

)
. (5)

Then, if D(y) > 0, we get:

λ(y) =
ν(y)

D(y)
. (6)

It remains to ensure that D(y) > 0 on I = [i1, i2].

Assumption A3. There exists D0 > 0 such that

inf
y∈I

D(y) ≥ D0 > 0.

Remark. Assumption A3 is very natural; indeed, let us set Φ0 := infx≤i2,y∈I(φ
−1
x )′(y). As φx

is invertible, and φ′·(·) is continuous, Φ0 > 0. Then

D(y) ≥ Φ0Pξ (Z0 ≤ y < Y1) .

If the probability Pξ (Z0 ≤ y < Y1) is null, then under the stationary distribution, the proba-
bility that (Xt) passes through y is null and the jump rate at that point can not be measured.

We can remark that if D > 0 for some point y, then so is P(1Z0≤y≤Y1) > 0 and its
estimator

D̂n(y) =
1

n

n∑
k=1

(φZ−1
k

)′(y)1Zk−1≤y≤Yk > 0.

Then if we take an interval [̂i1, î2] such that for some n, and some observation (Xt)t≥0, D̂n

is positive on this interval, then Assumption A3 is satisfied on [̂i1, î2]. However, the true
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value of D0 is unknown in that case. It should be noted that the interval [̂i1, î2] should not
be changed for each simulation, otherwise the convergence of the estimator on the whole
interval can not be guaranteed (the interval of estimation would become larger and larger,
and as D is smaller on the edges on the new interval, and the convergence of the estimator
is therefore slower).

Assumptions A2 and A3 are not explicit in (λ,Q, φ), so it is not easy to check that a
particular model satisfies those assumptions. We give some explicit sufficient conditions on
the coefficients (λ,Q, φ). For the next assumption, we use the Hölder spaces Hα, as defined
in Appendix A.4.

Assumption (S).

a. The transition kernel is a contraction mapping: there exists κ < 1, such that P (Z1 ≤ κY1) =
1.

b. The flow is bounded: there exist two functions m and M such that, ∀x, y ∈ (R+)2:

0 < m(y) ≤ (φ−1
x )′(y) ≤M(y).

c. The jump rate is positive on [i1,∞[ and there exists a > 0, b > −1 such that

∀y ≥ i1, λ(y)m(y) ≥ a
yb

b+ 1
.

Then ∀y ≥ z, Pz (Y1 ≥ y) ≤ exp(−a(yb+1 − zb+1)) and limy→∞ Pz (Y1 ≥ y) = 0.

d. The jump rate does not explode too soon: there exist two positive constants L, l, such
that ‖λ‖L∞([i1,i′2]) ≤ L and

∫ i1
0
λ(u)M(u)du ≤ l where

i′2 = max

(
i2, (i2 − i1) +

(
1

a(1− κb+1)
ln

(
2κb+1

1− κb+1

))1/(b+1)

1l{κb+1≥1/3}

)
.

These conditions ensure that Assumptions A2 and A3 are satisfied. The following two as-
sumptions allow us to control the regularity of ν (the rate of convergence of the estimator λ̂n
depends on the regularity of ν, not on the regularity of λ).

e. For any y ∈ R+, λ(y) <∞. This ensures that ν and P are continuous with respect to
the Lebesgue measure on R+.

f. There exists α > 0 such that:

• ∀K ⊂ R+∗ compact, ∀z ∈ R+∗, the function (φ−1
. )′(.) belongs to Hα([0, z]×K).

• ∀K ⊂ R+∗ compact, λ ∈ Hα(K).
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• The transition measure Q can be written

Q(x, dy) = Q1(x, y)dy + p0(x)δ0(dy) +

jQ∑
i=1

pi(x)δfi(x)(dy)

with, for any compact K, Q1 and (pi)0≤i≤jQ in Hα−1(K), and (fi)1≤i≤jQ invertible
functions such that (f−1

i )1≤i≤jQ ∈ Hα(K).

If Assumption (S) is satisfied, for fixed flow φ and transition measure Q, we can introduce
the class of functions

E(s, b, α) =

{
λ ∈ Hα(J ),∀y ≥ i1, λ(y)m(y) ≥ ayb

b+ 1
,

∫ i1

0

λ(u)M(u) ≤ l, ‖λ‖Hα(J ) ≤ L

}
with s = (a, l,L) ∈ (R+)3 and the convex set

J = Jbαc ∪ [i1, i
′
2] := [j1, j2] (7)

is defined by the recurrence:

J0 = I and Jk+1 = Conv

(
I ∪

jQ⋃
i=1

f−1
i (Jk)

)
.

The following lemmas are proved in the Appendix.

Lemma 4. Under Assumptions A1 and (S)

a. Assumption A2 is satisfied for Vb(x) := exp
(
axb+1

)
: there exists R, γ, for any function

|ψ| ≤ Vb,
sup

λ∈E(s,b,α)

|Ez0 (ψ(Yk, Zk))− Eρ (ψ(Y0, Z0))| ≤ RVb(z0)γk

recalling that the inequality |ψ| ≤ Vb means that, for any (y, z) ∈ (R+)2, |ψ(y, z)| ≤
Vb(z).

b. Assumption A3 is satisfied. Moreover, there exists η > 0, D0 > 0 such that

inf
λ∈E(s,b,α)

µ([0, i1]) ≥ η and inf
λ∈E(s,b,α)

inf
y∈I

D(y) ≥ D0.

Lemma 5. If Assumptions A1 and (S) are satisfied, we can control the regularity of ν:

‖ν‖Hα(I) ≤ ψQ

(
‖λ‖Hα(J ) ,

∥∥(φ−1)′
∥∥
Hα([0,j2]×J )

)
with J = [j1, j2] defined in (7).
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Remark. In [24], the author introduces the set of functions F(c, b) with very similar condi-
tions. As she considers a transition measure Q deterministic, the sets F(c, b) and E(s, b, α)∩
Hα may not be equal. In particular, if λ ∈ E(s, b, α), then there exists c such that
λ ∈ F(c, b) ∩ Hα. On the contrary, if λ belongs to F(c, b) ∩ Hα and the deterministic
transition f is f(x) = κx, then for i1 large enough, there exists s such that λ ∈ E(s, b, α).
This is no longer the case if, for instance, f(x) ∝ xβ. As the transition measure Q is
unknown, it is not possible to exploit its characteristics.

Another difference between the two sets is that λ is estimated on the fixed interval [i1, i2]
and the assumptions depends on (i1, i2), whereas in [24], the interval of estimation depends
on the set F(c, b).

3 Estimation of the jump rate

3.1 The observation scheme

As in [3] and [24], the statistical inference is based on the observation scheme (X(t), t ≤
Tn) and asymptotics are considered when the number of jumps of the process, n, goes to
infinity. Actually the simpler observation scheme: (X(0), (X(Ti−), X(Ti)), 1 ≤ i ≤ n) =
(Z0, (Yi, Zi), 1 ≤ i ≤ n) is sufficient, as φ is known and one can remark that for all n ≥ 1,
Tn = φ−1

Zn−1
(Yn).

3.2 Methodology

[24] and [3] construct a pointwise kernel estimator of ν before deriving an estimator of λ.
Indeed, densities are often approximated by kernels methods (see Tsybakov [30] for instance).
If the kernel is positive, the estimator is also a density. However, we want to control the L2

risk of our estimator (not the pointwise risk), and also to construct an adaptive estimator.
Estimators by projection are well adapted for L2 estimation: if they are longer to compute
at a single point than pointwise estimators, it is sufficient to know the estimated coefficients
to construct the whole function. Furthermore, to find an adaptive estimator, we minimize a
function of the norm of our estimator, that is the sum of the square of the coefficients, and
the dimension. That is the reason why we choose an estimation by projection.

We first aim at estimating ν on the compact set I. We construct a sequence of L2

estimators by projection on an orthonormal basis. As usual in nonparametric estimation,
their risks can be decomposed in a variance term and a bias term which depends of the
regularity of the density function ν. We choose to use the Besov spaces (see Section A.4)
to characterize the regularity, which are well adapted to L2 estimation (particularly for the
wavelet decomposition). The ”best” estimator is then selected by penalization. To construct
the sequence of estimators, we introduce a sequence of vectorial subspaces Sm. We construct
an estimator ν̂m of ν on each subspace and then select the best estimator ν̂m̂.

Assumption A4.

10



a. The subspaces Sm are increasing and have finite dimension Dm.

b. The L2-norm and the L∞-norm are connected:

∃ψ1 > 0,∀m ∈ N,∀s ∈ Sm, ‖s‖2
∞ ≤ ψ1Dm ‖s‖2

L2 .

This implies that, for any orthonormal basis (ϕl) of Sm,∥∥∥∥∥
Dm∑
l=1

ϕ2
l

∥∥∥∥∥
∞

≤ ψ1Dm.

c. There exists a constant ψ2 > 0 such that, for any m ∈ N, there exists an orthonormal
basis ϕl such that: ∥∥∥∥∥

Dm∑
l=1

‖ϕl‖∞ |ϕl(x)|

∥∥∥∥∥
∞

≤ ψ2Dm.

d. There exists r ∈ N, called the regularity of the decomposition, such that:

∃C > 0,∀α ≤ r,∀s ∈ Bα
2,∞, ‖s− sm‖L2 ≤ CD−αm ‖s‖Bα2,∞

where sm is the orthogonal projection of s on Sm and Bα
2,∞ is a Besov space (see

Appendix A.4).

Conditions a, b and d are usual (see Comte et al. [12, section 2.3] for instance). They
are satisfied for subspaces generated by wavelets, piecewise polynomials or trigonometric
polynomials (see DeVore and Lorentz [15] for trigonometric polynomials and piecewise poly-
nomials and Meyer [27] for wavelets). Condition c is necessary because we are not in the
stationary case: it helps us to control some covariance terms. It is obviously satisfied for
bounded bases (trigonometric polynomials), and localized bases (piecewise polynomials). Let
us prove it for a wavelet basis. Let ϕ be a father wavelet function, then Dm = 2m and ϕl(x) =

2m/2ϕ(2mx− l). We get that
∥∥∥∑Dm

l=1 ‖ϕl‖∞ |ϕl(x)|
∥∥∥
∞
≤ 2m ‖ϕ‖∞

∥∥∑
l∈Z |ϕ(x− l)|

∥∥
∞. As ϕ

is at least 0-regular, for m = 2, there exists a constant C such that |ϕ(x)| ≤ C(1 + |x|−2).
Then supx

∑
l∈Z |ϕ(x− l)| ≤ C supx

∑
l∈Z(1 + |x− l|−2) <∞ and condition c is satisfied.

3.3 Estimation of the stationary density

Let us now construct an estimator ν̂m of ν on the vectorial subspace Sm. We consider an
orthonormal basis (ϕl) of Sm satisfying Assumption A4. Let us set

al =< ϕl, ν >=

∫
I
ϕl(x)ν(x)dx and νm(x) =

Dm∑
l=1

alϕl(x).

11



The function νm is the orthogonal projection of ν on L2(I). We consider the estimator

ν̂m(x) =
Dm∑
l=1

âlϕl(x) with âl =
1

n

n∑
k=1

ϕl(Yk).

Proposition 6. If D2
m ≤ n, under Assumptions A1-A2 and A4,

Ez0
(
‖ν̂m − ν‖2

L2(I)

)
≤ ‖νm − ν‖2

L2(I) + (ψ1 + Cλψ2)
Dm

n
+
c

n

where Cλ = 2R
1−γ

∫
Vλ(z)µ(dz) and c depends explicitly on Vλ, γ, R.

When m increases, the bias term decreases whereas the variance term increases. It is
important to find a good bias-variance compromise. If ν belongs to the Besov space Bα

2,∞(I),

then ‖νm − ν‖2
L2(I) ≤ C ‖ν‖Bα2,∞(I) D

−2α
m (see Assumption A4d). If α ≥ 1/2, the risk is then

minimum for Dmopt ∝ n1/(2α+1) and we have, for some continuous function ψ:

Ez0
(∥∥ν̂mopt − ν∥∥2

L2(I)

)
≤ ψ

(
‖ν‖Bα2,∞(I) ,Vλ, R, γ

)
n−2α/(2α+1).

This is the usual nonparametric convergence rate (see Tsybakov [30]). If α < 1/2, then the
risk is minimum for Dm = n1/2 and the bias term is greater than the variance term. We can
remark that a piecewise continuous function belongs to B

1/2
2,∞.

Let us now construct the adaptive estimator. We compute (ν̂0, . . . , ν̂m, . . .) for m ∈Mn =
{m,D2

m ≤ n}. Our aim is to select automatically m, without knowing the regularity of the
stationary density ν. Let us introduce the contrast function γn(s) = ‖s‖2

L2 − 2
n

∑n
k=1 s(Yk).

If s ∈ Sm, then we can write s =
∑

l blϕl and

γn(s) =
Dm∑
l=1

b2
l −

Dm∑
l=1

bl
2

n

n∑
k=1

ϕl(Yk).

The minimum is obtained for bl = âl = 1
n

∑n
k=1 ϕl(Yk). Therefore

ν̂m = arg min
s∈Sm

γn(s). (8)

As the subspaces Sm are increasing, the function γn(ν̂m) decreases when m increases. To
find an adaptive estimator, we need to add a penalty term pen(m). Let us set pen(m) =
48(ψ1+Cλψ2)Dm

n
+ 48cλψ1

n
(or more generally pen(m) = σDm

n
+ σ′

n
, with σ ≥ 48(ψ1 + Cλψ2),

σ′ ≥ 48cλψ1) and choose
m̂ = arg min

m∈Mn

γn(ν̂m) + pen(m). (9)

We obtain an adaptive estimator ν̂m̂.

12



Theorem 7 (Risk of the adaptive estimator). Under Assumptions A1-A2 and A4, ∀σ ≥
48(ψ1 + Cλψ2), σ′ ≥ 48cλψ1, pen(m) = σDm

n
+ σ′

n
,

Ez0
(
‖ν − ν̂m̂‖2

L2(I)

)
≤ min

m∈Mn

(
3 ‖νm − ν‖2

L2(I) + 4pen(m)
)

+
c′

n
.

where c′ is a function of (Vλ, R, γ, ‖ν‖L2(I)). We recall that Mn = {m,D2
m ≤ n}.

The estimator is adaptive: it realizes the best bias-variance compromise, up to a multi-
plicative constant. We have an explicit rate of convergence if ν belongs to some (unknown)
Besov space Bα

2,∞: in that case,

‖ν − νm‖2
L2(I) ≤ 3

∥∥νmopt − ν
∥∥2

L2(I)
+ 4pen(mopt) +

c

n
≤ C ‖ν‖Bα2,∞ D

−2α
m

and if α ≥ 1/2,

Ez0
(
‖ν − ν̂m̂‖2

L2(I)

)
≤ ψ

(
‖ν‖Bα2,∞(I) ,Vλ, R, γ

)
n−2α/(2α+1) (10)

for some continuous function ψ.

3.4 Estimation of the jump rate

By (6), we have

λ(y) =
ν(y)

D(y)
recalling that D(y) = Eξ

(
(φ−1

Z0
)′(y)1l{Z0≤y≤Y1}

)
where ξ is the stationary measure of (Zk, Yk+1).

Remark. We notice that this formula is different as the one used in [24]

λ(y) =
f(ν(y))

D̃(y)

where
D̃(y) := Eν

(
((f ◦ φZ0)

−1)′(f(y))1l{f(Z0)≤f(y)}1l{Z1≥f(y)}
)
.

As in [24], the author works under the assumption that Q(x, {y}) = 1l{y=f(x)}, the study was
easier, here we need to consider the Markov chain (Yk, Zk)k∈N.

To estimate the jump rate, we construct a quotient estimator. Let us consider the
estimator

λ̂n(y) =
ν̂m̂(y)

D̂n(y)
1l{ν̂m̂(y)≥0}1l{D̂n(y)≥ln(n)−1} (11)

where

D̂n(y) :=
1

n

n∑
k=1

(φ−1
Zk−1

)′(y)1l{Zk−1≤y≤Yk}.
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Remark. As the process {X(t)} is observed continuously without errors, φ−1 (and therefore
(φ−1)′) is known on ∪k[Zk−1, Yk] so D̂n(y) is computable.

The estimator λ̂n converges with nearly the same rate of convergence as ν̂:

Theorem 8. Under A1-A4, as soon as ln(n)−1 ≤ D0/2,

Ez0
(∥∥∥λ̂n − λ∥∥∥2

L2(I)

)
≤ 3 ln2(n)Ez0

(
‖ν̂m̂ − ν‖2

L2(I)

)
+ c′λ

ln2(n)

n

≤ 3 ln2(n) min
m∈Mn

{
3 ‖ν̂m − ν‖2

L2(I) + 4pen(m)
}

+ c′λ
ln2(n)

n

where

c′λ = Φ2
1

2 + Cλ
D2

0

(
3 ‖λ‖2

L2(I) + 12 ‖ν‖2
L2(I)

)
, Φ1 = sup

x∈[0,i2],y∈I
(φ−1

x )′(y).

The bias term depends of the regularity of the stationary density ν, not of the regularity of
λ. If we consider λ and ν as functions of a Besov space, their regularities are not related: the
Besov spaces are not stable by product (as they are subspaces of L2(I)). We would like
to link the rate of convergence of λ̂n to the regularity of λ rather than ν, at least when
λ ∈ E(s, b, α). In that case, λ belong to some Hölder space, which is stable by product,
composition and integration. See Appendix A.4 for the definition and properties of Besov
and Hölder spaces. We obtain the following corollary:

Corollary 9. Under A1, (S) and A4, as soon as ln(n)−1 ≤ D0/2, for any α ≥ 1/2,

sup
λ∈E(s,b,α)

Ez0
(∥∥∥λ̂n − λ∥∥∥2

L2(I)

)
. ln2(n)n−2α/(2α+1).

Remark. [24] obtain the same rate of convergence for a kernel estimator (with the regularity
of λ known).

3.5 Minimax bound for the estimator of the jump rate

We have proved that, under assumptions A1, (S) and A4,

sup
λ∈E(s,b,α)

Ez0
(∥∥∥λ̂n − λ∥∥∥2

L2(I)

)
. ln2(n)n−2α/(2α+1).

We would like to verify that our estimator converges with the minimax rate of convergence,
i.e:

inf
λ̂n

sup
λ∈E(s,b,α)

Ez0
(∥∥∥λ̂n − λ∥∥∥2

L2(I)

)
≥ C ln2(n)n−2α/(2α+1).

The ln2(n) factor comes from the quotient estimator, we can not expect it will stay in the
minimax bound. Indeed, it is clear that one could replace ln−1(n) in (11) by any function
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w(n) greater than D0/2. The best estimator will be obtained of course by taking w(n) =
D0/2 and the risk of this estimator (unreachable as D0 is unknown) will be proportional to
n−2α/(2α+1).

Theorem 10 (Minimax bound). If A1, (S) and A4 are satisfied, then

inf
λ̂n

sup
λ∈E(s,b,α)

Ez0
(∥∥∥λ̂n − λ∥∥∥2

L2(I)

)
≥ Cn−2α/(2α+1)

where the infimum is taken among all estimators.

4 Proofs

Lemmas 1, 3, 4 and 5 are proved in the Appendix.

4.1 Proof of Proposition 6

We have the following bias-variance decomposition:

Ez0
(
‖ν − ν̂m‖2

L2(I)

)
=

∫
I
Ez0
(
(ν(x)− ν̂m(x))2) dx

=

∫
I

(ν(x)− Ez0 (ν̂m(x)))2 dx+

∫
I

Varz0 (ν̂m(x)) dx

= ‖Ez0 (ν̂m)− ν‖2
L2(I) +

∫
I

Varz0 (ν̂m(x)) dx.

The estimator ν̂m (and therefore its expectation Ez0 (ν̂m)) belongs to the subspace Sm. Then,
by orthogonality

Ez0
(
‖ν − ν̂m‖2

L2(I)

)
= ‖ν − νm‖2

L2(I) + ‖Ez0 (ν̂m)− νm‖2
L2(I) +

∫
I

Varz0 (ν̂m(x)) dx.

The first terms are two terms of bias, the third is a variance term. Let us first bound the
second term of bias. As the functions (ϕl)1≤l≤Dm form an orthonormal basis of Sm, we have

‖Ez0 (ν̂m)− νm‖2
L2(I) =

Dm∑
l=1

(Ez0 (âl)− al)2

=
Dm∑
l=1

(
1

n

n∑
k=1

Ez0 (ϕl(Yk))−
∫
I
ϕl(x)ν(x)dx

)2

.

By Lemma 1, ∣∣∣∣∣ 1n
n∑
k=1

Ez0 (ϕl(Yk))−
∫
I
ϕl(x)ν(x)dx

∣∣∣∣∣ ≤ ‖ϕl‖∞ RVλ(z0)

n(1− γ)
.
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As the L2 and the L∞-norms are connected (see Assumption A4b), ‖ϕl‖2
∞ ≤ ψ1Dm and,

since D2
m ≤ n, we get:

‖Ez0 (ν̂m − νm)‖2
L2(I) ≤

Dm∑
l=1

‖ϕl‖2
∞

n2

R2V2
λ(z0)

(1− γ)2
≤ ψ1

D2
m

n2

R2V2
λ(z0)

(1− γ)2
≤ ψ1

1

n

R2V2
λ(z0)

(1− γ)2
.

Let us now consider the variance term. As the functions (ϕl) form an orthonormal basis of
Sm, the integrated variance of ν̂m is the sum of the variances of the coefficients âλ:∫

I
Varz0 (ν̂m(x)) dx =

∫
I

Varz0

(
Dm∑
l=1

âlϕl(x)

)
dx =

∑
k,l

Covz0 (âk, âl) < ϕl, ϕk >L2(I)

=
Dm∑
l=1

Varz0 (âl) .

By Lemma 1, as
∫
R+ ρ(x, dz) = ν(x), we get:

Varz0 (âl) = Varz0

(
1

n

n∑
k=1

ϕl(Yk)

)

≤ 1

n

∫
I
ϕ2
l (x)ν(x)dx+

‖ϕl‖∞
n

∫
I×R+

|ϕl(x)|Gλ(z)ρ(dx, dz) +
cλ ‖ϕl‖2

∞
n2

.

By Assumptions A4b and c, ∀x,
∑Dm

l=1 ϕ
2
l (x) ≤ ψ1Dm,

∑Dm
l=1 ‖ϕl‖∞ |ϕl(x)| ≤ ψ2Dm and∑Dm

l=1 ‖ϕl‖
2
∞ ≤ ψ1D

2
m ≤ ψ1n. Therefore:∫

I
Varz0 (ν̂m(x)) dx =

Dm∑
l=1

Varz0 (âl) ≤ (ψ1 + Cλψ2)
Dm

n
+
cλ
n
ψ1 (12)

where Cλ =
∫
Gλ(z)µ(dz) = 2R

1−γ

∫
IVλ(z)µ(dz) and cλ depends only on Vλ, R and γ.

4.2 Proof of Theorem 7

The number of coefficients in the adaptive estimator is random. If we are still able to control
easily the bias term, we can not simply control the variance of our estimator by adding the
variances of its coefficients. For any m ∈Mn, by definition of m̂ (see (8) and (9)), we have
the following inequality:

γn(ν̂m̂) ≤ γn(ν̂m) + pen(m)− pen(m̂) ≤ γn(νm) + pen(m)− pen(m̂),

with γn(s) = ‖s‖2
L2(I) − 2n−1

∑n
k=1 s(Yk). Then

‖ν̂m̂‖2
L2(I) ≤ ‖νm‖

2
L2(I) + pen(m)− pen(m̂) +

2

n

n∑
k=1

(ν̂m̂(Yk)− νm(Yk)) . (13)
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We have that, for any function s ∈ L2(I), ‖s‖2
L2(I) = ‖s− ν‖2

L2(I)−‖ν‖
2
L2(I)+2

∫
I s(x)ν(x)dx.

We apply this equality to ν̂m̂ and νm. Equation (13) becomes:

‖ν̂m̂ − ν‖2
L2(I) ≤ ‖νm − ν‖

2
L2(I) + pen(m)− pen(m̂)

+
2

n

n∑
k=1

ν̂m̂(Yk)− νm(Yk)− 2

∫
I
(ν̂m̂(x)− νm(x))ν(x)dx.

The function ν̂m̂ − νm belongs to the vectorial subspace Sm̂ + Sm. Therefore:

‖ν̂m̂ − ν‖2
L2(I) ≤ ‖νm − ν‖

2
L2(I) + pen(m)− pen(m̂)

+ 2 ‖ν̂m̂ − νm‖L2(I) sup
s∈Bm,m̂

∣∣∣∣∣
n∑
k=1

1

n
s(Yk)−

∫
I
s(x)ν(x)dx

∣∣∣∣∣
where Bm,m′ = {s ∈ Sm + Sm′ , ‖s‖L2(I) = 1}. As the sequence (Sm) is increasing, Sm + Sm′
is simply the largest of the two subspaces. By the inequality of arithmetic and geometric
means,

‖ν̂m̂ − ν‖2
L2(I) ≤ ‖νm − ν‖

2
L2(I) + pen(m)− pen(m̂) +

1

4
‖ν̂m̂ − νm‖2

L2(I)

+ sup
s∈Bm,m̂

4

(
1

n

n∑
k=1

s(Yk)−
∫
I
s(x)ν(x)dx

)2

.

By the triangular inequality, ‖ν̂m̂ − νm‖2
L2(I) ≤ 2 ‖ν̂m̂ − ν‖2

L2(I) + 2 ‖νm − ν‖2
L2(I), and:

‖ν̂m̂ − ν‖2
L2(I) ≤ 3 ‖νm − ν‖2

L2(I) + 2pen(m)− 2pen(m̂)

+ 8 sup
s∈Bm,m̂

(
1

n

n∑
k=1

s(Yk)−
∫
I
s(x)ν(x)dx

)2

.

We can decompose the last term in a bias term and a variance term. Let us set:

In(s) :=
1

n

n∑
k=1

s(Yk)− Ez0 (s(Yk)) , Jn(s) :=
1

n

n∑
k=1

(
Ez0 (s(Yk))−

∫
I
s(x)ν(x)dx

)
(14)

and p(m,m′) := (pen(m) + pen(m′))/8. Then:

Ez0
(
‖ν̂m̂ − ν‖2

L2(I)

)
≤ 3 ‖νm − ν‖2

L2(I) + 4pen(m)

+ 16Ez0

(
sup

s∈Bm,m̂

I2
n(s) + J2

n(s)

)
− 16p(m, m̂). (15)
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By Assumption A4b, s ∈ Bm,m̂ implies that ‖s‖2
∞ ≤ ψ1(Dm+Dm̂) ≤ 2ψ1n

1/2 (we recall that
Dm and Dm̂ are smaller than n1/2). Then by Lemma 1,

sup
s∈Bm,m̂

J2
n(s) ≤ sup

s∈Bm,m̂

R2V2
λ(z0) ‖s‖2

∞
n2(1− γ)2

≤ 4ψ2
1R

2V2
λ(z0)

n(1− γ)2
. (16)

It remains to bound Ez0
(

sups∈Bm,m̂
I2
n(s)− p(m, m̂)

)
+

. The unit ball Bm,m̂ is random. We

can not bound I2
n(s) on it, we have to control the risk on the fixed balls Bm,m′ . We can

write:

Ez0

(
sup

s∈Bm,m̂

I2
n(s)− p(m, m̂)

)
+

≤
∑

m,m′∈Mn

Ez0

(
sup

s∈Bm,m′

I2
n(s)− p(m,m′)

)
+

. (17)

The Markov chain (Y1, . . . , Yn) is exponentially β-mixing with β-mixing coefficient βY (k) ≤
cγk = ce− ln(1/γ)k. The following lemma is deduced from the Berbee’s coupling lemma and a
Talagrand inequality. It is proved in the appendix.

Lemma 11 (Talagrand’s inequality for β-mixing variables). Let Y1, . . . , Yn be a Markov chain
exponentially β-mixing, with β-mixing coefficient βY (k) ≤ ce−b0k. We choose qn := cq ln(n)
with cq ≥ 2/b0, pn = n/(2qn). We have that βY (qn) ≤ cγ2 ln(n) . n−2. Let us consider

In(s) =
1

n

n∑
k=1

s(Yk)− Ez0 (s(Yk)) .

If we can find a triplet (M2, V and H) such that:

∀i, sup
s∈Bm,m′

Varz0

(
1

qn

qn+i∑
k=i

s(Yk)

)
≤ V

qn
,

sup
s∈Bm,m′

‖s‖∞ ≤M2 and Ez0

(
sup

s∈Bm,m′

|In(s)|

)
≤ H√

n
,

then we have:

Ez0

(
sup

s∈Bm,m′

|I2
n(s)− 6H2|

)
+

≤ K1
V

n
exp

(
−k1

H2

V

)
+K2

M2
2

p2
n

exp

(
−k2

√
pnH√
qnM2

)
+ 2

M2
2

n2

where K1, K2, k1 and k2 are universal constants.
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For the sake of simplicity, let us set D = Dm + Dm′ and B = Bm,m′ . By Assumption
A4b,

sup
s∈B
‖s‖∞ ≤ sup

s∈B
ψ

1/2
1 D1/2 ‖s‖L2(I) = ψ

1/2
1 D1/2 := M2.

By Lemma 1,

Varz0

(
1

qn

qn∑
k=1

s(Yk)

)
≤ 1

qn

∫
I
s2(z)ν(z)dz +

‖s‖∞
qn

∫
I
|s(z)|ν(z)Gλ(z)dz +

cλ ‖s‖2
∞

q2
n

.

By Cauchy-Schwarz,∥∥s2ν
∥∥
L1(I)

≤ ‖s‖L2(I) ‖sν‖L2(I) ≤ ‖s‖L2(I) ‖s‖∞ ‖ν‖L2(I)

and
‖sνGλ‖L1(I) ≤ ‖Gλ‖L∞(I) ‖s‖L2(I) ‖ν‖L2(I) .

Then

Varz0

(
1

qn

qn∑
k=1

s(Zk)

)
≤
‖s‖L2(I) ‖ν‖L2(I)

qn

(
‖s‖∞ + ‖Gλ‖L∞(I)

)
+ cλ
‖s‖2

∞
q2
n

.

By Assumption A4b, ‖s‖∞ ≤ ψ
1/2
1 D1/2, moreover, sups∈B ‖s‖L2(I) = 1 and then

sup
s∈B

Varz0

(
1

qn

qn∑
k=1

s(Zk)

)
≤
ψ

1/2
1 D1/2 ‖ν‖L2(I)

(
1 + ‖Gλ‖L∞(I)

)
qn

+
cλψ1D

q2
n

≤ c1D
1/2

qn
+ c2

D

q2
n

:=
V

qn
.

It remains to find H such that Ez0 (sups∈B |In(s)|) ≤ H/
√
n. Let us introduce (ϕl)1≤l≤D

an orthonormal basis of Sm+Sm′ = Smax(m,m′) satisfying Assumption A4. Then we can write
s =

∑
l blϕl. As the function s→ In(s) is linear:

sup
s∈B

I2
n(s) = sup∑

b2l=1

(
D∑
l=1

blIn(ϕl)

)2

≤ sup∑
b2l=1

(
D∑
l=1

b2
l

)(
D∑
l=1

I2
n(ϕl)

)
=

D∑
l=1

I2
n(ϕl).

We can remark that In(ϕl) = âl − Ez0 (âl) (see equation (14)) and by consequence,
Ez0 (I2

n(ϕl)) = Varz0 (âl) . By (12):

Ez0
(

sup
s∈B

I2
n(s)

)
≤

D∑
l=1

Ez0
(
I2
n(ϕl)

)
=

D∑
l=1

Varz0 (âl)

≤ (ψ1 + Cλψ2)D

n
+
cλψ1

n
:=

H2

n
.

19



We can now apply Lemma 11 with

M2 = ψ
1/2
1 D1/2, V = c1D

1/2 + c2D/qn and H2 = (ψ1 + Cλψ2)D + cλψ1.

For p(m,m′) ≥ 6(ψ1 + Cλψ2)D/n+ 6cλψ1/n, we get

E1 :=Ez0
(

sup
s∈B

I2
n(s)− p(m,m′)

)
+

≤ K1
V

n
exp

(
−k1

H2

V

)
+K2

M2
2

p2
n

exp

(
−k2

√
pnH√
qnM2

)
+ 2

M2
2

n2
.

As 2/(x+ y) ≥ min(1/x, 1/y),

exp

(
−k1

H2

V

)
≤ exp

(
−k1

2
min

(
H2

c1D1/2
,

H2

c2D/qn

))
≤ exp

(
− k1H

2

2c1D1/2

)
+ exp

(
− k1H

2

2c2Dqn

)
and therefore

E1 ≤ K ′1

(
D1/2

n
+

D

nqn

)(
exp

(
− k

′
1D

D1/2

)
+ exp

(
−k

′′
1Dqn
D

))
+
K ′2D

p2
n

exp

(
−k′2p1/2

n

D1/2

q
1/2
n

1

D1/2

)
+K ′3

D

n2

≤ Kλ
1

(
D

n
exp(−kλ1D1/2) +

D

n
exp(−kλ1 qn)

)
+Kλ

2

D ln2(n)

n2
exp

(
−kλ2

n1/2

ln(n)

)
+Kλ

3

D

n2

where (Kλ
i )1≤i≤3 and (kλi )1≤i≤2 depend on (Vλ, R, γ, (ψ1, ψ2), ‖ν‖L2(I)). The second term can

be made smaller than n−2 for cq large enough. The third is also smaller to n−2 thanks to
the exponential term. Then

Ez0

(
sup

s∈Bm,m′

I2
n(s)− p(m,m′)

)
≤ Kλ

1

Dm,m′

n
exp(−kλ1D

1/2
m,m′) +Kλ

4

Dm,m′

n2
.

All the dimensions Dm,m′ are different, so
∑

m′∈M Dm,m′e
−cD1/2

m,m′ ≤
∑∞

l=1 le
−cl1/2 <∞. More-

over, as supm′∈Mn
Dm,m′ ≤

√
n,
∑

m′∈Mn
Dm,m′ ≤ maxm′∈Mn D

2
m,m′ ≤ n. Then by (17),

Ez0

(
sup

s∈Bm,m̂

I2
n(s)− p(m, m̂)

)
≤ c

n
. (18)

Collecting (15), (16) and (18), for any m ∈Mn:

Ez0
(
‖ν̂m̂ − ν‖2

L2

)
≤ 3 ‖νm − ν‖2

L2 + 4pen(m) +
c

n
.
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All the constants involved in the bound of J2
n and I2

n (M2, H, V ) depends on Vλ, γ, R and
‖ν‖L2(I) ≤ ‖ν‖Bα2,∞(I). Then there exists an continuous function ψ such that x→ ψ(x, v, c, r)

is increasing and

Ez0
(
‖ν̂m̂ − ν‖2

L2(I)

)
≤ 3 ‖νm − ν‖2

L2(I) + 4pen(m) +
ψ
(
‖ν‖Bα2,∞ ,Vλ, γ, R

)
n

.

4.3 Proof of Theorem 8

Let us first control Ez0
(

(D̂n(y)−D(y))2
)

. As φ is a diffeomorphism, the function (φ−1
x )
′
(y)

is bounded on [0, i2]×I. The function sx,z(y) = (φ−1
x )
′
(y)1l{x≤y≤z} is bounded by a constant

on I:
‖sx,z‖L∞(I) ≤ sup

x∈[0,i2],y∈I

(
φ−1
x

)′
(y) := Φ1. (19)

We have that

Ez0
((

D̂n(y)−D(y)
)2
)

= Ez0

( 1

n

n∑
k=1

sZk−1,Yk(y)− Eξ (sZ0,Y1(y))

)2


with ξ the stationary density of (Zk−1, Yk) introduced in Assumption A2. By Lemma 1, we
have

Ez0
((

D̂n(y)−D(y)
)2
)
≤ 1

n

(
Φ2

1 + Φ2
1

∫
Gλ(z)µ(dz)

)
+

Φ2
1cλ
n2

+ Φ2
1

R2V2
λ(z0)

n2(1− γ)2

≤ Φ2
1(1 + Cλ)

n
+

Φ2
1(cλ +R2V 2

λ (z0)/(1− γ)2)

n2

and therefore

Ez0
(

(D̂n(y)−D(y))2
)
≤ Φ2

1

n
(1 + Cλ) +

c

n2
. (20)

For n large enough, 1/ ln(n) is smaller than D0/2 (D0 is defined in Assumption A3) and
then by Markov inequality,

P
(
D̂n(y) ≤ 1/ ln(n)

)
≤ P

(
|D̂n(y)−D(y)| ≥ D0/2

)
≤ 4

D2
0

Ez0
(

(D̂n(y)−D(y))2
)
. (21)

As ν is a positive function, |λ̂n(y) − λ(y)|1l{ν̂m̂(y)≥0} ≤ |λ̂n(y) − λ(y)| and therefore,

according to the definition of the estimator λ̂n (see (11)),

|λ̂n(y)− λ(y)| ≤

∣∣∣∣∣ ν̂m̂(y)

D̂n(y)
− ν(y)

D(y)

∣∣∣∣∣ 1l{D̂n(y)≥1/ ln(n)} + λ(y)1l{D̂n(y)≤1/ ln(n)}.
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We can write:∣∣∣∣∣ ν̂m̂(y)

D̂n(y)
− ν(y)

D(y)

∣∣∣∣∣ ≤
∣∣∣∣∣ ν̂m̂(y)− ν(y)

D̂n(y)
+

ν(y)

D̂n(y)D(y)
(D(y)− D̂n(y))

∣∣∣∣∣ .
As D ≥ D0 by Assumption A3:

|λ̂n(y)− λ(y)| ≤ ln(n) (|ν̂m̂(y)− ν(y)|) + ln(n)
|D̂n(y)−D(y)|

D0

ν(y) + λ(y)1l{D̂n(y)≤1/ ln(n)}.

By (20) and (21),

Ez0
(∥∥∥λ̂n − λ∥∥∥2

L2(I)

)
≤ 3 ln2(n)Ez0

(
‖ν̂m̂ − ν‖2

L2(I)

)
+ 3D−2

0 ln2(n)

∫
I
Ez0
((

D̂n(y)−D(y)
)2
)
ν2(y)dy

+ 12D−2
0

∫
I
Ez0
((

D̂n(y)−D(y)
)2
)
λ2(y)dy

≤ 3 ln2(n)Ez0
(
‖ν̂m̂ − ν‖2

L2(I)

)
+ c′λ

ln2(n)

n

with c′λ =
Φ2

1

D2
0
(4 + 2Cλ)(3 ‖ν‖2

L2(I) + 12 ‖λ‖2
L2(I)).

4.4 Proof of Theorem 10

We use the reduction scheme described in Tsybakov [30, chapter 2]. By Markov inequality,

C ′2n−2α/(2α+1)Eλ
(∥∥∥λ̂n − λ∥∥∥2

L2(I)

)
≥ Pλ

(∥∥∥λ̂n − λ∥∥∥
L2(I)

≥ C ′n−α/(2α+1)

)
.

Our aim is to show that

inf
λ̂n

sup
λ∈E(s,b,α)

Pλ
(∥∥∥λ̂n − λ∥∥∥

L2(I)
≥ C ′n−α/(2α+1)

)
> 0.

Instead of searching an infimum on the whole class E(s, b, α), we can limit ourselves to the
finite set {λ0, . . . , λPn} ∈ E(s, b, α), such that

‖λi − λj‖L2(I) ≥ 2C ′n−α/(2α+1)1l{i 6=j}. (22)

Then

E2 := inf
λ̂n

sup
λ∈E(s,b,α)

Pλ
(∥∥∥λ̂n − λ∥∥∥

L2(I)
≥ C ′n−

α
2α+1

)
≥ inf

λ̂n

max
j

Pλj
(∥∥∥λ̂n − λj∥∥∥

L2(I)
≥ C ′n−

α
2α+1

)
.
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We note ψ∗ the predictor

ψ∗ := arg min
0≤j≤Pn

∥∥∥λ̂n − λj∥∥∥
L2(I)

.

By the triangular inequality,
∥∥∥λ̂n − λj∥∥∥

L2(I)
≥ ‖λψ∗ − λj‖L2(I) −

∥∥∥λψ∗ − λ̂n∥∥∥
L2(I)

.

Consequently, as
∥∥∥λ̂n − λj∥∥∥

L2(I)
≥
∥∥∥λ̂n − λψ∗∥∥∥

L2(I)
,{∥∥∥λ̂n − λj∥∥∥

L2(I)
≥ An

}
⊇
{{∥∥∥λψ∗ − λ̂n∥∥∥

L2(I)
≥ An

}
∪
{
‖λψ∗ − λj‖L2(I) ≥ 2An

}}
.

By (22), ‖λψ∗ − λj‖L2(I) ≥ 2C ′n−α/(2α+1)1l{ψ∗ 6=j}. Then setting An = C ′n−α/(2α+1),{∥∥∥λ̂n − λj∥∥∥
L2(I)

≥ C ′n−α/(2α+1)

}
⊇ {ψ∗ 6= j} and therefore:

inf
λ̂n

sup
λ∈E(s,b,α)

Pλ
(∥∥∥λ̂n − λ∥∥∥2

L2(I)
≥ C ′n−α/(2α+1)

)
≥ inf

λ̂n

max
j

Pλj (ψ∗ 6= j) .

We denote by Pλj the law of (Z0, Y1, Z1, . . . , Yn, Zn) under λj. The following lemma is exactly
Theorem 2.5 of Tsybakov [30].

Lemma 12. Let us consider a series of functions λ0, . . . , λPn such that:

a. The functions λi are sufficiently apart: ∀i 6= j

‖λi − λj‖L2(I) ≥ 2C ′n−α/(2α+1).

b. For all i, the function λi belongs to the subspace E(s, b, α).

c. Absolute continuity: ∀1 ≤ j ≤ Pn, Pλj << Pλ0.

d. The distance between the measures of probabilities is not too large:

1

Pn

Pn∑
j=1

χ2(Pλj ,Pλ0) ≤ c ln(Pn)

with 0 < c < 1/8, and χ2(., .) the χ-square divergence.

Then

inf
λ̂n

sup
λ∈E(s,b,α)

C ′2n−2α/(2α+1)Eλ
(∥∥∥λ̂n − λ∥∥∥2

L2(I)

)
≥ inf

λ̂n

max
j

Pλj (ψ∗ 6= j)

≥
√
Pn

1 +
√
Pn

(
1− 2c− 2

√
c

ln(Pn)

)
> 0.
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Step 1: Construction of (λ0, . . . λPn). Let us set

λ0(x) = ε1l{i1≤x≤j2} + a
xb

(b+ 1)m(x)
1l{x>j2} where ε = max

x∈[i1,j2]
a

xb

(b+ 1)m(x)

with J = [j1, j2] defined in (7). As λ0 is constant on J , this function belongs to the Hölder
space Hα(J ) and ‖λ0‖Hα(J ) = ε (see Appendix A.4 for the definition of the Hölder space).
It remains to ensure that it belongs to E(s, b, α). If ε > L, then E(s, b, α) = ∅. If L = ε, then
any function λ ∈ E(s, b, α) satisfies: ∀x ∈ [i1, j2], λ(x) = λ0(x). Let us assume that ε < L:
in that case, there exists δ > 0 such that ‖λ0‖Hα(J ) ≤ L− δ.

We consider a non-negative function K ∈ Hα(R), bounded, with support in [0, j2 − i1[
and such that ‖K‖L1 ≤ 1. We set hn = n−1/(2α+1), pn = d1/hne and, for 0 ≤ k ≤ pn − 1,
xk = i1 + hnk(j2 − i1). We consider the functions ϕk(x) := ahαnK ((x− xk)/hn) with a < 1.
The functions ϕk have support in [xk, xk+1) ⊂ J . Moreover, by a change of variable y =
(x− xk)/hn, ‖ϕk‖L1 = ahα+1

n ‖K‖L1 ≤ ahα+1
n and ‖ϕk‖2

L2 = a2h2α+1
n ‖K‖2

L2 . We consider the
set of functions

Gn :=

{
λε := λ0 +

pn−1∑
k=0

εkϕk, (εk) ∈ {0, 1}pn
}
.

The cardinal of Gn is 2pn . For two vectors (ε, η) with values in {0, 1}pn , the distance between
two functions λε and λη is:

‖λε − λη‖2
L2 = a2h2α+1

n ‖K‖2
L2

pn∑
k=1

(εk − ηk)2. (23)

As the series εk and ηk have values in {0, 1}, the quantity

ρ(ε, η) :=

pn∑
k=1

1l{εk 6=ηk} =

pn∑
k=1

(εk − ηk)2

is the Hamming distance between η and ε. To apply Lemma 12, we need that, ∀η 6= ε,

‖λε − λη‖2
L2 ≥ 4C ′2h2α

n and consequently ρ(ε, η) ≥ Ch−1
n .

This is not the case if we take the whole Gn (the minimal Hamming distance between two
vectors ε and η is 1). We need to extract a sub-series of functions. According to Tsybakov [30,
Lemma 2.7] (bound of Varshamov-Gilbert), it is possible to extract a family (ε(0), . . . , ε(Pn))
of the set Ω = {0, 1}pn such that ε(0) = (0, . . . , 0) and

∀ 0 ≤ j < k ≤ Pn, ρ(ε(j), ε(k)) ≥ pn/8, and Pn ≥ 2pn/8.

As pn ≥ n1/(2α+1),
ln(Pn) ≥ ln(2)n1/(2α+1)/8. (24)
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We define
λj := λε(j) and Hn = {λ0, λ1, . . . , λPn}.

Then, for any λj, λk ∈Hn, if j 6= k , as pn = d1/hne, by (23),

‖λj − λk‖2
L2 ≥ a2 ‖K‖2

L2 h
2α+1
n pn/8 ≥ a2 ‖K‖2

L2 h
2α
n /8.

This is exactly the expected lower bound if we take C ′ = a ‖K‖L2 /(4
√

2).

Step 2: Functions λj belong to E(s, b, α). We already know that λ0 belongs to E(s, b, α).
Let us first compute the norm of λj on Hα(J ). Let us set r = bαc. We have that
(K(./hn))(r) = h−rn K(r)(./hn). We compute the modulus of smoothness:

ω(ϕ
(r)
k , t)∞ = aω

(
hαn

(
K

(
.− xk
hn

))(r)

, t

)
∞

= ahαnω

(
h−rn K(r)

(
.− xk
hn

)
, t

)
∞

= ahα−rn ω

(
K(r),

t

hn

)
∞

and

|ϕk|Hα = sup
t>0

tr−αω(ϕ
(r)
k , t)∞ = a sup

t>0
tr−αhα−rn ω

(
K(r),

t

hn

)
∞

= a sup
z>0

zr−αω(K(r), z) = a|K|Hα

by the change of variable z = t/hn. The functions ϕk have disjoint supports. For any
(x, y) ∈ J , there exists (i, j) such that x ∈ [xi, xi+1( and y ∈ [xj, xj+1(. Then

λ
(r)
k (x)− λ(r)

k (y) = εi

(
ϕ

(r)
i (x)− ϕ(r)

i (y)
)

+ εj

(
ϕ

(r)
j (x)− ϕ(r)

j (y)
)
.

Therefore
ω(λ

(r)
k , t)∞ ≤ sup

i,j

(
ω(ϕ

(r)
j , t)∞ + ω(ϕ

(r)
i , t)∞

)
≤ 2ω(ϕ

(r)
1 , t)∞

and |λk|Hα(J ) ≤ 2a|K|Hα . Moreover,

‖λk‖L∞(J ) ≤ ‖λ0‖L∞(J ) + ahαn ‖K‖L∞ ≤ ‖λ0‖L∞(J ) + 2a ‖K‖L∞

and consequently ‖λk‖Hα(J ) ≤ ‖λ0‖Hα(J ) +2a ‖K‖Hα . Then λk ∈ Hα(J ,L) for a sufficiently
small. It remains to check that λk ∈ E(s, b, α). For any 0 ≤ k ≤ Pn:

a. As K is non-negative, ∀x ≥ i1, λk(x) ≥ a xb

(b+1)m(x)
.

b. ‖λk‖Hα(J ) ≤ L for a small enough.

c.
∫ i1

0
λk(u)M(u)du = 0 ≤ l.

Therefore λk ∈ E(s, b, α) for a small enough.
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Step 3: Absolute continuity. We denote by Pj the transition densities Pλj . As
(Z0, Y1, Z1, . . . , Yn, Zn) is a Markov process,

Pλj(z0, dy1, dz1 . . . , dyn, dzn) = Pj(z0, y1)Q(y1, dz1) . . .Pj(zn−1, yn)Q(yn, dzn)dy1 . . . dyn.

By (3), we can rewrite: P0(x, y) = Ax,y exp(−Ãx,y) where

Ax,y := λ0(y)(φ−1
x )′(y)1l{y≥x}, Ãx,y :=

∫ y

x

λ0(u)(φ−1
x )′(u)du (25)

and Pj(x, y) = (Ax,y+Bx,y) exp(−Ãx,y−B̃x,y) where Bx,y =
∑m

k=1 εkB
k
x,y, B̃x,y =

∑pn
k=1 εkB̃

k
x,y

and

Bk
x,y := ϕk(x)(φ−1

x )′(y)1l{y≥x}, B̃k
x,y :=

∫ y

x

ϕk(u)(φ−1
x )′(u)du. (26)

The probability density Pλ0 is null if one of the Q(yi, dzi) is null, if one of the indicator
function 1l{yi+1≥zi} = 0, or if one yi is smaller than i1; then Pλj is absolutely continuous with
respect to Pλ0 .

Step 4: The χ2 divergence. As Pλ0 ,Pλj are equivalent measures, we have:

χ2(Pλj ,Pλ0) =

∫ (
dPλj

dPλ0

)2

dPλ0 − 1.

Let us set E3 := χ2(Pλj ,Pλ0) + 1. We can write:

E3 =

∫
(R+)n

(
Pj(z0, y1)...Pj(zn−1, yn)

P0(z0, y1)...P0(zn−1, yn)

)2

P0(z0, y1)...P0(zn−1, yn)

×
∫

(R+)n
Q(y1, dz1) . . . Q(yn, dzn)dy1 . . . dyn.

As Q is the transition density, for any yn,
∫
R+ Q(yn, dzn) = 1. Moreover, as

∫
R+ P0(x, y)dy =∫

R+ Pj(x, y)dy = 1,

E3 =

∫
(R+)2(n−1)

(Pj(z0, y1)...Pj(zn−2, yn−1))2

P0(z0, y1)...P0(zn−2, yn−1)
Q(y1, dz1) . . . Q(yn−1, dzn−1)dy1 . . . dyn−1

×
∫
R+

(Pj(zn−1, yn))2

P0(zn−1, yn)
dyn. (27)

This expression of the χ2 divergence enables us to approximate it more closely. Let us
set

DP :=

∫
R+

(Pj(x, y))2

P0(x, y)
dy − 1 =

∫
R+

(
Pj(x, y)

P0(x, y)
− 1

)2

P0(x, y)dy

=

∫
R+

((
1 +

Bx,y

Ax,y

)
exp

(
−B̃x,y

)
− 1

)2

Ax,y exp
(
−Ãx,y

)
dy. (28)
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As the support of ϕk is included in J , we can remark that Bx,y is null on J c and

B̃k
x,y =

∫
[x,y]∩J

ϕk(u)(φ−1
x )′(u)du.

We bound the χ2-divergence differently on J and J c: DP = R1 +R2 where

R1 :=

∫
J

((
1 +

Bx,y

Ax,y

)
exp

(
−B̃x,y

)
− 1

)2

Ax,y exp(−Ãx,y)dy,

R2 :=

∫
J c

(
exp

(
−B̃x,y

)
− 1
)2

Ax,y exp(−Ãx,y)dy.

We have that Bk
x,y ≤M(y) ‖ϕk‖∞ 1l{y≥x}1l{y∈[xk,xk+1(} and therefore, as ‖ϕk‖∞ = ahαn ‖K‖∞,

Bx,y ≤ sup
y∈J

M(y)ahαn ‖K‖∞ 1l{y∈J} ≤ Cahαn1l{y∈J}. (29)

By (26), we obtain, as the functions ϕk are supported in J :

B̃k
x,y =

∫ y

x

ϕk(z)(φ−1
x )′(z)dz ≤ sup

z∈J
(M(z)) sup

k
‖ϕk‖L1 ≤ ahα+1

n sup
z∈J

(M(z))

and, as pn = d1/hne,

B̃x,y ≤
pn∑
k=1

B̃k
x,y ≤ C ′apnh

α+1
n ≤ C ′ahαn. (30)

Then by (30) and as
∫
R+ Ax,y exp(−Ãx,y)dy = 1

R2 ≤
∫
R+

O(a2h2α
n )Ax,y exp

(
−Ãx,y

)
dy = O(a2h2α

n ).

As λ0 = ε on J , we get by (25) that

ε1l{y≥x} inf
y∈J

m(y) ≤ sup
y∈J

Ax,y ≤ sup
y∈J

M(y)ε1l{y≥x}.

Moreover, on R+, exp(−Ãx,y) ≤ 1. Then by (29) and (30), we get that

R1 =

∫
J

((1 +O(ahαn) exp (−O(ahαn))− 1)2O(1)dy =

∫
J
O(a2h2α

n )dy = O(a2h2α
n ).

Therefore DP = O(a2h2α
n ) and, by (27) and (28), we get by recurrence

E3 =

∫
(R+)2(n−1)

(Pj(z0, y1)...Pj(zn−2, yn−1))2

P0(z0, y1)...P0(zn−2, yn−1)
Q(y1, dz1) . . . Q(Yn−1, dzn−1)dy1...dyn−1

×
(
O
(
a2h2α

n

)
+ 1
)

=
n∏
i=1

(
O
(
a2h2α

n

)
+ 1
)

= 1 + a2nO
(
h2α
n

)
.
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As hn = n−
1

2α+1 ,
χ2(Pλ0 ,Pλj) = E3 − 1 ≤ a2O

(
n1/(2α+1)

)
.

By (24), ln(Pn) ≥ ln(2)n1/(2α+1)/8 and therefore,

1

Pn

Pn∑
k=1

χ2(Pλ0 ,Pλj) = a2O
(
n1/(2α+1)

)
= a2O (ln(Pn)) ≤ ln(Pn)/8

for a small enough, which concludes the proof.
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A Technical proofs and results

A.1 Proof of Lemma 1

We consider a function s such that ‖s‖∞ = 1; we obtain the expected result by dividing s
by its L∞-norm. According to Assumption A2,∣∣∣∣∣Ez0

(
1

n

n∑
k=1

s(Yk, Zk)−
∫
s(y, z)ρ(dy, dz)

)∣∣∣∣∣ ≤ 1

n

n∑
k=1

RVλ(z0)γk ≤ RVλ(z0)

n(1− γ)

which proves the first inequality. Let us set s̃(Y, Z) = s(Y, Z)− Ez0 (s(Y, Z)). We have:

Ez0

( 1

n

n∑
k=1

s̃(Yk, Zk)

)2
 =

1

n2

∑
k

Ez0
(
s̃2(Yk, Zk)

)
+

2

n2

∑
k<k′

Ez0 (s̃(Yk, Zk)s̃(Yk′ , Zk′)) .

(31)
We notice that:

Ez0
(
s̃2(Yk, Zk)

)
= Ez0

(
s2(Yk, Zk)

)
− (Ez0 (s(Yk, Zk)))

2 ≤ Ez0
(
s2(Yk, Zk)

)
≤
∫
s2(y, z)ρ(dy, dz) + Ez0

(
s2(Yk, Zk)

)
−
∫
s2(y, z)ρ(dy, dz)

≤
∫
s2(y, z)ρ(dy, dz) +RVλ(z0)γk

by Assumption A2. Therefore

Ez0

(
1

n2

n∑
k=1

s̃2(Yk, Zk)

)
≤ 1

n

∫
s2(y, z)ρ(dy, dz) +

RVλ(z0)

n2(1− γ)
. (32)

Let us bound the last term of (31). We can remark that (Z0, Y1, Z1, . . . , Yk, Zk, . . .) is
an inhomogeneous Markov chain. Therefore, for any (k < k′), E (s(Yk′ , Zk′)|Yk, Zk) =
E (s(Yk′ , Zk′)|Zk) and by Assumption A2,

|E ( s̃(Yk′ , Zk′)|Yk, Zk)| ≤
∣∣∣∣E (s(Yk′ , Zk′)|Yk, Zk)−

∫
s(y, z)ρ(dy, dz)

∣∣∣∣
+

∣∣∣∣−Ez0 (s(Yk′ , Zk′)) +

∫
s(y, z)ρ(dy, dz)

∣∣∣∣
≤ Rγk

′−kVλ(Zk) +RVλ(z0)γk
′
. (33)
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Then

Ek :=
n∑

k′=k+1

|Ez0 (s̃(Yk, Zk)s̃(Yk′ , Zk′)) | =
n∑

k′=k+1

|Ez0 (s̃(Yk, Zk)E ( s̃(Yk′ , Zk′)|Yk, Zk)) |

≤
n∑

k′=k+1

Ez0
(
|s̃(Yk, Zk)|(Rγk

′−kVλ(Zk) +RVλ(z0)γk
′
)
)

≤ R

1− γ
Ez0
(
|s̃(Yk, Zk)|

(
Vλ(Zk) + γkVλ(z0)

))
.

As |s̃(Yk, Zk)| ≤ |s(Yk, Zk)|+ Ez0 (|s(Yk, Zk)|),

Ek ≤
R

1− γ
(Ez0 (|s(Yk, Zk)|Vλ(Zk)) + Ez0 (|s(Yk, Zk)|)Ez0 (Vλ(Zk)))

+
RVλ(z0)

1− γ
γk2Ez0 (|s(Yk, Zk)|) .

By Assumption A2, for any function |ψ| ≤ Vλ,

Ez0 (ψ(Yk, Zk)) ≤
∫ ∞

0

ψ(y, z)ρ(dy, dz) +RVλ(z0)γk.

Then∑
k

Ek ≤
∑
k

R

1− γ

(∫
|s(y, z)|Vλ(z)ρ(dy, dz) +RVλ(z0)γk

)
+
∑
k

R

1− γ

(∫
|s(y, z)|ρ(dy, dz) +RVλ(z0)γk

)
×
(∫

Vλ(z)ρ(dy, dz) +RVλ(z0)γk
)

+
∑
k

RVλ(z0)

1− γ
2γk

(∫
|s(y, z)|ρ(dy, dz) +RVλ(z0)γk

)
≤ n

R

1− γ

(∫
|s(y, z)|Vλ(z)ρ(dy, dz) +

∫
|s(y, z)|ρ(dy, dz)

∫
Vλ(z)µ(dz)

)
+
RVλ(z0)

(1− γ)2

(
R +R

∫
Vλ(z)µ(dz) + (R + 2)

∫
|s(y, z)|ρ(dy, dz)

)
+
R2(R + 2)V2

λ(z0)

(1− γ)(1− γ2)
.
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By (31) and (32), we get:

Ez0

( 1

n

n∑
k=1

s̃(Yk, Zk)

)2
 ≤ 1

n

(∫
s2(y, z)ρ(dy, dz) +

∫
|s(y, z)|Gλ(y, z)ρ(dy, dz)

)
+
C

n2

where C depends only on R, Vλ and γ and we recall that Gλ(z) =
R

1−γ

(
Vλ(z) +

∫
Vλ(u)µ(du)

)
.

A.2 Proof of Lemma 3

Let G be an event of Ok
0 × O∞t+k. Then G is a disjoint reunion of events Ei ∩ F i,j where

Ei = {(Y1, Z1) ∈ J i1, . . . , (Yk, Zk) ∈ J ik},
F i,j = {(Yt+k, Zt+k) ∈ I i,j0 , . . . , (Yt+k+n, Zt+k+n) ∈ I i,jn }

with J ij and I i,jl subsets of (R+)2 and 1 ≤ n <∞. Then

DG := POk0 ,O
∞
t+k

(G)− POk0
⊗ PO∞t+k

(G) =
∑
i,j

P
(
Ei ∩ F i,j

)
− P

(
Ei
)
P
(
F i,j
)
.

As (Yk, Zk)k∈N is a Markov chain,

Ai,j := P
(
Ei ∩ F i,j

)
− P

(
Ei
)
P
(
F i,j
)

=

∫
Ji1×...×Jik

P(z0, dy1)Q(y1, dz1) . . .P(zk−1, dyk)Q(yk, dzk)

×
∫
Ii,j0

(P (Yt+k ∈ dy′0, Zt+k ∈ dz′0|Zk = zk)− P (Yt+k ∈ dy′0, Zt+k ∈ dz′0|Z0 = z0))

×
∫
Ii,j1 ×...×I

i,j
n

P(z′0, dy
′
1)Q(y′1, dz

′
1) . . .P(z′n−1, dy

′
n)Q(y′n, dz

′
n).

To simplify the notations, let us set

Rk(x, dy1, dz1, . . . , dyk, dzk) := P(x, dy1)Q(y1, dz) . . .P(zk−1, yk)Q(yk, zk).

and Rt(x, dy, dz) = P (Yt ∈ dy, Zt ∈ dz|Z0 = x). Then

Ai,j =

∫
Ji1×...×Jik

Rk(z0, dy1, dz1, . . . , dyk, dzk)

×
∫
Ii,j0

(
Rt(zk, dy

′
0, dz

′
0)−Rt+k(z0, dy

′
0, dz

′
0)
)

1ly′0,z′0∈I
i,j
0

×
∫
Ii,j1 ×...×I

i,j
n

Rn(z′0, dy
′
1, dz

′
1, . . . , dy

′
n, dz

′
n).
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We regroup the F i,j:

Ai :=
∑
j

Ai,j =
∑
j

P
(
Ei ∩ F i,j

)
− P

(
Ei
)
P
(
F i,j
)

=

∫
Ji1×...×Jik

Rk(z0, dy1, dz1, . . . , dyk, dzk) (Ezk (ψ(Yt, Zt))− Ez0 (ψ(Yt+k, Zt+k)))

where ψ(y, z) :=
∑

j 1l(y,z)∈Ii,j0

∫
Ii,j1 ×...×I

i,j
n
Rn(z, dy′1, dz

′
1, . . . , dy

′
n, dz

′
n). We can remark that

ψ(y, z) =
∑

j 1ly,z∈Ii,j0
Pz
(
(Y1, Z1) ∈ I i,j1 , . . . , (Yn, Zn) ∈ I i,jn

)
and by the law of total probabil-

ity, ψ(y, z) ≤ 1. We can apply Assumption A2 to the function ψ:

|Ezk (ψ(Yt, Zt))− Ez0 (ψ(Yt+k, Zt+k))| ≤ RγtVλ(zk) +Rγt+kVλ(z0).

Then

|DG| =

∣∣∣∣∣∑
i

Ai

∣∣∣∣∣ ≤ Rγt
∑
i

∫
Ji1×...×Jik

Rk(z0, dy1, dz1, . . . , dyk, dzk) (Vλ(zk) + Vλ(z0))

≤ Rγt
∑
i

Ez0
(

(Vλ(Zk) + Vλ(z0)) 1l(Y1,Z1)∈Ji1,...,(Yk,Zk)∈Jik

)
≤ Rγt (Ez0 (Vλ(Zk)) + Vλ(z0)) .

By Lemma 1,

Ez0 (Vλ(Zk)) ≤
∫

Vλ(z)µ(dz) +RγkVλ(z0).

Therefore

βY,Z(t) = sup
k

sup
G∈Ok0×O∞t+k

|DG| ≤ Rγt
(∫

Vλ(z)µ(dz) + (1 +R)Vλ(z0)

)
.

As γ < 1,
βY,Z(t) ≤ ce−βt

with β = − ln(γ), c = R
(∫

Vλ(z)µ(dz) + (1 +R)Vλ(z0)
)
.

A.3 Proof of Lemma 4

A.3.1 Assumption A2 is satisfied

Assumption (S)d implies Assumption A2a. To prove Assumption A2b and c, in analogy
with [24], we apply the following result, which is Theorem 1.1 of Baxendale [7] written for a
Markov chain on R2 and a finite measure instead of a probability.

Result (Sufficient conditions for ergodicity). Let us consider (Yk, Zk)k≥1 an homogeneous
Markov chain on (R2,B(R2)) with transition probability R̃. Under the following three con-
ditions,
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Minorization condition There exist a set C ⊂ R2 and a finite measure s such that
∀(y1, z1) ∈ C ,∀A ∈ B(R2), ∫

A

R̃(y1, z1, dy, dz) ≥ s(A).

Strong aperiodicity condition s(C ) > 0.

Drift condition There exists a function V : R2 → [1,∞[ and two constants c < 1, K > 0
such that

Ey1,z1 (V(Y2, Z2)) ≤ cV(y1, z1)1l{(y1,z1)∈C c} +K1l{(y1,z1)∈C }.

Then the process {(Yk, Zk) : k ≥ 0} is recurrent positive and strongly ergodic, and has a
unique stationary probability measure ρ.

Moreover, there exists γ and R depending only on s, c and K such that, for any function
ψ ≤ V,

|E (ψ(Yk, Zk)|Z0 = z0)− Eρ (ψ(Y1, Z1))| ≤ RV(z0)γk.

Then Assumptions A2b and c are satisfied.
Let us check that its three conditions (minorization, strong aperiodicity and drift) are sat-

isfied. We need to control the transition density. As (Z0, Y1, Z1, . . . , ) is an (inhomogeneous)
Markov chain, let us note

R̃(y1, z1, dy, dz) = P (Y2 ∈ dy, Z2 ∈ dz|Z1 = z1, Y1 = y1) = P(z1, dy)Q(y, dz).

Let us set

i′1 = max

(
i1,

(
1

a(1− κb+1)
ln

(
2κb+1

1− κb+1

))1/(b+1)

1l{κb+1≥1/3}

)
.

Minorization condition Let us set C = R+× [0, i′1]. For any (y1, z1) ∈ C , any A ⊆ (R+)2,
by Assumption (S)b, we have that∫
A

R̃(y1, z1, dy, dz) =

∫
A

λ(y)(φ−1
z1

)′(y) exp

(
−
∫ y

z1

λ(u)(φ−1
z1

)′(u)du

)
1l{z1≤y}Q(y, dz)dy

≥
∫
A

λ(y)m(y) exp

(
−
∫ y

0

λ(u)M(u)du

)
1l{i′1≤y}Q(y, dz)dy

By Assumption (S)d and c, for any λ ∈ E(s, b, α),∫
A

R̃(y1, z1, dy, dz) ≥
∫
A∩[i′1,i

′
2]×[0,i′1]

λ(y)m(y) exp

(
−
∫ y

0

λ(u)M(u)du

)
Q(y, dz)dy

≥
∫
A∩[i′1,i

′
2]×[0,i′1]

a
yb

b+ 1
exp

(
−l− L

∫ y

i1

M(u)du

)
Q(y, dz)dy

=: ss(A)

and ss(A) is a finite measure.
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Strong aperiodicity condition

ss(C ) =

∫ i′2

i′1

a
yb

b+ 1
exp

(
−l− L

∫ y

i1

M(u)du

)∫ i′1

0

Q(y, dz)dy

≥
∫ (κ−1i′1)∧i′2

i′1

a
yb

b+ 1
exp

(
−l− L

∫ i′2

i1

M(u)du

)∫ i′1

0

Q(y, dz)dy.

For any y ≤ κ−1i′1, by Assumption (S) a,
∫ i′1

0
Q(y, dz) = P (Z1 ≤ i′1|Y1 = y) = 1.

Therefore

ss(C ) ≥
∫ (κ−1i′1)∧i′2

i′1

a
yb

b+ 1
exp

(
−l− L

∫ i′2

i1

M(u)du

)
.

Then ss(C ) > 0.

Drift condition For any (y1, z1), as (Y1, Z1, Y2, Z2) is an (inhomogeneous) Markov chain,

E (Vb(Z2)|Y1 = y1, Z1 = z1) = Ez1 (Vb(Z2))

=

∫ ∞
0

P (Vb(Z2) > z|Z1 = z1) dz

where Vb(z) = exp
(
azb+1

)
. By Assumption (S)a, as Vb is an increasing function,

Vb(Z2) > z ⇐⇒ Z2 ≥ V−1
b (z) =⇒ Y2 ≥ κ−1V−1

b (z). Then by (2) and Assumption
(S)b,

Ez1 (Vb(Z2)) ≤
∫ ∞

0

Pz1
(
Y2 ≥ κ−1V−1

b (z)
)
dz

=

∫ ∞
0

exp

(
−
∫ κ−1V−1

b (z)

z1

(φ−1
z1

)′(u)λ(u)du

)
1l{κ−1V−1

b (z)≥z1}dz

≤
∫ ∞

0

exp

(
−
∫ κ−1V−1

b (z)

z1

m(u)λ(u)du

)
1l{κ−1V−1

b (z)≥z1}dz =: Ĩ(z1) (34)

Let us make the change of variable y = κ−1V−1
b (z), then dz = κV′b(κy)dy and

Ĩ(z1) = κ

∫ ∞
0

V′b(κy) exp

(
−
∫ y

z1

m(u)λ(u)du

)
1l{y≥z1}dy.

Let us first bound this quantity for z1 ≥ i1. By Assumption (S)c, for any z1 ≥ i1,∫ y

z1

m(u)λ(u)du ≥ a(yb+1 − zb+1
1 ).
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As Vb(y) = exp
(
ayb+1

)
, V′b(κy) = a(b+ 1)κbyb exp

(
aκb+1yb+1

)
and, for any z1 ≥ i1,

Ĩ(z1) ≤
∫ ∞
z1

a(b+ 1)κb+1yb exp
(
−ayb+1(1− κb+1) + azb+1

1 )
)
dy

≤ Vb(z1)
κb+1

1− κb+1

[
− exp

(
−a(1− κb+1)yb+1

)]∞
z1

≤ κb+1

1− κb+1
Vb(z1)Vb(z1)κ

b+1−1. (35)

We have that

(i′1)b+1 ≥ 1

a(1− κb+1)
ln

(
2κb+1

1− κb+1

)
then (Vb(i

′
1))

1−κb+1

≥ 2κb+1

1− κb+1
.

Therefore, for any z1 ≥ i′1, as Vb is an increasing function,

Vb(z1)κ
b+1−1 ≤ Vb(i

′
1)κ

b+1−1 ≤ 1− κb+1

2κb+1
.

Then

Ĩ(z1) ≤ Vb(z1)

2
. (36)

Moreover, by (34),

sup
z1≤i1

Ĩ(z1) ≤
∫ Vb(κi1)

0

exp

(
−
∫ κ−1V−1

b (z)

0

m(u)λ(u)du

)
dz

+

∫ ∞
Vb(κi1)

exp

(
−
∫ i1

0

m(u)λ(u)du−
∫ κ−1V−1

b (z)

i1

m(u)λ(u)du

)
dz

≤ Vb(κi1) +

∫ ∞
0

exp

(
−
∫ κ−1V−1

b (z)

i1

m(u)λ(u)du

)
dz1l{κ−1V−1

b (z)≥i1}

≤ Vb(κi1) + Ĩ(i1)

and by (35),

sup
z1≤i′1

Ĩ(z1) ≤ Vb(i1) +
κb+1

1− κb+1
Vb(i

′
1) ≤ CVb(i

′
1) <∞

Therefore the three conditions (minorization, strong aperiodicity and drift) are satis-
fied, which gives Assumption A2.
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A.3.2 Assumption A3 is satisfied

It remains to prove that Assumption A3 is satisfied. We recall that

Φ0 = inf
x∈[0,i2],y∈I

(φ−1
x )′(y) and Φ1 = sup

x∈[0,i2],y∈I
(φ−1

x )′(y).

By equation (5), for any y ∈ I,

D(y) ≥ Φ0 inf
y′∈I

∫ y′

0

P (Y1 > y′|Z0 = x)µ(dx).

By equation (2), Assumption (S)b and d, for any y ∈ I,

P (Z1 > y|Z0 = x) ≥ exp

(
−l−

∫ i2

i1

L(φ−1
x )′(u)du

)
≥ e−l−LΦ1i2 .

Then
inf

λ∈E(s,b,α)
inf
y∈I

D(y) ≥ Φ0e
−l−LΦ1i2µ([0, i1]).

It remains to bound µ([0, i1]) away from 0.
As µ is the stationary density of (Zk), µ(]z,∞]) = Pµ (Z1 > z). Therefore, by Markov

inequality, as Vb is an increasing function,

µ(]z,∞[) = Pµ (Vb(Z1) > Vb(z)) ≤ V−1
b (z)Eµ (Vb(Z1)) .

By Lemma 4a,
sup

λ∈E(s,b,α)

Eµ (Vb(Z1)) ≤ Vb(z0)(1 + γR) <∞.

As supλ∈E(s,b,α) Eµ (Vb(Z1)) < ∞, and Vb is an increasing function, there exists y0 > 0,
supλ∈E(s,b,α) µ(]y0,∞[) < 1 and consequently, infλ∈E(s,b,α) µ([0, y0]) > 0. Let us consider the
sequence

(z0 := i1, z1 := z0/
√
κ, . . . , zj := zj−1/

√
κ = κ−j/2i1, . . . , zkn := κ−kn/2i1)

where zkn−1 < y0 ≤ zkn . We can remark that

inf
λ∈E(s,b,α)

µ([0, zkn ]) > 0. (37)

As µ is the stationary density, for any z > 0,

µ([0, z]) =

∫ ∞
0

P (Z1 ≤ z|Z0 = x)µ(dx).
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As P (Z1 ≤ κY1) = 1, P (Z1 ≤ z|Z0 = x) ≥ P (Y1 ≤ κ−1z|Z0 = x) and by (2),

µ([0, zj]) ≥
∫ ∞

0

(
1− exp

(
−
∫ κ−1zj

x

λ(u)(φ−1
x )′(u)du

)
1l{x≤κ−1zj}

)
µ(dx)

≥
∫ zj+1

i1

(
1− exp

(
−
∫ κ−1zj

x

λ(u)(φ−1
x )′(u)du

))
µ(dx)

as κ−1zj ≥ zj+1. By Assumption (S)b and c, λ and (φ−1
x )′ are bounded by below and there

exists a constant η such that

inf
λ∈E(s,b,α)

inf
u∈[i1,zkn ]

λ(u)(φ−1
x )′(u) ≥ η.

Therefore, as κ−1zj = κ−1/2zj+1,

µ([0, zj]) ≥
∫ zj+1

i1

(
1− exp(−η(κ−1zj − zj+1)

)
µ(dx)

≥
(
1− exp(−η(κ−1zj(1−

√
κ))
)
µ([i1, zj+1]).

Let us set cj = (1− exp(−η(κ−1zj(1−
√
κ))). We can note that

µ([0, zj]) ≥ cj (µ([0, zj+1])− µ([0, i1]))

and in particular, µ([0, i1])(1 + c0) ≥ c0µ([0, z1]]. By recurrence, we obtain:(
1 +

kn−1∑
j=0

j∏
i=0

ci

)
µ([0, i1]) ≥

(
kn−1∏
j=0

cj

)
µ([0, zkn ]).

Then by (37)
inf

λ∈E(s,b,α)
µ([0, i1]) > 0

which concludes the proof.

A.4 Besov and Hölder spaces

Definition 13 (Modulus of continuity). The modulus of continuity is defined by

ω(f, t) = sup
|x−y|≤t

|f(x)− f(y)|.

If f is Lipschitz, the modulus of continuity is proportional to t. If ω(f, t) = o(t), then f
is constant: the modulus of continuity can not measure higher smoothness.
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Definition 14 (Modulus of smoothness). If f is a function on A, we define its modulus of
smoothness by

ωr(f, t)p = sup
0<h≤t

‖∆r
h(f, .)‖Lp(A) where ∆r

h(f, x) =
r∑

k=0

(−1)kCk
r f(x+ kh).

We can remark that if f is Cr, then

lim
t→0

t−rωr(f, t)p =
∥∥f (r)

∥∥
Lp(A)

and lim
t→0

t−αωr+1(f, t)p = lim
t→0

t−α+rω(f (r), t)p.

In particular, if f ∈ Cr(A) with A compact and if f (r+1) is Lipschitz, then ωr+1(f, t)p =
O(tr+1). If f (r) is (α − r)-Hölder-continuous, that is if ∀x, y ∈ A, |f (r)(x) − f (r)(y)| ≤
C|x− y|α−r, then

ωr+1(f, t)p = O(tα).

If f (r) is piecewise-continuous and (α− r)-Hölder on the points of continuity, then

ωr+1(f, t)p = O(t1/p + tα).

The modulus of continuity and the modulus of smoothness are sub-linears:

ωr(f + g, t)p ≤ ωr(f, t)p + ωr(g, t)p and ωr(af, t)p = aωr(f, t)p.

Definition 15 (Besov space). The Besov space Bα
2,∞(A) is the set of functions:

Bα
2,∞(A) = {f ∈ L2(A), sup

t>0
t−αωr+1(f, t)2 <∞}

where r = bαc. The norm is defined by: ‖f‖Bα2,∞ := supt>0 t
−αωr+1(f, t)2 + ‖f‖L2(A. We

denote Bα
2,∞(A,M1) = {f ∈ Bα

2,∞(A), ‖f‖Bα2,∞(A) ≤M1}.

See DeVore and Lorentz [15] and Meyer [27] for more details. We use the Besov space to
control the risk of the estimator of the stationary density ν.

Definition 16 (Hölder space). The Hölder space is the set of functions:

Hα(A) = {f ∈ C r(A), tr−αω(f (r), t)∞ <∞ ∀ t > 0}

where r = bαc. We note |f |Hα(A) := supt>0 t
r−αω(f (r), t)∞ and define the norm of the Hölder

space ‖f‖Hα(A) = |f |Hα(A) + ‖f‖L∞(A) and Hα(A,M1) = {f ∈ Hα(A), ‖f‖Hα(A) ≤M1}.

As noted before, tr−αω(f (r), t)∞ = t−αωr(f, t)∞: the Hölder space Hα(A) is included in
Bα
∞,∞(A) which itself is included in Bα

2,∞(A). We can remark that if a function is Cr and

piecewise Cr+1, it belongs to B
r+1/2
2,∞ but only to Hr.
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A.5 Proof of Lemma 5

As ν is the stationary distribution of (Yk), by (4) and (3), we have, for all y ∈ J :

ν(y) =

∫
R+×R+

ν(x)Q(x, dz)P(z, y)dx

=

∫
R+

ν(x)

∫ y

0

Q(x, dz)λ(y)(φ−1
z )′(y)e−

∫ y
z λ(u)(φ−1

z )′(u)dudx

=

∫
R+

ν(x)

∫ y

0

Q(x, dz)Λ(z, y)dx

with
Λ(z, y) = λ(y)(φ−1

z )′(y)e−
∫ y
z λ(u)(φ−1

z )′(u)du.

As the Hölder spaces are stables by multiplication, composition and integration, Λ has the
same regularity than λ and (φ−1

x )′. We have that

ν(y + h)− ν(y) =

∫
R+

∫ y+h

0

ν(x)Q(x, dz)(Λ(z, y + h)− Λ(z, y))dx

+

∫
R+

∫ y+h

y

ν(x)Q(x, dz)Λ(z, y)dx.

Let us set Qg(y) =
∫
R+

∫ y
0
g(x)Q(x, dz)dx. If Qν is differentiable, we get:

ν ′(y) =

∫
R+

ν(x)

∫ y

0

Q(x, dz)
∂Λ

∂y
(z, y)dx+ Λ(y, y)Q′ν(y)

and if Qν belongs to Cr, there exist (ck1,k2)k1+k2≤r−1 ∈ R such that :

ν(r)(y) =

∫
R+

ν(x)

∫ y

0

Q(x, dz)
∂kΛ

∂yk
(z, y)dx+

∑
k1+k2≤r−1

ck1,k2
∂k1+k2Λ

∂yk1zk2
(y, y)Q(r−k1−k2)

ν (y).

It remains to study the regularity of the function Qν .
We consider some particular transition measures Q in order to understand how the reg-

ularity of Qν (and ν) depends on the form and the regularity of Q.

Continuous transition measure There exists a function Q1 such that Q(x, dy) =
Q1(x, y)dy, and we can write

Qν(y) =

∫
R+

∫ y

0

ν(x)Q1(x, z)dzdx and Q′ν(y) =

∫
R+

ν(x)Q1(x, y)dx.

Moreover, as Q1(x, y) = 0 if x < y, with I = [i1, i2], we get

‖Qν‖L∞(I) ≤ i2 ‖Q1‖L∞([i1,∞[×I)

∫
R+

ν(x)dx = i2 ‖Q1‖L∞([i1,∞[×I) .
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Furthermore, by definition of the Hölder semi-norm, for r = bαc

|Qν |Hα(I) = sup
t>0

tr−α−1 sup
y,y′∈I,|y−y′|≤t

∣∣Q(r)
ν (y)−Q(r)

ν (y′)
∣∣

≤ sup
t>0

tr−α−1

∫
R+

ν(x) sup
x≥y

sup
y,y′∈I,|y−y′|≤t|

∣∣∣∣∂r−1Q1

∂yr−1
(x, y′)− ∂r−1Q1

∂yr−1
(x, y)

∣∣∣∣ dx
≤ sup

t>0
tr−α−1 sup

z≥i1
sup

y,y′∈I,|y−y′|≤t

∣∣∣∣∂r−1Q1

∂yr−1
(z, y)− ∂r−1Q1

∂yr−1
(z, y′)

∣∣∣∣ ∫
R+

ν(x)dx

= sup
z≥i1
|Q1(z, .)|Hα−1(I).

Then ‖Qν‖Hα(I) ≤ i2 ‖Q1‖Hα−1([i1,∞[×I).

Deterministic transition measure Let us assume that Q can be written Q(x, dy) =
δf(x)(dy) with f a bijection. As P (Z ≤ κY ) = 1, f(0) = 0. Then we have that

ν(y) =

∫ f−1(y)

0

ν(x)Λ(f(x), y)dx and Qν(y) =

∫ f−1(y)

0

ν(x)dx.

If f−1 is differentiable:
Q′ν(y) = (f−1)′(y)ν(f−1(y)).

So we get:

ν ′(y) =

∫ f−1(y)

0

ν(x)
∂Λ

∂y
(f(x), y)dx+ Λ(y, y)(f−1)′(y)ν(f−1(y)).

The regularity of ν ′ on I depends on the regularity of ν on f−1(I) and of Λ and f−1 on I.
By recurrence, there exists a function ψ2 such that

‖Qν‖Hα(I) ≤ ψ2

(
‖λ‖Hα(J ) ,

∥∥(φ−1
. )′
∥∥
Hα([0,j2]×J )

,
∥∥f−1

∥∥
Hα(J )

)
where

J0 = I , Jk+1 = Conv

(
I ∪

j⋃
i=1

f−1
i (Jk)

)
and J = Jbαc ∪ [i1, i

′
2].

If f is not a bijection (and f(x) 6= 0), then ν can be less regular than λ. Let us consider
f(x) = bx/2c. Then

ν(y) =

∫
R+

ν(x)

byc∑
k=0

1lk=bx/2cΛ(k, y)dx =
∞∑
k=0

ν([2k, 2k + 2])Λ(k, y)1lk≤y
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Then ν is a piecewise constant function and is not differentiable. We can remark that

Qν(y) =
∞∑
k=0

ν([2k, 2k + 2])1lk≤y

is not differentiable.
If Q(x, dy) = δ0(y) (which implies that the vectors (Zk, Yk) are independent), then ν(y) =∫

R+ ν(x)Λ(0, y)dx = Λ(0, y) has the same regularity as Λ. We can remark that Qν(y) =∫
R+ ν(x) = 1 is C∞.

General case Under Assumption (S),

Q(x, dy) = Q1(x, y)dy + p0(x)δ0(dy) +

jQ∑
i=1

pi(x)δfi(x)(dy)

with (fi) invertible, therefore

Qν(y) =

∫
R+

∫ y

0

ν(x)Q1(x, z)dz +

∫
R+

ν(x)p0(x)dx+

jQ∑
i=1

∫ f−1
i (y)

0

pi(x)ν(x)dx

and

Q′ν(y) =

∫
R+

ν(x)
∂Q1

∂y
(x, y)dx+

jQ∑
i=1

pi(f
−1
i (y))ν(f−1

i (y))(f−1
i )(y).

Therefore, there exists a function ψ2 such that

‖ν‖Hα(I) ≤ ψ2

(
‖Λ‖Hα(J ) , (‖fi‖Hα(J ))1≤i≤jQ , (‖pi‖Hα−1(J ))1≤i≤jQ , ‖Q1‖Hα−1(J )

)
.

As λ ∈ Hα(J ) and ∀x, (φ−1
x )′ ∈ Hα(J ), then ∀x, Λ(z, .) ∈ Hα(J ) and there exists a

continuous function ψ1 such that

‖Λ(., .)‖Hα([0,j2]×J ) ≤ ψ1

(∥∥(φ−1
. )′
∥∥
Hα([0,j2]×I)

, ‖λ‖Hα(J )

)
which ends the proof.

A.6 Proof of Talagrand’s inequality for beta-mixing variables

The following lemma is very useful to replace weak dependent variables by variables which
are independent by blocks. It is proved by Viennet [31, proof of Proposition 5.1].

Lemma 17 (Berbee’s coupling lemma). The random variables {Yk}k∈N are exponentially
β-mixing. Let us set qn = b(r + 1) ln(n)/βc where β characterizes the β-mixing coefficient
(see Definition 2). We have that β(qn) ≤ 1/nr+1. We set pn = n/(2qn). There exist random
vectors (Y ∗1 , . . . , Y

∗
n ) such that:
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• Yi and Y ∗i have same law.

• The random vectors (Y ∗2kqn+1, . . . , Y
∗

(2k+1)qn
)0≤k<pn are independent, as the random vec-

tors
(Y ∗(2k+1)qn+1, . . . , Y

∗
(2k+2)qn

)0≤k<pn.

• For any integer k, 0 ≤ k ≤ 2pn−1, P
(
Ykqn+1, . . . , Y(k+1)qn) 6= (Y ∗kqn+1, . . . , Y

∗
(k+1)qn

)
)
≤

βY (qn) ≤ n−(r+1).

Let us set Ω∗ = {ω,∀k, Yk = Y ∗k }. Then

P (Ω∗c) ≤ nβY (qn) ≤ 1

nr
.

This following inequality comes from Talagrand’s inequalities (see Birgé and Massart [8,
Corollary 2 p354]).

Lemma 18 (Talagrand’s inequality). Let X1, . . . , Xn be independent random variables and
S a vectorial subspace of finite dimension D satisfying Assumption 4. We denote by F a
countable family of S. Let us set

Fn(u) =
1

n

n∑
k=1

u(Xk)− Ez0 (u(Xk))

with u ∈ L2. If

sup
u∈F
‖u‖∞ ≤M2, Ez0

(
sup
u∈F
|Fn(u)|

)
≤ H, sup

u∈F
Varz0 (u(Xk))) ≤ V,

then

Ez0
(

sup
u∈F

F 2
n(u)− 6H2

)
+

≤ C

(
V

n
exp

(
−nH

2

6V

)
+
M2

2

n2
exp

(
−k2

nH

M2

))
where C is a universal constant and k2 = (

√
2− 1)/(21

√
2).

Proof of lemma 18. We apply Theorem 1.1 of Klein and Rio [23] to the functions si(u) =
u(Yi)−Ez0 (u(Yi))

2M2
(notation used in Theorem 1.1 of Klein and Rio [23]). We obtain that

P
(

sup
u∈F
|Fn(u)| ≥ H + x

)
≤ exp

(
− nx2

2(V + 4HM2) + 6M2x

)
.

We modify this inequality following Corollary 2 of Birgé and Massart [8]. It gives:

P
(

sup
u∈F
|Fn(u)| ≥ (1 + η)H + x

)
≤ exp

(
−n

3
min

(
x2

2V
,
min(η, 1)x

7M2

))
.

The end of the proof is done in Comte and Merlevède [11, p222-223].
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Proof of lemma 11. To deduce lemma 11, we simply apply the Berbee’s coupling lemma to
exponential β-mixing variables, and then the Talagrand’s inequality. Indeed, by Berbee’s
coupling lemma, as Y ∗k and Yk have same law:

In(s) =
1

n

n∑
k=1

s(Y ∗k )− Ez0 (s(Y ∗k )) + s(Yk)− s(Y ∗k ).

We first bound the second part of the sum I2(s) := 1
n

∑n
k=1 s(Yk)− s(Y ∗k ). We have:

I2
2 (s) =

1

n2

(
n∑
k=1

(s(Yk)− s(Y ∗k ))1lYk 6=Y ∗k

)2

≤ 4M2
2

n2

(
n∑
k=1

1l{Yk 6=Y ∗k }

)2

By Cauchy-Schwartz, I2
2 (s) ≤ 4M2

2

n

∑n
k=1 1l{Yk 6=Y ∗k } and by Berbee’s coupling lemma,

Ez0 (sups∈B I2(s)) ≤ 4M2
2

n2 .
Let us now bound the first term I1(s) := 1

n

∑n
k=1 s(Y

∗
k )− Ez0 (s(Y ∗k )). We have

I1 =
1

pn

pn−1∑
j=0

us(Xj,0)− Ez0 (us(Xj,0)) +
1

pn

pn−1∑
j=0

us(Xj,1)− Ez0 (us(Xj,1))

where Xj,i :=
(
Y ∗2(j+i)qn+1, . . . , Y

∗
(2(j+i)+1)qn

)
and us(x1, . . . , xqn) := 1

qn

∑qn
k=1 s(xk). The ran-

dom variables Xj,0 are independent, the same can be said for Xj,1. Moreover, |Xj,i| ≤ M2

and Varz0 (Xj,i) ≤ V . Let us set

I∗n,i(s) :=
1

pn

pn−1∑
j=0

us(Xj,i)− Ez0 (us(Xj,i)) .

We have: I1(s) := (I∗n,0(s) + I∗n,1(s))/2. Then,

Ez0
(

sup
s∈B

I2
1 (s)− 6H2

)
+

≤ Ez0
(

sup
s∈B

1

4

(
2(I∗n,0(s))2 + 2(I∗n,1(s))2

)
− 6H2

)
≤

1∑
i=0

Ez0
(

sup
s∈B

(I∗n,i(s))
2 − 6H2

)
+

.

As the dimension of S is finite, we can find a countable family F dense in B and we can
then apply the Talagrand’s inequality to I∗n,0 and I∗n,1 which concludes the proof.

Appendix B: Simulations

For the simulations, two very classical PDMP processes are considered: the TCP and the
size of a marked bacteria.
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TCP protocol. The transmission control protocol (TCP) is one of the main data trans-
mission protocol in the Internet. The maximum number of packets that can be sent at time
tk in a round is a random variable Xtk . If the transmission is successful, then the maxi-
mum number of packets is increased by one: Xtk+1

= Xtk + 1. If the transmission fails,
then Xtk+1

= κXtk with κ ∈ (0, 1). A correct scaling of this process leads to a piecewise
deterministic Markov process (Xt) with the characteristics:

φ(x, t) = x+ ct, Q(x, {y}) = 1l{y=κx}, λ.

Then the function (φ−1
x )′ is constant: (φ−1

x )′ = 1/c. Let us denote by Λ a primitive of λ. By
(2), we have:

P(Y1 > y|Z0 = x) = exp

(
−1

c
(Λ(y)− Λ(x))

)
1l{y≥x}.

As λ is positive, its primitive is invertible and by a change of variable:

P(Λ(Y1) > v|Λ(Z0) = u) = exp

(
−1

c
(v − u)

)
1l{v≥u}.

Then Λ(Yj)|Λ(Zj−1) follows an exponential law translated by Λ(Zj−1) and of parameter 1/c.
Therefore, if we can find the inverse of the function Λ, we can construct the sequence (Yj, Zj)
by recurrence:

Λ(Yj) = Λ(Zj−1) + cEj, Zj = κYj (38)

where Ej are i.i.d. of law E (1).
If λ(x) = λxδ with δ > −1, then Y δ+1

j = Zδ+1
j−1 + c(δ + 1)/λEj and we obtain

Yj =
δ+1

√
Zδ+1
j−1 +

(δ + 1)c

λ
Ej.

This model satisfies Assumption (S). In order to have a model with a non-increasing function
λ, we also consider the function λ(x) = (x− a)2 + b with a > 0, b ≥ 0. In that case, by (38),

(Yj − a)3 + 3b(Yj − a) = (Zj−1 − a)3 + 3b(Zj−1 − a) + 3cEj

and, by Cardan’s formula, this equation has a unique real solution, which is

Yj = a+

3

√
Q+

√
4b3 +Q2 + 3

√
Q−

√
4b3 +Q2

2

where Q = 3cEj + (Zj−1 − a)3 + 3b(Zj−1 − a). This model also satisfies Assumption (S).

46



Bacterial growth. We choose randomly a bacteria, and follow its growth, until it divides
in two parts more or less equal. Then we choose randomly one of its daughter, and so on.
Between the jumps, the bacteria grows exponentially. During a jump, the size of the bacteria
is more or less divided by two. We model this by setting Zk = Yk×Uk, where Uk is a random
variable independent of Yk, in (0, 1), and centered in 1/2. The Beta distribution β(α, α)
satisfies these conditions. For α = 1, it is the uniform distribution, and when α increases,
the distribution is more concentrated around 1/2. We choose α = 20. Then

φ(x, t) = xect, Q(x, y) =
1

β(20, 20)

y19(x− y)19

x38
1l{y≤x}.

Then (φ−1
x )′(y) = 1

y
and by (2),

P(Y1 > y|Z0 = x) = exp

(
−1

c

∫ y

x

λ(s)

s
ds

)
1l{y≥x}.

We need to find a primitive of λ(x)/x. If λ(x) = λxδ, δ > 0, then:

P(Y1 > y|Z0 = x) = exp

(
− λ
δc

(
yδ − xδ

))
1l{y≥x}.

Therefore

P
(
Y δ

1 > y|Zδ
0 ≥ x

)
= exp

(
− λ
δc

(y − x)

)
1l{y≥x}

and the law of the random variable Y δ
k is an exponential translated by Zδ

k−1 and of parameter
λ/δc. Then

Yk =
δ

√
δc

λ
Ek + Zδ

k−1, Zk = YkUk

with Ek ∼ E (1) i.i.d. and Uk ∼ β(20, 20) i.i.d. All the conditions of Assumption (S) are
satisfied, except point a. Indeed, P (Z < Y ) = 1, but there do not exists any κ < 1 such
that P (Z ≤ κY ) = 1. However, in the simulations, it seems that the process is ergodic and
that A3 is satisfied.

Computations For the two models, ν has a density with respect to the Lebesgue measure
on R, so it can be estimated on any compact intervalA, hereA = [−1, 5] to avoid edge effects.
The estimator is computed thanks to a projection on a trigonometric basis. The constant
involved in pen(m), cpen, should be greater than 3

2
(ψ1 + ψ2Cλ), with ψ1 = ψ2 = 1

3
. The

problem is that Cλ, a correlation term, is not easily tractable. We set cpen=ψ1 + ψ2 = 2/3
for all models. This choice seems confirmed by the simulations results: the oracle or remains
close to 1.

The constant cpen could be determined via the slope heuristic. Indeed, if the constant
in the penalty is too small, the algorithm selects the maximal dimension. If the penalty is
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large enough, it selects models of reasonable size. We then let the constant c in the penalty
vary and note the dimension selected. For c smaller than a value cmin, the largest models
are selected, and for c greater than cmin, smaller models are chosen. The ”best” constant is
c = 2cmin. See Arlot and Massart [1] for instance.

Figure 2 shows the selected dimension with respect to cpen, the constant in the penalty.
When the constant in the penalty increases, the chosen dimension first decreases very rapidly,
until cpen=0.24, then it decreases very slowly towards 1. Then 2cmin = 0.48. Our chosen
penalty constant, 2/3, is a little greater than 2cmin, and selects the same dimension (here
17).

Figure 2: Choice of the dimension
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However, the slope heuristic involves quite a lot of computations, so it can not be used
for every simulation, only to check that the penalty constant is coherent.

In Figures 3 and 4, for each graph, five simulations of the PDMP with n = 105 are
realized. For each simulation, the estimator λ̂, the density ν̂m̂ and D̂n are drawn.

In the tables, 200 simulations for each 4-tuple (n, c, κ, λ) are computed. The estimation
interval I = [0.5, 2] is such that D is greater than the threshold (ln(n))−1 on I for n = 10−5

for all our models. For each set of parameters, the mean of the selected dimension D̂m,
the mean and the standard variation of the L2 error on I, denoted by ”risk” and ”sd” are
calculated. We also want to prove that our estimator is truly adaptive. As ν is unknown,
we can not check that m̂ is the better choice for estimating ν. Instead, let us consider the
estimator

λ̂m =
ν̂m

D̂n

1l{ν̂m≥0}1l{D̂n≥(ln(n))−1}.
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Then λ̂n = λ̂m̂. The optimal dimension is

mopt = min
m∈Mn

∥∥∥λ̂m − λ∥∥∥2

L2(I)

and the minimal risk
∥∥∥λ̂mopt − λ∥∥∥2

L2(I)
. In the tables, we give the empirical means of Dm̂,

Dmopt , the empirical mean and standard deviation of the risk and the empirical mean of the
oracle

or := mean

(∥∥∥λ̂m̂ − λ∥∥∥2

L2(I)
/
∥∥∥λ̂mopt − λ∥∥∥2

L2(I)

)
.

In Figure 5, four simulations are realized, each for a different value of n (n = 102, 103,
104 and 105) in order to show the convergence of our estimator.

Results In Figures 3-4, the estimator λ̂ is very close to λ, at least when x is neither too
small nor too large, that is when there are enough values to compute the estimator. The
estimators ν̂m̂ and D̂n are quite smooth, whereas λ̂ tends to oscillate. This is due to the
division of two estimators. In Tables 3-4, the risk decreases when n increases and seems to
tend toward 0. The oracle remains close to 1, our estimator is really adaptive. When the
number of observations is small, the risk may seem quite important (for instance, for figure 4
when λ(x) = x2). This is simply because D is smaller than the threshold (1/ ln(102) = 0.2),
and the estimator λ̂ is set to 0 on some part of I, or even on the whole interval. The
estimation near 0 can be good for some models, for instance when κ = 1/5 and λ(x) = x,
because the random variables Zk take smaller values (at a jump, we divide the process by
5 instead of by 2). The function D then take higher values near 0, and the estimator λ̂ is
positive even for small values of x. This problem is illustrated in Figure 5: when n increases,
the estimator is better both because the support interval of λ̂ increases and because on the
support interval, the estimator is closer to the true function.
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Figure 3: TCP protocol: φ(x, t) = x+ t, Q(x, y) = δy=κx
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κ = 1/2, λ(x) = 1, I = [0.5, 2]

n Dm̂ Dmopt risk sd or

102 5.1 6.7 0.12 0.06 1.27
103 8.3 10.1 9.6e-3 9.6e-3 1.72
104 12.3 14.4 8.5e-4 5.5e-4 1.64
105 17.1 18.6 1.2e-4 6.6e-5 1.47
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κ = 1/2, λ(x) = x, I = [0.5, 2]

n Dm̂ Dmopt risk sd or

102 7.1 8.5 0.24 0.20 1.16
103 10.4 12.8 9.5e-3 6.5e-3 1.64
104 14.1 16.4 1.1e-3 7.3e-4 1.49
105 18.1 20.5 1.2e-4 6.9e-05 1.31
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κ = 1/5, λ(x) = x, I = [0.5, 2]

n Dm̂ Dmopt risk sd or

102 6.6 6.7 0.54 0.24 1.08
103 10.9 10.7 0.077 0.083 1.40
104 18.0 15.9 1.5e-3 1.0e-3 2.17
105 25.9 22.4 2.0e-4 1.2e-4 1.81
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κ = 1/2, λ(x) = (x− 1)2 + 1/2, I = [0.5, 2]

n Dm̂ Dmopt risk sd or

102 5.4 6.6 0.080 0.014 1.06
103 7.3 8.9 0.045 5.4e-3 1.01
104 9.3 11.3 0.027 2.3e-3 1.004
105 11.7 16.3 0.014 5.9e-4 1.003

- - : true λ – : estimated λ̂ . . : estimated Dn – : estimated ν̂m̂
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Figure 4: Bacterial growth

φ(x, t) = x exp(ct), λ(x) = xδ, Q(x, y) = β(20, 20)
y19(x− y)19

y39
1l{y≤x}
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√
x, c = 1, I = [0.5, 2]

n Dm̂ Dmopt risk sd or
102 3.8 6.1 0.72 0.29 1.04
103 6.6 7.8 0.014 0.021 2.32
104 11.2 10.7 2.4e-3 1.5e-3 1.97
105 17.7 16.9 9.0e-4 3.1e-4 1.29
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λ(x) = x, c = 1, I = [0.5, 2]

n Dm̂ Dmopt risk sd or
102 5.2 6.3 0.59 0.26 1.07
103 8.2 9.1 9.2e-3 9.0e-3 2.05
104 12.0 13.2 1.2e-3 8.1e-4 1.60
105 17.3 17.1 2.2e-4 1.4e-4 1.54
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λ(x) = x2, c = 1, I = [0.5, 2]

n Dm̂ Dmopt risk sd or
102 7.1 7.9 2.64 0.35 1.01
103 10.1 11.7 1.48 0.21 1.003
104 13.5 14.2 0.41 0.094 1.002
105 17.4 17.5 2.8e-4 2.5e-4 1.62
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λ(x) = x2, c = 3, I = [0.5, 2]

n Dm̂ Dmopt risk sd or
102 3.8 3.0 4.29 0 1
103 5.7 3.0 4.29 0 1
104 7.8 11.1 1.56 0.11 1.001
105 10.0 13.9 0.087 0.0026 1.001

- - : true λ – : estimated λ̂ . . : estimated Dn –: estimated ν̂m̂
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Figure 5: Convergence of the estimator (size of a marked bacteria)
φ(x, t) = xet, λ(x) = x2 φ(x, t) = xe3t, , λ(x) = x2
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Estimator’s support increases with n The estimator is null if n ≤ 103

−

n = 105, - - n = 104, . . . n = 103, −. n = 102.
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