Texture-Aware Superpixel Segmentation

Abstract : Most superpixel algorithms compute a trade-off between spatial and color features at the pixel level. Hence, they may need fine parameter tuning to balance the two measures, and highly fail to group pixels with similar local texture properties. In this paper, we address these issues with a new Texture-Aware SuperPixel (TASP) method. To accurately segment textured and smooth areas, TASP automatically adjusts its spatial constraint according to the local feature variance. Then, to ensure texture homogeneity within superpixels, a new pixel to superpixel patch-based distance is proposed. TASP outperforms the segmentation accuracy of the state-of-the-art methods on texture and also natural color image datasets.
Type de document :
Pré-publication, Document de travail
2019
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01995819
Contributeur : Rémi Giraud <>
Soumis le : samedi 9 février 2019 - 20:12:14
Dernière modification le : mercredi 27 février 2019 - 01:09:43

Fichier

Giraud_TASP_2019.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01995819, version 3

Citation

Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis, Yannick Berthoumieu. Texture-Aware Superpixel Segmentation. 2019. 〈hal-01995819v3〉

Partager

Métriques

Consultations de la notice

17

Téléchargements de fichiers

192