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Abstract

The growing Internet of Things (IoT) market introduces
new challenges for network activity monitoring. Legacy net-
work monitoring is not tailored to cope with the huge diver-
sity of smart devices. New network discovery techniques
are necessary in order to find out what loT devices are con-
nected to the network. In this context, data analysis tech-
niques can be leveraged to find out specific patterns that can
help to recognize device types. Indeed, contrary to desktop
computers, loT devices perform very specific tasks making
their networking behavior very predictable. In this paper,
we present a machine learning based approach in order to
recognize the type of IoT devices connected to the network
by analyzing streams of packets sent and received. We built
an experimental smart home network to generate network
traffic data. From the generated data, we have designed a
model to describe IoT device network behaviors. By lever-
aging the t-SNE technique to visualize our data, we are able
to differentiate the network traffic generated by different [oT
devices. The data describing the network behaviors are then
used to train six different machine learning classifiers to
predict the IoT device that generated the network traffic.
The results are promising with an overall accuracy as high
as 99.9% on our test set achieved by Random Forest classi-

fier.

1. Introduction

The total number of IoT devices is expected to reach 75
billion by 2030 [9]. This growing IoT market introduces
new challenges for network administrators [7]. With the
huge diversity of IoT devices (thermostat, camera, smart
bulb, etc), device recognition is of tremendous importance.
Indeed, with the increase of IoT malware such as Mirai, se-
curing [oT networks has become critical. At its peak, Mirai
infected more than 600,000 devices around the world [2].
The infected devices were primarily used to perform DDoS
attacks. In this context, knowing the type of device con-

nected to the network will help to enforce security. For ex-
ample, knowing that a device is a security camera from a
specific manufacturer can help the network administrator to
specify filtering rules that will not allow the camera to do
anything else than what it is expected to do. Device type
recognition can also be used to block the access to the net-
work of devices considered to be vulnerable.

IoT device recognition can also be used by an attacker
to discover vulnerable IoT devices by performing passive
network traffic analysis. Indeed, in a wireless IoT network,
it is easier for an attacker to capture network traffic to per-
form further analysis with the purpose of recognizing the
type of connected devices even if the traffic is encrypted.
Device fingerprinting through network traffic analysis can
also help malware to identify vulnerable devices passively.
Instead of actively looking for a device to infect, passive
vulnerable device discovery will reduce the network signa-
ture of the malware making its detection even more difficult
for intrusion detection system. Device type recognition also
raises privacy concerns. Once a device has been identified,
techniques presented in [1] can be used to further determine
the current state of the device. In the case of a smart home,
such information can help to infer what is happening inside
the house leading to potential privacy breaches.

We define an IoT device as being a device that is intended
to perform a specific task. Indeed, contrary to laptops, desk-
top computers or smartphones, IoT devices perform very
specific tasks. For example, a smart plug or a smart bulb
can be switched on or off. In the case of a smart bulb, one
can also set its brightness. However, neither a smart plug
nor a smart bulb is supposed to watch video on youtube or
send emails. As a result, IoT devices network traffic fol-
lows a stable pattern. The generated network traffic being
very predictable, it is well suited for machine learning tech-
niques.

In this paper, we present a method to recognize IoT de-
vices by analyzing the generated network traffic. To this
purpose, the raw network traffic is preprocessed to extract
bidirectional flows described by features such as the size of
the first N packets sent and received, along with the inter-



arrival times. Because of the lack of publicly available data,
we built an experimental smart home network composed of
four devices to generate network traffic data. We then per-
form t-SNE on our dataset to visualize and have an insight
of the data. Moreover, the visual clusters obtained point out
the effectiveness of our selected set of features in differen-
tiating the different IoT devices. Next, we train and test six
different machine learning algorithms to perform network
traffic classification. We are able to predict what device has
generated the network traffic with an accuracy as high as
99.9% on our test set for the Random Forest classifier.

The rest of the paper is organized as follows: Section 2
reviews the related works and Section 3 describe the fea-
tures used in our model. In Section 4, we present the ex-
perimental results including data visualization and classifi-
cation. In Section 5, we discuss the possible improvement
of the model. Finally Section 6 concludes and presents the
possible future works.

2. Related Works

A few number of works focusing on IoT device finger-
printing have emerged due to the rapid development of IoT
networks. Y. Meidan et al. propose a machine learning
based network traffic analysis approach to identify IoT de-
vices in order to create white lists of authorized devices
[11][10]. They use features extracted from full TCP ses-
sions (from SYN to FIN). T. D. Nguyen et al. present a
system to detect compromised [oT devices [13]. They take
advantage of the temporal periodicity of traffic generated
by IoT devices. Features to identify devices include peri-
odic flows characteristics, period accuracy, period duration
and period stability. First, normal communication profiles
are created for individual devices. A recurrent neural net-
work is then used to detect any deviation from the expected
behavior. M. Miettinen et al. present a method to identify
the type of an IoT device being connected to the network
in order to constrain the communications of vulnerable de-
vices [12]. They use a wide variety of features extracted
during the setup phase of the device. Contrary to the other
mentioned approaches, they train one classifier per device
type. B. Bezawada et al. describe a method to perform
device behavioral fingerprinting [4]. They use a subset of
the features from [12] along with payload based features
to train classifiers. R. Doshi et al. perform network traffic
classification to detect DDOS attack in IoT networks [6].
Our work on IoT device recognition through network traf-
fic classification differs from existing ones in that we use a
very different set of features that are easily extractable even
from encrypted network traffic.

Other works examine privacy related issues like extract-
ing sensitive information about the current state of the de-
vices. Hence, A. Acar et al. point out how an adversary can

determine current activities of the users in a smart home by
profiling network traffic using machine learning algorithms
[1]. N. Apthorpe et al. also show that simply analyzing
network traffic transmission and reception rates can reveal
sensitive user interactions with the device [3]. For exam-
ple, network transmission and reception rates of the Nest
indoor security camera can allow an adversary to determine
if there is movement inside a smart home. Similarly, Copos
et al. study two popular smart devices, the Nest Thermo-
stat and the wired Nest Protect to show that an attacker can
infer if a home is occupied or not, only by analyzing the
network activity [5]. The primary goal of our work is not to
explore privacy related issues but rather to provide a way of
recognizing IoT devices connected to a network.

3. Features Description

The purpose of our work is to provide a mean to recog-
nize devices based on their network behavior. Therefore, we
need to define features that will appropriately describe the
network activity. In past smart device identification works
features are extracted from full TCP sessions [10][11]. The
issue with this method is that we have to wait until the end
of the session in order to be able to extract all the features.
For some IoT devices such as the Nest security camera TCP
sessions can last for days. Another approach is to focus
only on the network activity during the setup phase to iden-
tify the device [12]. However, this method is of no help
if we have missed the setup phase of the device. For ex-
ample, if we want to sniff an existing network in which all
the devices are already setup. Another constraint is that the
features have to be extractable even if the network traffic is
encrypted.

For the model to be easily implementable in real world
networks, one needs to keep features as simple as possible.
We propose to work with bidirectional flows identified by
their source and destination IP addresses and ports. In the
case of long TCP connections, we do not capture the whole
session. A timeout is used to split long connections into
several bidirectional flows. Each bidirectional flow is de-
scribed by a feature vector composed of the following:

e The size of the first N packets sent
e The size of the first N packets received

e The N - 1 packet inter-arrival times between the first N
packets sent

e The N - 1 packet inter-arrival times between the first N
packets received

The size of the packets and the inter-arrival times have
proven their effectiveness in works on application identifi-
cation [14][8]. All feature vectors must have the same size.



Figure 1: Experimental smart home network

If a bidirectional flow contains less than N packets, the re-
maining fields of the vector are set to zero. The value of N
is set empirically. The more devices we have to classify the
greater N has to be so that the classifier will have enough in-
formation to accurately differentiate the bidirectional flows
generated by the different devices. Meanwhile, N has to be
as small as possible for performance related issues. In Sec-
tion 4.3, we will examine the impact of the variable N on
the overall accuracy of a classifier.

4. Experimental Results

In this Section, we describe the dataset generation pro-
cess and then present the results of visualization and clas-
sification. For the rest of our work, the variable N, defined
in Section 3, is equal to 10. That is, the total number of
features is equal to 38. Other values of N will be tested in
Section 4.3. A timeout of 600 seconds is used to split long
connections into multiple bidirectional flows.

4.1 Smart Home Dataset

A small smart home network is built to generate network
traffic. The experimental smart home consists of four IoT
devices: a Nest security camera, a D-Link motion sensor,
a TP-Link smart bulb and a TP-Link smart plug. The four
devices connect to the Internet through a wireless access
point. The network traffic is collected thanks to a Rasp-
berry Pi placed between the wireless access point and the
Internet as shown in Figure 1. The raw network traffic is
then preprocessed the following way:

1. The MAC addresses of the devices are used to split the
network traffic into different pcap files corresponding
to different IoT devices. This will facilitate the label-
ing of the dataset.

Table 1: Total number of bidirectional flows per device

train | test
D-Link Motion Sensor | 867 | 207
Nest Security Camera | 839 | 216
TP-Link Smart Bulb 821 | 219
TP-Link Smart Plug 695 | 163
Total 3222 | 805

2. The bidirectional flows along with their timestamp and
protocol are extracted from the different pcap files.
Only TCP flows are kept as all of the devices use HTTP
or HTTPS for communications.

3. The bidirectional flows of the different IoT devices are
merged to form a single dataset. The timestamp is used
to reorder the flows.

Network traffic has been collected for a total of 7 days.
The training set has been collected during the first five and
a half days. The test set has been collected during the re-
maining days. The training set and the test set are composed
of 3222 and 805 instances respectively. Table 1 shows the
number of flows for each device in the training and test sets.
For the rest of the work, data analysis is performed using the
python libraries scikit-learn and tensorflow.

4.2. Data Visualization

In this section, we present the results of data visualiza-
tion using t-Distributed Stochastic Neighbor Embedding (t-
SNE) which is a non-linear dimensionality reduction tech-
nique. t-SNE has no knowledge of the label of the input
data. It is an unsupervised learning algorithm. Data visual-
ization is important to get an insight of our 38-dimensional
data and to assess the discriminative power of our model.
That is, we want to know if the features we have selected to
describe the network behavior are discriminative enough to
differentiate the network traffic generated by different de-
vices.

t-SNE outperforms many other non-parametric data vi-
sualization and exploration techniques [15]. Another com-
monly used dimensionality reduction technique is Principal
Component Analysis (PCA). The limitation of PCA is that
like any other linear dimensionality reduction methods, it
only focuses on placing dissimilar data points far apart in
the lower dimension. It does not attempt to place similar
data points close together. Differently, t-SNE attempts to
represent similar data points close to each other while pre-
serving the global structure of the dataset. Therefore t-SNE
is a much better option for visualization.

The obtained visual representation of the data is shown
in Figure 2. The data points form visual clusters corre-
sponding to the network traffic generated by different loT
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Figure 2: Dataset visualization using t-SNE

devices. Most of the data points corresponding to the same
IoT device lie close to each other whereas data points from
different IoT devices lie far apart. The obtained represen-
tation indicates that the features selected to describe the
network traffic are discriminative enough to distinguish be-
tween the different IoT devices.

4.3. Classification

In this section we test different machine learning algo-
rithms to classify the bidirectional flows according to the
IoT device they belong to. Six different classification al-
gorithms are tested: Random Forest, Decision Tree, SVM
(with rbf kernel), k-Nearest Neighbors, Artificial Neural
Network (ANN) and Gaussian Naive Bayes. Most of these
algorithms have regularization parameters also referred to
as the hyperparameters that need to be tuned. During the
training phase, a validation set consisting of 25% of the
training set is used to fine tune the hyperparameters. Once
the best parameters have been found, the classifier is re-
trained on the whole training set. The ANN is a fully con-
nected feedforward neural network consisting of two hidden
layers with 10 neurons each and using a 0.5 dropout rate.

The performance of the different algorithms are mea-
sured on the test set. The metrics used are accuracy, pre-
cision, recall and F1 score. The accuracy of the classi-
fier is the proportion of flows that are correctly classified.
To assess the overall precision, recall and F1 score, micro-
averaging is used. Micro-averaging is preferred over macro-
averaging because it takes class imbalance into account. Let
us consider our 4-class classification problem. The four
classes are devicey, devices, devices and devicey. Let

TP;, TN;, FP; and F'N; be the number of true positive,
true negative, false positive, and false negative respectively
for device;. The micro-average of precision, recall and F1
score are given by:

’ o ZTPi
microAvPrecision = SSTR+S FP

) microAvPrecision.microAvRecall

mzcroAvFlScore: microAvPrecision+microAvRecall

The precision, recall and F1 score for each device are
also calculated individually as shown in Tables 3, 4 and 5.
This is done by simply considering the problem as if it was
a binary classification problem, with the device we are cal-
culating the performance for, corresponding to the positive
class. In that case, precision, recall and F1 score is given
by:

. L. TP
device;precision = 751 Fp;

ices = TP

devicegrecall = 755

__ o device;precision.device;recall
Flscore =2 device;precision+device;recall

device;

Gaussian Naive Bayes is the algorithm that performs the
worst with an overall accuracy of 91.9%. All other algo-
rithms achieve a high performance with an overall accu-
racy on the test set ranging between 98.6% and 99.9%. The
best performance is achieved by the Random Forest classi-
fier with equally high overall accuracy, precision and recall.
Despite the relative small size of our dataset, ANN achieves



Table 2: Overall performance on the test set of the different
classifiers

micro-av. | micro-av. | micro-av.
accuracy ..
precision recall F1 score
RF .999 .999 .999 .999
DT 995 .995 .995 995
SVM 993 993 993 993
KNN .989 .989 .989 .989
ANN .986 .986 .986 .986
GNB 919 919 919 919

Table 3: Precision on the test set of the different classifiers
and for specific devices

sensor | camera | bulb | plug
RF 1. 1. 995 1.
DT .986 1. .995 1.
SVM 1. 977 995 1.
KNN 1. 977 986 | 994
ANN | .986 .986 978 1.
GNB 1. 771 1. .993

an overall accuracy of 98.9%. The performance of the ANN
can be improved by collecting more network traffic data to
increase the size of the dataset. These positive experimental
results indicate that it is possible to recognize IoT devices
with high accuracy by passively analyzing the network traf-
fic.

Let N be the number of packets sent and received that are
taken into consideration by a classifier as defined in Section
3. To analyze the impact of the variable N on the overall
accuracy, we only consider Random Forest classifier as it is
the classifier that achieved the best performance. Hence, we
train multiple Random Forest classifiers with different val-
ues of N, ranging from 2 to 10, to find out the optimal value
of N for our network. Figure 3 shows the overall accuracy
achieved by training classifiers with different values of N.
The overall accuracy increases as the value of N goes up.
Surprisingly, when N is set to 2 the classifier still achieves
a high accuracy of 98.9%. Such a high accuracy is reached
even with a small value of N because our experimental net-
work is very small and consists of only four different de-
vices. Therefore, the size of the first two packets sent and
received and the corresponding inter-arrival times, provide
enough information to the classifier to accurately differen-
tiate between the different IoT devices. Indeed, the greater
the number of different devices connected to the network
is, the more packets the classifier has to consider in order to
accurately differentiate the flows corresponding to the dif-
ferent devices. The accuracy reaches the maximum value
of 99.9% for N equal to 6 and higher for our experimental

Table 4: Recall on the test set of the different classifiers and
for specific devices

sensor | camera | bulb | plug

RF 1. 1. 1. .994
DT 1. 991 995 | 994
SVM | .995 1. 1. 969
KNN | .990 1. 986 | 975
ANN | .995 .986 1. 957
GNB 971 1. 185 | 926

Table 5: F1 score on the test set of the different classifiers
and for specific devices

sensor | camera | bulb | plug

RF 1. L. 997 | 997

DT 993 995 995 | 997
SVM | .997 .988 997 | 984
KNN | 995 988 986 | .984
ANN | .990 .986 989 | 978
GNB 985 871 .880 | .958

network. Hence, if we take resource efficiency into consid-
eration in the case of our network, the optimal value of N
for the Random Forest classifier is 6.

5. Discussion

One limitation of our study is the limited number of de-
vices used. This is a common limitation of most IoT re-
lated works because of the lack of publicly available data
[6][31[5]. The experimental smart home network is com-
posed of only four devices. The model should be trained
and tested on larger IoT networks containing a variety of
devices. As the number of different devices connected to
the network increases, the more resources will be required
to train the model. With thousands of different types of de-
vice available in the market, it becomes difficult to deal with
a single classifier for every device. If a new device has to be
incorporated to the dataset or if a system update changes the
network behavior of a single device, a new model should be
retrained on the whole dataset. One solution is to train a
single classifier for each device as in [12]. However, in that
case all the different classifiers have to be run in parallel in
order to recognize the device, increasing the resource used
during the operational use of the model. An intermediate
solution could be to train classifiers for groups of devices
that share similar behaviors.

Another limitation is that our experimental network is
composed exclusively of IoT devices which might not be
the case in the real world. In a general-purpose network
most activity will be generated by smartphones or laptops.
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Figure 3: Overall accuracy achieved by Random Forest
classifier for different values of N

Given the wide variety of tasks performed by a laptop, it is
completely possible that some flows it generates share simi-
lar characteristics to the one generated by a security camera
and hence end up being identified as being a security cam-
era. However the proposed approach can be easily adapted
to general-purpose networks in which smartphones or lap-
tops are also connected. One can add an extra class to the
classifier consisting of all the non-IoT flows. Then majority
voting on a sequence of classified flows, similarly to what is
proposed in [11], can be used to identify the device. For ex-
ample, if the following sequence is obtained (camera, non-
IoT, camera, non-1oT, non-IoT) then the device is consid-
ered as not being an IoT device.

6. Conclusion

The purpose of this work was to propose a method to
recognize IoT devices by analyzing network traffic data. To
describe the network behavior, we selected features such
as the size of the first N packets sent and received, and
their corresponding inter-arrival times. Visualization using
t-SNE pointed out the effectiveness of our selected set of
features in distinguishing the network traffic generated by
different devices. Different machine learning algorithms
were then used to classify the network traffic. An overall
accuracy of 99.9% has been achieved by the Random Forest
classifier. However, further studies need to be performed in
order to assess our method on larger datasets. The method
should be tested on networks composed of a greater number
of different IoT devices.
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