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ABSTRACT

In the context of more electrical aircrafts, Permanent Mag-
net Synchronous Machines are used in a more and more ag-
gressive environment. It becomes necessary to supervise their
health state and to predict their future evolution and remain-
ing useful life in order to anticipate any requested mainte-
nance operation. Model-based prognosis is a solution to this
issue. A generic modeling framework is proposed in this pa-
per in order to implement such a prognosis method which
relies on knowledge about the system ageing. A review of
existing ageing laws is presented, and motivates the choice
to developp an ageing model that could incorporates every
kind of ageing laws. A generic ageing model is then defined,
that allows representing the ageing of any equipment and the
impact of this ageing on its environment. It includes the pos-
sible retroaction of the system health state to itself through
stress increase in case of damage. The proposed ageing model
is then illustrated with Permanent Magnet Synchronous Ma-
chines. A fictive but realistic scenario of stator ageing is
built. It comprises apparition and progression of an inter-
turns short-circuit and its impact on stator temperature, which
value has an impact on the ageing speed. A prognosis method
based on the generic ageing model is proposed, and applied
successfully to this scenario.

1. INTRODUCTION

In the context of the more electrical aircrafts, electrical mo-
tors such as permanent magnet synchronous machines (PMSM)
are more and more used for critical functions in the actuators,
such as landing gear extension/retraction, braking systems,
or flight control. They are often used in very agressive envi-
ronments. The transition from 270V to 540V of supply volt-
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ages, and the increase in switching frequencies, also applies
a lot of additionnal stress on the motors. In this agressive
context, PMSMs risk to be subject more and more degrada-
tion and faults. In order to ensure the operational availabil-
ity of critical functions, one option is to implement a Health-
Monitoring module. This Health-Monitoring module consists
in a detection and diagnosis module, that allows assessing the
current health state of equipments, and a prognosis module,
that allows predicting the future health state of quipments,
and their remaining useful life (RUL). With prognosis, the
maintenance action can be anticipated in advance. The goal
is to optimize maintenance planification and avoid any oper-
ational interruption or flight delays due to equipment faults.

Predicting the future health-state of equipments requires a
knowledge about their ageing. This knowledge can take sev-
eral forms, it can be based on experience, on degradation and
ageing data obtained in service or in tests, or on ageing phys-
ical models. Different ageing knowledge representations and
prognosis methods used in the literature are presented in Sec-
tion 2. The conclusion is that the ageing knowledge can al-
ways be put into the form of an ageing model. A generic
ageing model is then presented in Section 3. It allows rep-
resenting the behavior and ageing of any kind of equipment,
that may be heterogeneous and complex. An application is
proposed on Permanent Magnet Synchronous Machines, with
the modeling of two critical progressive degradation: inter-
turns short-circuits and rotor demagnetization. The modeling
framework contains all the information that is needed to per-
form diagnosis and prognosis. A generic prognosis method
based on the model is then proposed on Section 4. The prog-
nosis algorithm is presented, and applied to a short-circuit
virtual scenario simulated thanks to a complete PMSM vir-
tual prototype. Finally Section 5 proposes some conclusions
and perspectives.
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2. AGEING MODELS FOR PROGNOSIS

In order to predict the system remaining useful life, progno-
sis requires knowledge about the system degradation or age-
ing that is contained in a model. This model describes the
evolution of the system ageing state, it is a priori known and
used on-line for predictions. In the literature, several prog-
nosis methods already exist which rely on different models.
Three classes of methods that rely on three types of available
knowledge can be distinguished:

• experience-based prognosis,

• data-driven prognosis,

• and model-based prognosis.

The choice of one of these methods depends on the level of
knowledge contained in ageing model and is mainly charac-
terized by the availability of sensors that allow obtaining on-
line data of the system state. Every approach has pros and
cons, and it is often useful to combine them.

2.1. Experience-based prognosis

Experience-based approaches, like case-based reasoning or
reliability analyses, are the only alternative when no sensors
nor physical knowledge of the system ageing is available.
This form of prognostic model is the simplest and only re-
quires failure history to determine the probability of failure
within a future time (Gebraeel, Elwany, & Pan, 2009). Relia-
bility techniques are used to fit a statistical distribution to the
failure data.

The Weibull law is often used due to its flexibility in relia-
bility analyses for mechanical or electrical components. It
can represent a time-dependent failure rate by describing the
different phases of a component life with three parameters.
(Bufferne, 2009) represents the impact of corrosion, fatigue,
or wear on components with these three parameters. (van
Noortwijk & Klatter, 2002) models the cost of structure re-
placement with Weibull distributions by applying the maxi-
mum likelihood estimation method on life data obtained from
broken structures. The cost of structure replacement is then
computed thanks to their current age and uncertainties related
to the predicted replacement date. The main drawback of the
Weibull law is the difficulty of estimating these three parame-
ters. The exponential law is simpler as it depends on only one
parameter, the failure rate, which is constant. It can represent
a component ageing without wear, i.e. the abrupt failures. It
is used a lot for life duration of electronic devices. For pro-
gressive failure, the Gamma law seems to be well suited. It
can represent a failure rate increasing in time and is used to
model progressive failures like crack evolution in (Lawless,
2004) or erosion in (van Noortwijk, Kallen, & Pandey, 2005).
It is also possible to use several laws simultaneously like in
(Huynh, Castro, Barros, & Berenguer, 2012) which combines
a Gamma law with a Poisson process to model progressive

degradation and abrupt failures.

Models used by experience-based approaches are the less com-
plex ones, and use available data without dedicated effort, ex-
cept if there are no enough experience feedback: equipment
that are new, and/or very reliable, and never fail before a pre-
ventive maintenance action, as in aeronautics. This approach
brings only few information, and does not take into account
the way the equipment is used, or its past. This might be use-
ful for the manufacturer, but not for the user that is interested
in one particular component.

2.2. Data-driven prognosis

Evolutionary and trend monitoring methods are used when
on-line observed data are available. Prognostic models then
simply rely on degradation estimators or indicators (Kalman
filters or various other tracking filters for the state estima-
tion). The prognostic method then uses on-line estimators to
evaluate the system current degradation state relying on the
on-line observations. To get the estimators, failure history
is required (identification of fault patterns). Such estimators
may be obtained by learning techniques (neural networks or
Bayesian networks) or by identifying parameters of classical
estimators like for Kalman filters (Hu, 2011).

Neural networks allow building a grey/black box ageing model
to estimate and predict the current and future trend of the sys-
tem degradation from specific indicators. The prediction re-
lies on the network learning from experience that extracts es-
sential characteristics from noisy data (Goh, Tjahjono, Baines,
& Subramaniam, 2006). Neural networks are used in (Das,
Hall, Herzog, Harrison, & Bodkin, 2011) to perform progno-
sis on systems of high-speed milling. (Adeline, Gouriveau, &
Zerhouni, 2008) tests and compares different methods based
on neural networks in terms of prediction precision, com-
putation cost and requirements related to the implementa-
tion. (Vachtsevanos & Wang, 2001) combines neural net-
works with wavelets to predict the RUL of rolling bearings.
Fuzzy neural networks combines neural networks and fuzzy
logic to deal with ambiguous, inaccurate, noisy or incom-
plete data (Goh et al., 2006; El-Koujok, Gouriveau, & Zer-
houni, 2010). Fuzzy systems use knowledge as expert rules.
They are recommended in case where no qualitative informa-
tion about the system degradation is available but only causal
rules describe fault propagation within the system (El-Koujok
et al., 2010). They can be automatically adjusted and do not
require physics-based knowledge.

Ageing models can be represented by Bayesian networks that
are acyclic graphs defined by a set of nodes and relations
with conditional probabilities. Each node may represent a po-
tential degradation mode of the system and transition proba-
bilities from a current mode to possible future modes result
from a learning phase. A priori probabilities in Bayesian
networks have to be introduced by the expert. Theory of
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Bayesian networks is well explained in (Bouaziz, Zamai, &
Duvivier, 2013) which shows its relevant application in the
semi-conductor industry. (Weber, P.Munteanu, & Jouffe, 2004)
uses dynamical Bayesian networks and Markov chains to model
the ageing of a system composed of a pump and a valve.
(Camci & Chinnam, 2010) models the progressive deterio-
ration of drills with hierarchical hidden Markov models that
are estimated from tests. For a clear and simple representa-
tion, they can also be described by a Bayesian network where
a node stands for a health state. The RUL is then predicted
from transition probabilities of the network. (?, ?) combines
Bayesian networks with an event-based approach to monitor
degradation of an automatic mechanical system of lamina-
tion. A priori knowledge is based on experience and trend
monitoring is performed on line thanks to data. Physics-based
knowledge allows determining causal relations of component
degradations.

(Greitzer & Pawlowski, 2002) proposes a prognostic method
based on the trend monitoring of a health state indicator that
results from a composition of observations and is evaluated
on-line from a failure threshold. A parametric model of the
vibration waveform for different faults (particularly for bear-
ing faults) is estimated to perform prognosis on a diesel mo-
tor. (Byington & Stoelting, 2004) performs diagnosis and
prognosis on an EMA of a flight control system with a model
whose parameters are estimated from on-line data. Diagnosis
estimates the current health state of the system with classifi-
cation tools. Prognosis computes the rate of change of state
at current time and anticipates it in the future. In this study,
prognosis is a simple temporal prediction of the indicator evo-
lution that does not take into account the equipment environ-
ment. (Lacaille, Gouby, & Piol, 2013) studies the wear of
turbojets and proposes a simple algorithm to build a degrada-
tion indicator from successive measurements of exhaust gas
temperature after each flight according to the operating time.

The strength of the data-driven method is that it transforms a
huge amount of noisy data into a few relevant data for progno-
sis. It does not require knowledge about failure mechanisms.
The main drawback is that the method efficiency highly de-
pends on the quantity and quality of data. Moreover, results
are valid in a similar situation but for different configurations,
generalization and extrapolation is controversial since the in-
dicators have no physical meaning. In aeronautics, equipment
are generally very reliable, and maintenance is preventive and
realized before the failure occurrence, so there are very few
degradation data. Tests can be done to obtain data, but they
are costly, time consuming, and destructive.

2.3. Model-based prognosis

Model-based prognosis is based on a deep knowledge of the
equipment ageing and relies on a continuous physics-based
model of the component degradation. The ageing model is

represented as a set of equations which involve physical quan-
tities corresponding to environmental constraints (Onori, Riz-
zoni, & Cordoba-Arenas, 2012; Roychoudhury & Daigle, 2011;
Bregon, Daigle, & Roychoudhury, 2012). The model pro-
vides more information by extrapolating on-line data by physics-
based reasoning. It can be an analytical model based on phys-
ical laws or a simulation model identified from tests results.
In (Gucik-Derigny, Outbib, & Ouladsine, 2011), the ageing
model is represented as a set of non-linear differential equa-
tions with multiple time scales (short for the system behavior
dynamic and large for its degradation). Three observers with
unknown inputs are compared for a linear example with slid-
ing mode. The illustrative example is an electromechanical
oscillator whose dynamical and ageing models are known.
The fast dynamic state is estimated thanks to the observer
and the parameters of the slow dynamic are determined. In
(Khorasgani, Kulkarni, Biswas, Celaya, & Goebel, 2013), the
ageing of electrolytic capacitors with temperature is repre-
sented by a complex nonlinear physics-based model. Particle
filtering is then used to estimate the parameters of the degra-
dation model.

Physics-based ageing models can be divided into three types
depending on their output format. They can directly compute
the remaining useful life or progressive evolution of degrada-
tion by evaluating the damage or a failure rate to anticipate
the future behavior of the equipment. The Arrhenius law is
used to represent the impact of temperature on the lifetime of
an electronic device or a component whose degradation pro-
cess is chemical. (Venet, 2007) uses it to model the ageing of
liquid electrolyte capacitors but it can also be applied for di-
electric components, semiconductors, batteries, lubricant or
plastic filament incandescent lamps. The inverse power law
also describes the impact of damaging factors on the compo-
nent lifetime like voltage on electronic components for exam-
ple. It is applied to dielectric components, ball bearings, op-
toelectronic or mechanical components subjected to fatigue.
A specific case of the inverse power law is the Coffin Man-
son law that gives the number of cycles leading to the rupture
when components are subjected to temperature variations or
thermal chocks. The generalized Eyring model allows tak-
ing into account any type of damaging factor like tempera-
ture, voltage, humidity, etc. It is used to model the ageing
of electronic components, aluminum conductors, mechanical
components subjected to rupture.

The Paris law calculates the damage associated to a compo-
nent. It is used in numerous works like in (Pommier, 2009-
2010) where it represents the crack propagation according to
the number of cycles. The Miner’s law models the accumu-
lation of linear damages due to fatigue. It can be used for
metals only until yield strength. The Wlher curve gives the
number of cycle leading to damage thanks to a characteristic
parameter like maximal constraint for example.
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The american military norm MIL-HDBK-217 gives the fail-
ure rates for some components such as transistors, resistors,
etc. For example the law Belvoir Research Development &
Engineering evaluates the failure rate of a solder joint. The
Cox model is mainly used in the medecine and maintenance
fields to study the impact of different variables involved in
the degradation process of components. The mathematical
expression is based on a failure risk function (Letot & De-
hombreux, 2009).

A physics-based ageing model can be determined from phys-
ical analytical laws or from tests performed in controlled con-
ditions to identify characteristic parameters of the system degra-
dation. In this second case, the damage evolution is assumed
to be measured from tests. Moreover simulation is interest-
ing as no component destruction nor deterioration is needed
to study the system degradation. All data are assumed to
be observable which allows choosing the suited sensors to
implement. The main difficulty consists in elaborating and
validating the ageing simulation model, since equipment are
complex and faults are multiple and difficult to be understood
as a whole (Bansal, Evans, & Jones, 2005).

In some cases, it can be useful to combine different types
of information in a common ageing model. By combining
failure history and physical laws, a statistical physics-based
model can be obtained. In such a model, physical stress is
represented through a parameter of the statistical law. The
statistical law can then be adapted to the operational environ-
ment of the component. The difficulty is to assign a physics-
based law to one or several parameters of the statistical law
like in (Brissaud, Lanternier, Charpentier, & Lyonnet, 2007),
(Nima, Lin, Murthy, Prasad, & Yong, 2009), (Gebraeel et al.,
2009) or (Byington, Roemer, & Galie, 2002). (Ray, 1999)
builds a stochastic model for the crack propagation in a metal-
lic material (in structure or oil pan for example). The physics-
based equation is validated from test data. The non-stationary
probability density function depends on the instant of crack
initiation and its actual size (in order to deduce the speed of
the crack propagation). (Hall & Strutt, 2003) proposes a sta-
tistical model of physics of failure. It results from Monte-
Carlo simulations performed with different parameters of the
physics-based degradation model to obtain the failure dates.
These values are then represented with the Weibull distribu-
tion whose parameters are well chosen to fit data.

2.4. Synthesis

The choice of a prognostic method depends on available knowl-
edge, the presence of sensors or physics-based models that
allow monitoring and analyzing the real condition of the sys-
tem. This ageing knowledge can be represented as an expe-
rience, a known qualitative or quantitative model or an esti-
mated model obtained by learning and classification methods.
The prognostic model may vary from a very poor model (that

cannot handle on-line observations for example) to a very rich
one (that can handle on-line observations and can extrapolate
these observations in terms of physical reasons for the com-
ponent to fail in the future). In an industrial context such
as aeronautics, a lot of equipment is similar but no identi-
cal. The objective is to build a generic model-based progno-
sis method that relies on a generic representation of compo-
nent ageing. So in this paper, the challenge consists in defin-
ing a generic ageing model whatever the available knowledge
about the system degradation.

3. A GENERIC AGEING MODEL AND ITS APPLICATION

TO PERMANENT MAGNET SYNCHRONOUS MACHINES

3.1. The generic ageing model

In (Vinson et al., 2013) a structural and functional model is
presented. A system Σ is a set of n components C i. Param-
eters p represent physical quantities in a component. There
are three kinds of parameters. Input parameters ip values
depend on the environment, private parameters pp belong to
only one component, and ouput parameters op are a combi-
naison of input and private parameters through functional re-
lationships ar. The values of parameters at time t are p(t).
The rank r of a parameter p is the set of possible values, such
as ∀t , p(t) ∈ r(p). Components are connected through the
structure st via their input and output parameters to form the
system. Two parameters strcuturally connected are such as
ipi,j = st(opk,l) ⇒ ∀t , ipi,j(t) = opk,l(t). This structural
and functional model is represented on the first layer of the
modeling framework on Figure 1. The ageing model devel-
oped hereby enriches the functional model.

3.1.1. Damage and ageing laws

3.1.2. Damaging factors

During operational life an equipment ages, it is damaged.
Ageing is due to stresses, that can be thermical, electrical,
mechanical or chemical. Stresses are modeled with damag-
ing factors. The set of damaging factors of one component C i

is Di = {df i
l }. The set of damaging factors of the system Σ

isDΣ =
⋃n

i=1Di. The value of a damaging factor at time t is
df(t). Ranks are defined for damaging factors, they are noted
r(df i

l ) and they are such as ∀t, v(df i
l , t) ∈ r(df i

l ).

3.1.3. The damage

The equipment ageing is characterized by its damage. Dam-
age is irreversible. It is null at the beginning of the equipment
life and increases with the ageing.

Since they do not vary for functional purposes and they are in-
trinsic to one component, we decide to use private parameters
and their values to represent the system and component health
state. A private parameter modification represents therefore a
damage. The damage ei,j at time t is modeled as the distance
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between ppi,j(t) and the initial value ppi,j0 :

ei,j(t) = d(ppi,j0 , v(ppi,j , t)) (1)

with ppi,j0 = ppi,j(t0) and ei,j(t0) = 0.

There is one damage per private parameter, but every com-
ponent may have several damages represented by different
private parameters.

The damage depends on stresses. The ageing law ag allows
the calculation of damage e as a function of the damaging
factor values df i

1, ...df
i
n:

{
ag : C× T −→ C

(df i
1, ...df

i
n, t) �−→ ei,j(t) = ag(df i

1, ...df
i
n, t)

(2)

It is possible to define a global damaging factor as a combina-
tion of damaging factors, in order to have a unique parameter
for the ageing law, and to include known ageing laws (de-
scribed in Section 2) in this approach.

3.1.4. The retroaction law

The stress that undergoes an equipment depends on its en-
vironment but also sometimes on its own damage. Indeed a
damaged component often has a more negative impact on its
environment and on itself. For instance the wear of a com-
ponent will increase the level of pollution in a mechanical
system, and pollution is certainly a stress for the component
and its environment.

This is modeled by the fact that damaging factors values de-
pend on the system health state. The function fdf assesses a
damaging factor rank. The rank may depend only on the sys-
tem environment. Otherwise, if the rank of a damaging factor
depends on the system health state, the function fdf is defined
as follows:

{
fdf : DΣ × Supp(df i

l ) −→ IR
df i

l �−→ r(df i
l ) = fdf({ex,y(t)}) (3)

We highlight that the damage depends on damaging factors
through ageing laws and that damaging factors depend on the
damage through the retroaction laws. Figure 1 presents both
the functional and structural model on the first layer and the
ageing model on the second layer. The two models communi-
cate through the private parameters, that is to say through the
health state: the ageing model affects the functional model.

All kind of knowledge can be represented with this generic
modeling framework, as will be shown on our industrial ap-
plication.

Figure 1. Modeling of a system Σ damage: ageing laws and
retroaction laws.

3.2. Application: the ageing model of PMSMs

3.2.1. The functional model of PMSMs

The functional and structural model of PMSMs is shown on
Figure 2. The PMSM has two components, the stator and
the rotor that are combined to perform the PMSM function:
to transform supply voltage Uab, Ubc, Uca into a given me-
chanical speed Ω, independantly of the torque C applied by
the environment on the shaft of the PMSM. The stator trans-
forms the voltages into phase currents, Ia, Ib, Ic, indepen-
dantly of the induced voltages Ea, Eb, Ec produced by the
rotor. The stator private parameters are the phase resistances
Ra, Rb, Rc and inductances La, Lb, Lc. The rotor transforms
the phase currents into a mechanical speed. Its private param-
eters are the magnets electromagnetic remanent field B, the
rotor inertia J and the friction coefficient Kf . The relation-
ships between parameters are explained in details in (Vinson,
Combacau, & Prado, 2012).

Figure 2. Modeling of the PMSM.

After a Failure Modes Effects Analysis and Criticity two faults
were selected as candidates for model-based prognosis, corre-
sponding with the two components of the PMSM: inter-turns
short circuits in the stator and demagnetization of a part of
the rotor.
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3.2.2. The stator ageing : inter-turns short-circuits pro-
gression

A common and critical degradation of PMSMs are short-circuits,
and especially inter-turns short-circuits, that come from the
stator insulation ageing and degradation. A short-circuit model
is proposed in (Vinson, Combacau, & Prado, 2012) and (Vinson,
Combacau, Prado, & Ribot, 2012). There is the creation of
a short-circuit loop in one of the three phases, phase A for
instance. Two fault parameters, Rf and Sa, represent the
intensity of the short-circuit. Rf is the resistance of the in-
sulation at the short-circuit point and progressivly decreases
until 0Ω in case of direct short-circuit. Sa is the percentage
of short-circuited turns and varies between 0 and 100%.

The private parameter that represents the damage of the sta-
tor is chosen to be the short-circuited phase resistance, Ra,
for the three following reasons. It varies with short-circuit, it
depends on the two fault parameters, Rf and Sa, and unlike
them it can actually be measured on a real PMSM. Ra, the
equivalent resistance of phase A with the short-circuit loop
of resistance Rf , is expressed as:

Ra(t) = Ra0(1− Sa(t)) +
Ra0Sa(t)Rf (t)

Ra0Sa(t) +Rf (t)
(4)

The stator damage es is then:

es(t) = |Ra0 −Ra(t)|. (5)

During the stator ageing the damage es progressivly increases.
Two thresholds are defined to estimate the gravity of the short-
circuit: the degradation threshold esd and the fault threshold
esp. According to the comparison between the damage value
and these thresholds, the stator is considered nominal when
es(t) < esd, degraded when esd < es(t) < esp, or faulty when
es(t) > esp.

Ageing law The insulation degradation is due to thermal
and electrical stresses. The damaging factors are the magni-
tude V and frequency f of the supply voltage, and the statoric
temperature TS : DFs = {V, f, Ts}.
Since no real ageing data are available to estimate the stator
ageing law, a law obtained in (Lahoud, Faucher, Malec, &
Maussion, 2011) is used for illustrative purpose. This law was
obtained with tests on insulation boards. We consider that the
shape of the law is correct for the stator, and the parameters
K1, K2, K3 and b values are adjusted to fit with realistic life
duration known from experience. L is the stator life duration
and depends on the statoric temperature Ts:

L(t) = K1 +K2 × exp(−b× Ts(t)) (6)

The proposed ageing law ags is then :

es(t) = ags(Ts, t) =
K3

L(t)
(7)

V and f are constant so we consider that the ageing law only
depends on Ts. There is a correlation between L and es that
is known from experience.

Retroaction law Short-circuits increase the temperature T s

because of the high currents that circulate in the phases and in
the short-circuit loop. The following retroaction law is pro-
posed:

Ts(t) = f s
df(e

s, t) =

⎧⎪⎨
⎪⎩

70◦C if es(t) < esd

80◦C if esd < es(t) < esp

90◦C if esp < es(t)

(8)

This is the only retroaction function of the stator ageing model
since we consider that there is no influence of the short-circuit
on f and V .

3.2.3. The rotor ageing : demagnetization progression

Another degradation that may occur on PMSMs is rotor de-
magnetization, which means that the remanent electromag-
netic field B of one or several magnets decreases. This can
be due to two kinds of degradation. Cracks or breaks of the
magnets induce air gaps, which consequence at the electro-
magnetic level is the diminution of B. High currents or high
temperature variations can modify the physical composition
of magnets which also leads to a diminution of their remanent
electromagnetic field B.

An analytical demagnetization model is proposed in (Vinson,
Combacau, Prado, & Ribot, 2012). The fault parameter is
the percentage of demagnetization of one magnet, which is
proportionnal with the loss of B of this magnet. The private
parameter that represents the damage of the rotor is B. The
rotor damage er is then :

er(t) = |B0 −B(t)| (9)

At every effort cycle the fatigue of the magnet is accumu-
lated because it is sized to resist to the effort. There is a
macroscopically elastic deformation. The maximal number
of cycles that the magnet can bear being reached, it breaks
up. From this state, every part of the magnet undertakes a
similar ageing process than the first one until it breaks again.

During this evolution the brutal rupture of a magnet is ex-
pressed with the Wohler curve described on Figure 3. It rep-
resents the limit of endurance σ of a material as a function
of a number of fatigue cycles. When the limit is reached the
material breaks.
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Figure 3. The Wohler curve and the mechanical ageing of a
rotor magnet.

We assume that the more the magnet is broken the more it
becomes fragile. Calling Ni the date of the ith rupture, we
suppose that ∀i, Ni −Ni−1 > Ni+1 −Ni, because the dura-
tion between two breaks is shorter and shorter.

If the number of cycles between breaks i and i+ 1 is divided
by a factor k > 1 compared with the number of cycles be-
tween breaks i−1 and i, the number of breaks increases more
and more rapidly. We define Tx = Ni+1

Ni as the acceleration
factor of the degradation. The number n of ruptures at time t
is defined as:

n(t) =
log(Tx)− log(Tx + t× (1− Tx))

log(Tx)
(10)

.

Every break devides the remanent induction of a factor K >
1, due to the air gap. We obtain a law giving the remanent
induction as a function of the number of use cycles. The pro-
posed rotor ageing law agr, is then:

er(t) = agr(t) = B0(1−Kn(t)) (11)

In this ageing law, the only considered damaging factor is the
time (i.e. the number of fatigue cycles). As a perspective, if
sufficient data are available, it would be possible to add other
damaging factors, such as short-circuit currents Icc or statoric
temperature Ts, that may accelerate the rotor degradation.

4. THE PROGNOSIS

4.1. The generic prognosis method

A Health-Monitoring module is proposed in (Vinson et al.,
2013). It is based on the generic model of the system and
comprises a fault detection and diagnosis module. The prog-

Figure 4. The prognosis algorithm.

nosis algorithm is developped here. Its input is the result
of diagnosis ΔΣ, which allows estimating all the parame-
ter values, even if they are not observable, at current time t.
The prognosis module predicts the future values of damaging
factors thanks to retroaction laws (Equation 3). It then pre-
dicts the future values of private parameters thanks to ageing
laws (Equation 7), and the input and ouput parameters values
thanks to the knowledge of the future external sollicitation of
the system, and to the analytical laws between parameters.
The future values of damages are estimated (Equation 1) and
the time of degradation or fault can be predicted. The princi-
ple of the prognosis operation are presented on Figure 4.

The prognosis operation is similar to a diagnosis operation,
but realized in the future. The main difference is that pa-
rameters values are predicted instead of being observed. The
parameters or damaging factors are observable if their value
at current time is known, for instance they are measured with
sensors. The parameters or damaging factors are predictible if
their future value can be estimated thanks to the ageing model
or the functional model. The sets of predictible parameters
and damaging factors are Ppred ⊂ P andDF pred ⊂ DF .

The prognosis is a sequence of diagnoses realized at future
degradation time ti, until the fault time tf :

ΠΣ(t) = {ΔΣ(t),ΔΣ(t1), . . . ,Δ
Σ(tf )} (12)

The prognosis algorithm uses the generic formalism devel-
opped in this paper, as shown in Algorithm 1. It is developped
on Matlab and needs to be validated on degradation and fault
data. Since no real data are available, a virtual prototype is
built on Matlab Simulink.
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Algorithme 1 Prognosis

Input: Σ, t,ΔΣ

Output: ΠΣ(t)
Initialization: k ← 1
while RUL 	= 0 do
t← t+Δt
for all ppi,k ∈ PP do
r(ppi,k) = rΣx (pp

i,k) % values known from diagnosis
end for
for all df i

l ∈ DF do
r(df i

l ) = fdf({r(ppi,k)})
end for
for all ppi,j ∈ PP i

pred do
r(ppi,j) = agi,j({df i

l })
end for
for all ipi,j = st(opk,l, t) ∈ IP i

pred do
ipi,j(t) = opk,l(t)

end for
for all opi,j ∈ OP i

pred do
opi,j(t) = ar({pi,k})

end for
for all ppi,j ∈ PPpred do

if ei,j ≥ ei,jx then
tk ← t
go out of loop

end if
end for
Diagnose the system at time tk
ΠΣ(t)← ΔΣ(tk)
k ← k + 1

end while
Return {ΠΣ}

4.2. Development of a virtual prototype

The virtual prototype is a very precise and complete func-
tional and ageing model of the PMSMs. It is used only for
simulation purposes in order to obtain a realistic set of data
to validate the prognosis algoristhm, built with a simple func-
tional and ageing model of PMSMs. In the virtual prototype
the equation of dissipation of thermal power allows predict-
ing the stator temperature Ts. Phase resistances are computed
thanks to an ageing law that depends on Ts, V and f , and
thanks to the equation of copper resistivity that depends on
Ts. This coupled phenomena are represented on Figure 5.

Figure 5. Virtual prototype: relationships between stator tem-
perature and phase resistance

To model the virtual prototype we consider the following hy-
pothesis:

• the ambiant temperature is constant (the ventilation is
working well) ;

• the motor shell acts as a constant thermal resistanceRth2,
and a uniform temperature ;

• the insulator acts as a constant thermal resistance Rth1 ;

• the winding temperature is uniform ;

• only the steady state is considered since the transcient
state is short.

Variation of the short-circuit resistance The ageing law
allows deducing the short-circuit resistance value Rf . The
health points PV are used to correlate the life durationL with
Rf .

The initial number of health points PV0 corresponds with the
initial life duration value L0. Between t and t+dt the propor-
tion of consumed health points is PV (t)−PV (t+dt) = dt

L(t) ,
so

PV (t) =

∫ t

0

1

L(z)
.dz (13)

The integration of the ageing law can be done by approxima-
tion with a piecewise continuous function having the value
L(T (tk+1)) between times tk and tk+1:

{
PV (0) = 0

PV (tk+1) = PV (tk) +
(tk+1−tk)
L(T (tk+1))

(14)

To the best of our knowledge the law that gives the short-
circuit evolution as a function of health points does not exist.
We choose an exponential shape because we assume that the
degradation accelerates with time:

Rf (t) = Rf0(1− exp(−kPV (t)− PV0

PV0
)). (15)

Variation of phases resistivity At temperature T the resis-
tance R of a coil is R(T ) = (ρ(T ) × L)/s, where l is the
length of the cable and s is its section. T0 is the nominal
temperature, R0 = R(T0). Besides the short-circuited phase
resistance modification due to the short-circuit loop with re-
sistance Rf , the three phase resistances Ra, Rb and Rc re-
spect the following equation:

R(T ) = R(T0) +
l

s
× (ρ(T )− ρ(T0)) (16)

where the copper resistivity is ρ(T ) = 17.24 × (1 + 4.2 ×
10−3 × (T − 20))× 10−6.
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Figure 6. Evolution of the short-circuit resistance Rf during
an inter-turns short-circuit.

Figure 7. Evolution of the stator temperature Ts during an
inter-turns short-circuit.

Thermal power dissipation

Ts = (Rth1 +Rth2)× Pd + Ta (17)

The stator temperature is obtained from the dissipated sta-
toric thermal power Pd, that depends on phase resistance Ra,
Rb and Rc, on the short-circuit intensity through Sa and Rf ,
and on phase and short-circuit currents. The equation can be
found on (Vinson et al., 2013).

4.3. Application: Permanent Magnet Synchronous Ma-
chine prognosis

A short-circuit scenario is simulated on the virtual prototype.
The resulting fault resistance and statoric temperature can be
seen on Figures 6 and 7. The short-circuit resistance de-
creases progressivly with the short-circuit, until 0Ω when the
short-circuit is direct. Meanwhile, the statoric temperature
progressivly increases with the degradation.

During the degradation progression, phase currents are ob-
served on the virtual prototype. This allows the diagnosis of
the stator and the PMSM thanks to the diagnosis algorithm
developped in (Vinson, Combacau, Prado, & Ribot, 2012)
which uses a short-circuit indicator based on the phase cur-
rents. The damage es is estimated thanks to the diagnosis
algorithm, as shown on the top left of Figure 8. The diagno-
sis module asseses the health-state of the stator according to
the damage value: it is first nominal, the degraded, and then
faulty (top-right on Figure 8). The progonosis module is run
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Figure 8. Results obtained by the diagnosis and prognosis
algorithms on a short-circuit scenario.

every time when a threshold is passed by the statoric damage.
It can predict the future values of the statoric temperature T s

thanks to the retroaction law described by 8 (bottom-left on
Figure 8). It can then predict the life duration L of the stator
thanks to the ageing law represented by Equation 7 (bottom-
right on Figure 8. Two predictions are realized with two dif-
ferent values of the parameter b (Equation 7), in order to rep-
resent uncertainties on the ageing law. The real life duration
can be compared with the two predicted life duration.

5. CONCLUSION

In this paper a study about related work on existing ageing
models and prognosis methods was first proposed. It moti-
vated the idea of designing a generic ageing modeling frame-
work in order to represent every kind of known ageing law,
whatever the nature of available knowledge. Indeed it can be
experience-based, data-driven, or physics-based ageing mod-
els.

The proposed generic modeling framework contains all infor-
mation to perform diagnosis and prognosis. Besides a diagno-
sis algorithm presented in details in a previous paper (Vinson
et al., 2013), a prognosis algorithm is developped based on
this genereic ageing model. It uses predictible parameters
and damaging factors to estimate the future degradation and
faults occurrences.

An application is shown on Permanent Magnet Synchronous
Machines, which ageing is succesfully modeled by the pro-
posed method. A virtual short-circuit scenario is predicted by
the prognosis algorithm. When implemented in service, this
prognosis will allow anticipating any maintenance operation
for PMSMs.

The developed modeling framework and prognosis algorithm
are intended to be applied to other critical equipment in aero-
nautics, such as hydraulic pumps or electromechanical ac-
tuators. In order to adjust the proposed ageing model with
ageing and retroaction laws, it seems essential to perform
some degradation tests. The generic ageing model we pro-
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posed is a common representation of ageing of any equipment
type. But the level of knowledge contained in the model is di-
rectly characterized by the availability of sensors, experience
or physics-based models and may vary from one component
to another. The higher the level of knowledge about ageing
is, the more accurate the prognosis results. It becomes in-
teresting to define and implement performance metrics for
prognosis based on the level of knowledge contained in out
generic aging model in order to compare the results obtained
for the components and qualify the prognosis result at the sys-
tem level.
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en mécanique, combinaison d’une loi de weibull et
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