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ABSTRACT

In the context of more electrical aircrafts, Permanent Mag-
net Synchronous Machines are used in a more and more ag-
gressive environment. It becomes necessary to supervisetheir
health state and to predict their future evolution and remain-
ing useful life in order to anticipate any requested mainte-
nance operation. Model-based prognosisis a solution to this
issue. A generic modeling framework is proposed in this pa
per in order to implement such a prognosis method which
relies on knowledge about the system ageing. A review of
existing ageing laws is presented, and motivates the choice
to developp an ageing model that could incorporates every
kind of ageing laws. A generic ageing model is then defined,
that allows representing the ageing of any equipment and the
impact of this ageing on its environment. It includes the pos-
sible retroaction of the system health state to itself through
stressincreasein case of damage. The proposed ageing model
is then illustrated with Permanent Magnet Synchronous Ma-
chines. A fictive but realistic scenario of stator ageing is
built. It comprises apparition and progression of an inter-
turns short-circuit and itsimpact on stator temperature, which
value has an impact on the ageing speed. A prognhosis method
based on the generic ageing model is proposed, and applied
successfully to this scenario.

1. INTRODUCTION

In the context of the more electrical aircrafts, electrical mo-
torssuch as permanent magnet synchronousmachines (PM SM)
aremore and more used for critical functionsin the actuators,
such as landing gear extension/retraction, braking systems,
or flight control. They are often used in very agressive envi-
ronments. The transition from 270V to 540V of supply volt-
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ages, and the increase in switching frequencies, also applies
a lot of additionnal stress on the motors. In this agressive
context, PMSMs risk to be subject more and more degrada-
tion and faults. In order to ensure the operational availabil-
ity of critical functions, one optionisto implement a Health-
Monitoring module. ThisHealth-Monitoring modul e consists
in adetection and diagnosis modul e, that allows assessing the
current health state of equipments, and a prognosis module,
that allows predicting the future health state of quipments,
and their remaining useful life (RUL). With prognosis, the
maintenance action can be anticipated in advance. The goal
is to optimize maintenance planification and avoid any oper-
ational interruption or flight delays due to equipment faults.

Predicting the future health-state of equipments requires a
knowledge about their ageing. This knowledge can take sev-
eral forms, it can be based on experience, on degradation and
ageing data obtained in service or in tests, or on ageing phys-
ical models. Different ageing knowledge representations and
prognosis methods used in the literature are presented in Sec-
tion 2. The conclusion is that the ageing knowledge can al-
ways be put into the form of an ageing model. A generic
ageing model is then presented in Section 3. It alows rep-
resenting the behavior and ageing of any kind of equipment,
that may be heterogeneous and complex. An application is
proposed on Permanent M agnet Synchronous Machines, with
the modeling of two critical progressive degradation: inter-
turns short-circuits and rotor demagnetization. The modeling
framework contains all the information that is needed to per-
form diagnosis and prognosis. A generic prognosis method
based on the model is then proposed on Section 4. The prog-
nosis agorithm is presented, and applied to a short-circuit
virtual scenario simulated thanks to a complete PMSM vir-
tual prototype. Finally Section 5 proposes some conclusions
and perspectives.



2. AGEING MODELS FOR PROGNOSIS

In order to predict the system remaining useful life, progno-
sis requires knowledge about the system degradation or age-
ing that is contained in a model. This model describes the
evolution of the system ageing state, it is a priori known and
used on-line for predictions. In the literature, several prog-
nosis methods already exist which rely on different models.
Three classes of methods that rely on three types of available
knowledge can be distinguished:

e experience-based prognosis,
e data-driven prognosis,
e and model-based prognosis.

The choice of one of these methods depends on the level of
knowledge contained in ageing model and is mainly charac-
terized by the availability of sensors that allow obtaining on-
line data of the system state. Every approach has pros and
cons, and it is often useful to combine them.

2.1. Experience-based prognosis

Experience-based approaches, like case-based reasoning or
reliability analyses, are the only aternative when no sensors
nor physical knowledge of the system ageing is available.
This form of prognostic model is the smplest and only re-
quires failure history to determine the probability of failure
within afuture time (Gebraeel, Elwany, & Pan, 2009). Relia-
bility techniques are used to fit a statistical distribution to the
failure data.

The Weibull law is often used due to its flexibility in relia-
bility analyses for mechanical or electrical components. It
can represent a time-dependent failure rate by describing the
different phases of a component life with three parameters.
(Bufferne, 2009) represents the impact of corrosion, fatigue,
or wear on components with these three parameters. (van
Noortwijk & Klatter, 2002) models the cost of structure re-
placement with Weibull distributions by applying the maxi-
mum likelihood estimation method on life data obtained from
broken structures. The cost of structure replacement is then
computed thanksto their current age and uncertaintiesrelated
to the predicted replacement date. The main drawback of the
Weibull law isthe difficulty of estimating these three parame-
ters. Theexponential law is simpler asit depends on only one
parameter, the failure rate, which is constant. It can represent
a component ageing without wear, i.e. the abrupt failures. It
is used alot for life duration of electronic devices. For pro-
gressive failure, the Gamma law seems to be well suited. It
can represent a failure rate increasing in time and is used to
model progressive failures like crack evolution in (Lawless,
2004) or erosion in (van Noortwijk, Kallen, & Pandey, 2005).
It is also possible to use several laws simultaneoudly like in
(Huynh, Castro, Barros, & Berenguer, 2012) which combines
a Gamma law with a Poisson process to model progressive

degradation and abrupt failures.

M odel s used by experience-based approaches are the less com-
plex ones, and use available data without dedicated effort, ex-
cept if there are no enough experience feedback: equipment
that are new, and/or very reliable, and never fail before a pre-
ventive maintenance action, as in aeronautics. This approach
brings only few information, and does not take into account
the way the equipment is used, or its past. This might be use-
ful for the manufacturer, but not for the user that is interested
in one particular component.

2.2. Data-driven prognosis

Evolutionary and trend monitoring methods are used when
on-line observed data are available. Prognostic models then
simply rely on degradation estimators or indicators (Kalman
filters or various other tracking filters for the state estima-
tion). The prognostic method then uses on-line estimators to
evaluate the system current degradation state relying on the
on-line observations. To get the estimators, failure history
is required (identification of fault patterns). Such estimators
may be obtained by learning techniques (neural networks or
Bayesian networks) or by identifying parameters of classical
estimators like for Kalman filters (Hu, 2011).

Neural networksallow building agrey/black box ageing model
to estimate and predict the current and future trend of the sys-
tem degradation from specific indicators. The prediction re-
lies on the network learning from experience that extracts es-
sential characteristicsfrom noisy data(Goh, Tjahjono, Baines,
& Subramaniam, 2006). Neural networks are used in (Das,
Hall, Herzog, Harrison, & Bodkin, 2011) to perform progno-
sison systems of high-speed milling. (Adeline, Gouriveau, &
Zerhouni, 2008) tests and compares different methods based
on neural networks in terms of prediction precision, com-
putation cost and requirements related to the implementa
tion. (Vachtsevanos & Wang, 2001) combines neural net-
works with wavelets to predict the RUL of rolling bearings.
Fuzzy neura networks combines neural networks and fuzzy
logic to deal with ambiguous, inaccurate, noisy or incom-
plete data (Goh et a., 2006; El-Koujok, Gouriveau, & Zer-
houni, 2010). Fuzzy systems use knowledge as expert rules.
They are recommended in case where no qualitative informa-
tion about the system degradation is available but only causal
rules describefault propagation within the system (El-Koujok
et a., 2010). They can be automatically adjusted and do not
require physics-based knowledge.

Ageing models can be represented by Bayesian networks that
are acyclic graphs defined by a set of nodes and relations
with conditional probabilities. Each node may represent a po-
tential degradation mode of the system and transition proba-
bilities from a current mode to possible future modes result
from a learning phase. A priori probabilities in Bayesian
networks have to be introduced by the expert. Theory of



Bayesian networks is well explained in (Bouaziz, Zamai, &
Duvivier, 2013) which shows its relevant application in the
semi-conductor industry. (Weber, PMunteanu, & Jouffe, 2004)
uses dynamical Bayesian networksand Markov chainsto model
the ageing of a system composed of a pump and a valve.
(Camci & Chinnam, 2010) models the progressive deterio-
ration of drills with hierarchical hidden Markov models that
are estimated from tests. For a clear and simple representa-
tion, they can also be described by a Bayesian network where
a node stands for a hedlth state. The RUL is then predicted
from transition probabilities of the network. (?, ?) combines
Bayesian networks with an event-based approach to monitor
degradation of an automatic mechanical system of lamina
tion. A priori knowledge is based on experience and trend
monitoringis performed on linethanksto data. Physics-based
knowledge allows determining causal relations of component
degradations.

(Greitzer & Pawlowski, 2002) proposes a prognostic method
based on the trend monitoring of a health state indicator that
results from a composition of observations and is evaluated
on-line from a failure threshold. A parametric model of the
vibration waveform for different faults (particularly for bear-
ing faults) is estimated to perform prognosis on a diesel mo-
tor. (Byington & Stoelting, 2004) performs diagnosis and
prognosis on an EMA of aflight control system with a model
whose parameters are estimated from on-line data. Diagnosis
estimates the current health state of the system with classifi-
cation tools. Prognosis computes the rate of change of state
at current time and anticipates it in the future. In this study,
prognosisisasimpletemporal prediction of theindicator evo-
lution that does not take into account the equipment environ-
ment. (Lacaille, Gouby, & Piol, 2013) studies the wear of
turbojets and proposes a simple algorithm to build a degrada-
tion indicator from successive measurements of exhaust gas
temperature after each flight according to the operating time.

The strength of the data-driven method is that it transforms a
huge amount of noisy datainto afew relevant datafor progno-
sis. It does not require knowledge about failure mechanisms.
The main drawback is that the method efficiency highly de-
pends on the quantity and quality of data. Moreover, results
arevalidinasimilar situation but for different configurations,
generalization and extrapolation is controversia since thein-
dicators have no physical meaning. In aeronautics, equipment
aregeneraly very reliable, and maintenanceis preventiveand
realized before the failure occurrence, so there are very few
degradation data. Tests can be done to obtain data, but they
are costly, time consuming, and destructive.

2.3. Model-based prognosis

Model-based prognosisis based on a deep knowledge of the
equipment ageing and relies on a continuous physics-based
model of the component degradation. The ageing model is

represented as a set of equationswhich involvephysical quan-
tities corresponding to environmental constraints (Onori, Riz-
zoni, & Cordoba-Arenas, 2012; Roychoudhury & Daigle, 2011,
Bregon, Daigle, & Roychoudhury, 2012). The model pro-
vides moreinformation by extrapolating on-line data by physics-
based reasoning. It can be an analytical model based on phys-
ical laws or a simulation model identified from tests results.
In (Gucik-Derigny, Outbib, & Ouladsine, 2011), the ageing
model is represented as a set of non-linear differential equa-
tions with multiple time scales (short for the system behavior
dynamic and large for its degradation). Three observerswith
unknown inputs are compared for a linear example with dlid-
ing mode. The illustrative example is an electromechanical
oscillator whose dynamical and ageing models are known.
The fast dynamic state is estimated thanks to the observer
and the parameters of the slow dynamic are determined. In
(Khorasgani, Kulkarni, Biswas, Celaya, & Goebel, 2013), the
ageing of electrolytic capacitors with temperature is repre-
sented by a complex nonlinear physics-based model. Particle
filtering is then used to estimate the parameters of the degra-
dation model.

Physics-based ageing models can be divided into three types
depending on their output format. They can directly compute
the remaining useful life or progressive evolution of degrada-
tion by evaluating the damage or a failure rate to anticipate
the future behavior of the equipment. The Arrhenius law is
used to represent the impact of temperature on the lifetime of
an electronic device or a component whose degradation pro-
cessischemical. (Venet, 2007) usesit to model the ageing of
liquid electrolyte capacitors but it can also be applied for di-
electric components, semiconductors, batteries, lubricant or
plastic filament incandescent lamps. The inverse power law
also describes the impact of damaging factors on the compo-
nent lifetime like voltage on electronic componentsfor exam-
ple. It is applied to dielectric components, ball bearings, op-
toelectronic or mechanical components subjected to fatigue.
A specific case of the inverse power law is the Coffin Man-
son law that gives the number of cyclesleading to the rupture
when components are subjected to temperature variations or
thermal chocks. The generalized Eyring model allows tak-
ing into account any type of damaging factor like tempera-
ture, voltage, humidity, etc. It is used to model the ageing
of electronic components, aluminum conductors, mechanical
components subjected to rupture.

The Paris law calcul ates the damage associated to a compo-
nent. It is used in numerous works like in (Pommier, 2009-
2010) where it represents the crack propagation according to
the number of cycles. The Miner's law models the accumu-
lation of linear damages due to fatigue. It can be used for
metals only until yield strength. The Wlher curve gives the
number of cycle leading to damage thanks to a characteristic
parameter like maximal constraint for example.



The american military norm MIL-HDBK-217 gives the fail-
ure rates for some components such as transistors, resistors,
etc. For example the law Belvoir Research Development &
Engineering evaluates the failure rate of a solder joint. The
Cox model is mainly used in the medecine and maintenance
fields to study the impact of different variables involved in
the degradation process of components. The mathematical
expression is based on a failure risk function (Letot & De-
hombreux, 2009).

A physics-based ageing model can be determined from phys-
ical analytical laws or from tests performedin controlled con-

ditionsto identify characteristic parametersof the system degra-

dation. In this second case, the damage evolution is assumed
to be measured from tests. Moreover simulation is interest-
ing as no component destruction nor deterioration is needed
to study the system degradation. All data are assumed to
be observable which alows choosing the suited sensors to
implement. The main difficulty consists in elaborating and
validating the ageing simulation model, since equipment are
complex and faults are multiple and difficult to be understood
as awhole (Bansal, Evans, & Jones, 2005).

In some cases, it can be useful to combine different types
of information in a common ageing model. By combining
failure history and physical laws, a statistical physics-based
model can be obtained. In such a model, physica stress is
represented through a parameter of the statistical law. The
statistical law can then be adapted to the operational environ-
ment of the component. The difficulty is to assign a physics-
based law to one or several parameters of the statistical law
likein (Brissaud, Lanternier, Charpentier, & Lyonnet, 2007),
(Nima, Lin, Murthy, Prasad, & Yong, 2009), (Gebraeel et al.,
2009) or (Byington, Roemer, & Galie, 2002). (Ray, 1999)
builds a stochastic model for the crack propagationin ametal -
lic material (in structure or oil panfor example). The physics-
based equationisvalidated from test data. The non-stationary
probability density function depends on the instant of crack
initiation and its actual size (in order to deduce the speed of
the crack propagation). (Hall & Strutt, 2003) proposes a sta-
tistical model of physics of failure. It results from Monte-
Carlo simulations performed with different parameters of the
physics-based degradation model to obtain the failure dates.
These values are then represented with the Weibull distribu-
tion whose parameters are well chosen to fit data.

2.4. Synthesis

The choice of aprognostic method depends on available knowl-
edge, the presence of sensors or physics-based models that
allow monitoring and analyzing the real condition of the sys-
tem. This ageing knowledge can be represented as an expe-
rience, a known qualitative or quantitative model or an esti-
mated model obtained by learning and classification methods.
The prognostic model may vary from avery poor model (that

cannot handle on-line observationsfor example) to avery rich
one (that can handle on-line observations and can extrapolate
these observations in terms of physical reasons for the com-
ponent to fail in the future). In an industrial context such
as aeronautics, a lot of equipment is similar but no identi-
cal. The objective isto build a generic model-based progno-
sis method that relies on a generic representation of compo-
nent ageing. So in this paper, the challenge consistsin defin-
ing a generic ageing model whatever the available knowledge
about the system degradation.

3. A GENERIC AGEING MODEL AND ITS APPLICATION
TO PERMANENT MAGNET SYNCHRONOUS MACHINES

3.1. The generic ageing model

In (Vinson et al., 2013) a structural and functional model is
presented. A system ¥ is a set of n components C*. Param-
eters p represent physical quantities in a component. There
are three kinds of parameters. Input parameters ip values
depend on the environment, private parameters pp belong to
only one component, and ouput parameters op are a combi-
naison of input and private parameters through functional re-
lationships ar. The values of parameters at time ¢ are p(t).
Therank r of a parameter p isthe set of possible values, such
asvt, p(t) € r(p). Components are connected through the
structure st viatheir input and output parametersto form the
system. Two parameters strcuturally connected are such as
iptl = st(optl) = Vt , ip®I(t) = op™!(t). This structural
and functional model is represented on the first layer of the
modeling framework on Figure 1. The ageing model devel-
oped hereby enriches the functional model.

3.1.1. Damage and ageing laws
3.1.2. Damaging factors

During operationa life an equipment ages, it is damaged.
Ageing is due to stresses, that can be thermical, electrical,
mechanical or chemical. Stresses are modeled with damag-
ing factors. The set of damaging factors of one component C
isD' = {df}}. The set of damaging factors of the system
isD* = |J;_, D*. Thevalueof adamaging factor at timet is
df (t). Ranks are defined for damaging factors, they are noted
r(df}) and they are such as V¢, v(df}, t) € r(df}).

3.1.3. The damage

The equipment ageing is characterized by its damage. Dam-
ageisirreversible. It isnull at the beginning of the equipment
life and increases with the ageing.

Sincethey do not vary for functional purposesand they arein-
trinsic to one component, we decide to use private parameters
and their valuesto represent the system and component health
state. A private parameter modification representstherefore a
damage. The damage e’ at time ¢ is modeled as the distance



between pp™/ (t) and theinitial value pp”:

e (t) = d(ppy’, v(pp™, 1)) 6h)

with pp(i)’j = pp®I(to) and e™I (ty) = 0.

There is one damage per private parameter, but every com-
ponent may have several damages represented by different
private parameters.

The damage depends on stresses. The ageing law ag alows
the calculation of damage e as a function of the damaging
factor values dfy, ...df::

ag:CxT —C >
(dfi, dfit) — ¢ (2) = ag(dfi,..dfit) P

Itis possibleto define aglobal damaging factor as acombina-
tion of damaging factors, in order to have a unique parameter
for the ageing law, and to include known ageing laws (de-
scribed in Section 2) in this approach.

3.1.4. Theretroaction law

The stress that undergoes an equipment depends on its en-
vironment but also sometimes on its own damage. Indeed a
damaged component often has a more negative impact on its
environment and on itself. For instance the wear of a com-
ponent will increase the level of pollution in a mechanical
system, and pollution is certainly a stress for the component
and its environment.

This is modeled by the fact that damaging factors values de-

pend on the system heslth state. The function f,; assesses a
damaging factor rank. The rank may depend only on the sys-

tem environment. Otherwise, if the rank of adamaging factor

depends on the system health state, the function f 4 is defined
asfollows:

{ fdf : DE x S_upp(dfli) — Ip (3)
dff — r(dff) = far({e™(t)})

We highlight that the damage depends on damaging factors
through ageing laws and that damaging factors depend on the
damage through the retroaction laws. Figure 1 presents both
the functional and structural model on the first layer and the
ageing model on the second layer. The two models communi-
cate through the private parameters, that isto say through the
health state: the ageing model affects the functional model.

All kind of knowledge can be represented with this generic
modeling framework, as will be shown on our industrial ap-
plication.

Figure 1. Modeling of a system X damage: ageing laws and
retroaction laws.

3.2. Application: the ageing model of PMSMs
3.2.1. Thefunctional model of PMSM s

The functional and structural model of PMSMs is shown on
Figure 2. The PMSM has two components, the stator and
the rotor that are combined to perform the PMSM function:
to transform supply voltage Uy, Upe, Ue, iNtO @ given me-
chanical speed €2, independantly of the torque C' applied by
the environment on the shaft of the PMSM. The stator trans-
forms the voltages into phase currents, 1, I, 1., indepen-
dantly of the induced voltages E,,, Ey, E. produced by the
rotor. The stator private parameters are the phase resistances
R,, Ry, R. andinductances L, Ly, L.. Therotor transforms
the phase currentsinto a mechanical speed. Its private param-
eters are the magnets electromagnetic remanent field B, the
rotor inertia J and the friction coefficient K ;. The relation-
ships between parameters are explained in detailsin (Vinson,
Combacau, & Prado, 2012).

Stator Rotor
Ra, Rb, Rc
B, J, Kf
La, Lb, Lc Q
Uca
PMSM
Environment

Figure 2. Modeling of the PMSM.

After aFailure M odes Effects Analysisand Criticity two faults
were selected as candidates for model-based prognosis, corre-
sponding with the two components of the PMSM: inter-turns
short circuits in the stator and demagnetization of a part of
therotor.



3.2.2. The stator ageing : inter-turns short-circuits pro-
gression

A common and critical degradation of PM SMsare short-circuits,

and especially inter-turns short-circuits, that come from the
stator insul ation ageing and degradation. A short-circuit model

isproposedin (Vinson, Combacau, & Prado, 2012) and (Vinson,

Combacau, Prado, & Ribot, 2012). There is the creation of
a short-circuit loop in one of the three phases, phase A for
instance. Two fault parameters, Ry and S,, represent the
intensity of the short-circuit. Ry is the resistance of the in-
sulation at the short-circuit point and progressivly decreases
until 0€2 in case of direct short-circuit. S, is the percentage
of short-circuited turns and varies between 0 and 100%.

The private parameter that represents the damage of the sta-
tor is chosen to be the short-circuited phase resistance, R,
for the three following reasons. It varies with short-circuit, it
depends on the two fault parameters, R ; and S,, and unlike
them it can actually be measured on areal PMSM. R, the
equivalent resistance of phase A with the short-circuit loop
of resistance Rf, is expressed as:

Ra(t) = Rap(1 — S.(t)) + R]cjz;fgt()tl-ngf()t) 4
The stator damage e is then:
e’(t) = |Ragp — Ra(t)|. (5

During the stator ageing the damage e ® progressivly increases.
Two threshol ds are defined to estimate the gravity of the short-
circuit: the degradation threshold e} and the fault threshold
e, According to the comparison between the damage value
and these thresholds, the stator is considered nominal when
e®(t) < ey, degraded when e < e*(t) < e;, or faulty when
e(t) > e,

Ageing law The insulation degradation is due to thermal
and electrical stresses. The damaging factors are the magni-
tude V' and frequency f of the supply voltage, and the statoric
temperature T's: DF° = {V, f,Ts}.

Since no real ageing data are available to estimate the stator
ageing law, a law obtained in (Lahoud, Faucher, Maec, &
Maussion, 2011) isused for illustrative purpose. Thislaw was
obtained with tests on insulation boards. We consider that the
shape of the law is correct for the stator, and the parameters
K., K5, K3 and b values are adjusted to fit with realistic life
duration known from experience. L is the stator life duration
and depends on the statoric temperature T's:

L(t) = Iy + K x exp(—b x Tu(1)) (6)

The proposed ageing law ag® isthen :

K3

e’(t) = ag®(Ts,t) = m

()

V and f are constant so we consider that the ageing law only
dependson 7. Thereis a correlation between L and e® that
is known from experience.

Retroactionlaw  Short-circuitsincrease the temperature 7'
because of the high currentsthat circulatein the phasesandin
the short-circuit loop. The following retroaction law is pro-
posed:
T0°C if e°(t) < ej
80°C if eg<e’(t)<e, (8)
90°C if e, <e’(t)

T(t) = fip(e®,t) =

Thisisthe only retroaction function of the stator ageing model
sincewe consider that thereis no influence of the short-circuit
onfandV.

3.2.3. Therotor ageing : demagnetization progression

Another degradation that may occur on PMSMs is rotor de-
magnetization, which means that the remanent electromag-
netic field B of one or several magnets decreases. This can
be due to two kinds of degradation. Cracks or breaks of the
magnets induce air gaps, which consequence at the electro-
magnetic level isthe diminution of B. High currents or high
temperature variations can modify the physical composition
of magnetswhich also leadsto a diminution of their remanent
electromagnetic field B.

An analytical demagnetization model is proposedin (Vinson,
Combacau, Prado, & Ribot, 2012). The fault parameter is
the percentage of demagnetization of one magnet, which is
proportionnal with the loss of B of this magnet. The private
parameter that represents the damage of the rotor is B. The
rotor damage e” isthen :

e’(t) = |Bo — B(t)| )

At every effort cycle the fatigue of the magnet is accumu-
lated because it is sized to resist to the effort. There is a
macroscopically elastic deformation. The maximal number
of cycles that the magnet can bear being reached, it breaks
up. From this state, every part of the magnet undertakes a
similar ageing process than the first one until it breaks again.

During this evolution the brutal rupture of a magnet is ex-
pressed with the Wohler curve described on Figure 3. It rep-
resents the limit of endurance o of a material as a function
of a number of fatigue cycles. When the limit is reached the
material breaks.
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Figure 3. The Wohler curve and the mechanical ageing of a
rotor magnet.

We assume that the more the magnet is broken the more it
becomes fragile. Calling N; the date of the i*" rupture, we
suppose that Vi, N; — N;—1 > N;+1 — N;, because the dura-
tion between two breaksis shorter and shorter.

If the number of cycles between breaks: and i + 1 is divided
by afactor £ > 1 compared with the number of cycles be-
tween breaksi — 1 and ¢, the number of breaksincreasesmore
and more rapidly. We define T, = 2L as the acceleration
factor of the degradation. The number n of ruptures at time ¢
is defined as:

n(t)

~log(Ty) —log(T, +t x (1 —T))
a ZOQ(Tx)

(10)

Every break devides the remanent induction of a factor K >
1, due to the air gap. We obtain a law giving the remanent
induction as afunction of the number of use cycles. The pro-
posed rotor ageing law ag", is then:

e’ (t) = ag"(t) = Bo(1 — K™") (11)

In this ageing law, the only considered damaging factor is the
time (i.e. the number of fatigue cycles). As a perspective, if
sufficient data are available, it would be possible to add other
damaging factors, such as short-circuit currents /.. or statoric
temperature T's, that may accelerate the rotor degradation.

4. THE PROGNOSIS

4.1. The generic prognosis method

A Health-Monitoring module is proposed in (Vinson et al.,
2013). It is based on the generic model of the system and
comprises afault detection and diagnosis module. The prog-

Input: diagnosis
= estimation of p(t)
t = t+AL
Estimation of dfft)
(retroaction laws)
Estimation of pp(t)
(ageing laws)

Estimation of ip(t) and op(t)
(functional laws)

Afault threshold is
crossed for one damage?

Output: values of
damages in the futur

Figure 4. The prognosis algorithm.

nosis algorithm is developped here. Its input is the result
of diagnosis A*, which alows estimating all the parame-
ter values, even if they are not observable, at current time ¢.
The prognosis module predicts the future values of damaging
factors thanks to retroaction laws (Equation 3). It then pre-
dicts the future values of private parameters thanks to ageing
laws (Equation 7), and the input and ouput parameters values
thanks to the knowledge of the future external sollicitation of
the system, and to the analytical laws between parameters.
The future values of damages are estimated (Equation 1) and
the time of degradation or fault can be predicted. The princi-
ple of the prognosis operation are presented on Figure 4.

The prognosis operation is similar to a diagnosis operation,
but realized in the future. The main difference is that pa
rameters values are predicted instead of being observed. The
parameters or damaging factors are observable if their value
at current time is known, for instance they are measured with
sensors. The parametersor damaging factorsare predictibleif
their future value can be estimated thanks to the ageing model
or the functional model. The sets of predictible parameters
and damaging factorsare Pp,,..q C P and DF preqa C DF.

The prognosis is a sequence of diagnoses realized at future
degradation time ¢;, until the fault time ¢ ;:

12 (t) = {A%(t), A%(t),..., A%(ty)} (12)

The prognosis algorithm uses the generic formalism devel-
opped in this paper, as shown in Algorithm 1. It is developped
on Matlab and needs to be validated on degradation and fault
data. Since no real data are available, a virtual prototypeis
built on Matlab Simulink.



Algorithme 1 Prognosis

Input: X, ¢, A®
Output: TT* (¢)
Initidization: k < 1
while RUL # 0 do
tt+ At
for all pp** € PP do
r(pp**) = rZ(pp"*) % values known from diagnosis
end for
for all dfj € DF do
r(dfi) = far({r(pp"*)})
end for _
for all pp*? € PP,,., do
r(pp*™’) = ag™ ({df{’})
end for _
for all ip® = st(ophl t) € IP,e
ipi (1) = oph (1)
end for ,
for all op*? € OP,,., do
op®i (t) = ar({p"*})
end for
for all pp*? € PPpreq do
if e#7 > e’ then
t <t
go out of loop
end if
end for
Diagnose the system at time ¢,
= (t) «+ A®(tx)
k+—k+1
end while
Return {I1*}

4 do

4.2. Development of avirtual prototype

The virtual prototype is a very precise and complete func-
tional and ageing model of the PMSMs. It is used only for
simulation purposes in order to obtain a redlistic set of data
to validate the prognosis algoristhm, built with asimple func-
tional and ageing model of PMSMs. In the virtual prototype
the equation of dissipation of thermal power allows predict-
ing the stator temperature T's. Phase resistances are computed
thanks to an ageing law that depends on T's, V' and f, and
thanks to the equation of copper resistivity that depends on
T. This coupled phenomena are represented on Figure 5.

Ra, Rb, Rc Ts
> Dissipation of thermal power

- Ageing law

Phase resistance
calculation

Copper resistivity

Figure5. Virtual prototype: relationships between stator tem-
perature and phase resistance

To model the virtua prototypewe consider the following hy-
pothesis:

e the ambiant temperature is constant (the ventilation is
working well) ;

e themotor shell actsasaconstant thermal resistance R 5,
and a uniform temperature ;

e theinsulator acts as a constant thermal resistance Ry, ;
e thewinding temperatureis uniform;

e only the steady state is considered since the transcient
state is short.

Variation of the short-circuit resistance The ageing law
alows deducing the short-circuit resistance value Ry. The
health points PV are used to correlatethe lifeduration L with
Ry.

Theinitial number of health points PV, correspondswith the
initial lifedurationvalue L. Between ¢t and ¢+ dt the propor-

tion of consumed health pointsis PV (t)— PV (t+dt) = %,
so

t

1

PV(t) = / dz (13)
() o L(2)

Theintegration of the ageing law can be done by approxima-

tion with a piecewise continuous function having the value

L(T(tg+1)) betweentimest, and t41:

PVO) =0
{ (14

PV(thi1) =PV () + 2=,
To the best of our knowledge the law that gives the short-
circuit evolution as a function of health points does not exist.
We choose an exponential shape because we assume that the
degradation accelerates with time:

PV (t) — PV,

= 1— —
Ry(t) = Ryo(1 — exp(—Fk 2

))- (15)

Variation of phasesresistivity At temperature T" the resis-
tance R of acoil is R(T) = (p(T) x L)/s, where ! is the
length of the cable and s is its section. Ty is the nominal
temperature, Ry = R(T)). Besides the short-circuited phase
resistance modification due to the short-circuit loop with re-
sistance Ry, the three phase resistances R,, Ry and R, re-
spect the following equation:

R(T) = R(T) + L x (o) —p(m)) (19

where the copper resistivity is p(T') = 17.24 x (1 + 4.2 x
1073 x (T — 20)) x 1076,
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Figure 6. Evolution of the short-circuit resistance R ; during
an inter-turns short-circuit.
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Figure 7. Evolution of the stator temperature T's during an
inter-turns short-circuit.

Thermal power dissipation

Ts = (Rin1 + Rine) X Pa+ T, 17)

The stator temperature is obtained from the dissipated sta-
toric thermal power P, that depends on phase resistance R,
Ry and R.., on the short-circuit intensity through S, and R,
and on phase and short-circuit currents. The equation can be
found on (Vinson et a., 2013).

4.3. Application: Permanent Magnet Synchronous Ma-
chine prognosis

A short-circuit scenario is simulated on the virtual prototype.
The resulting fault resistance and statoric temperature can be
seen on Figures 6 and 7. The short-circuit resistance de-
creases progressivly with the short-circuit, until 02 when the
short-circuit is direct. Meanwhile, the statoric temperature
progressivly increases with the degradation.

During the degradation progression, phase currents are ob-
served on the virtual prototype. This allows the diagnosis of
the stator and the PMSM thanks to the diagnosis algorithm
developped in (Vinson, Combacau, Prado, & Ribot, 2012)
which uses a short-circuit indicator based on the phase cur-
rents. The damage e* is estimated thanks to the diagnosis
algorithm, as shown on the top left of Figure 8. The diagno-
sis module asseses the health-state of the stator according to
the damage value: it is first nominal, the degraded, and then
faulty (top-right on Figure 8). The progonosis moduleis run
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Figure 8. Results obtained by the diagnosis and prognhosis
algorithms on a short-circuit scenario.

every time when athreshold is passed by the statoric damage.
It can predict the future values of the statoric temperature T',
thanks to the retroaction law described by 8 (bottom-left on
Figure 8). It can then predict the life duration L of the stator
thanks to the ageing law represented by Equation 7 (bottom-
right on Figure 8. Two predictions are realized with two dif-
ferent values of the parameter b (Equation 7), in order to rep-
resent uncertainties on the ageing law. The real life duration
can be compared with the two predicted life duration.

5. CONCLUSION

In this paper a study about related work on existing ageing
models and prognosis methods was first proposed. It moti-
vated the idea of designing a generic ageing modeling frame-
work in order to represent every kind of known ageing law,
whatever the nature of available knowledge. Indeed it can be
experience-based, data-driven, or physics-based ageing mod-
els.

The proposed generic modeling framework contains al infor-
mation to perform diagnosisand prognosis. Besidesadiagno-
sis algorithm presented in detail s in a previous paper (Vinson
et a., 2013), a prognosis agorithm is developped based on
this genereic ageing model. It uses predictible parameters
and damaging factors to estimate the future degradation and
faults occurrences.

An application is shown on Permanent Magnet Synchronous
Machines, which ageing is succesfully modeled by the pro-
posed method. A virtual short-circuit scenario is predicted by
the prognosis algorithm. When implemented in service, this
prognosis will alow anticipating any maintenance operation
for PMSMs.

The developed modeling framework and prognosis algorithm
areintended to be applied to other critical equipment in aero-
nautics, such as hydraulic pumps or electromechanical ac-
tuators. In order to adjust the proposed ageing model with
ageing and retroaction laws, it seems essential to perform
some degradation tests. The generic ageing model we pro-



posed isacommon representation of ageing of any equipment
type. But thelevel of knowledge contained in the model is di-
rectly characterized by the availability of sensors, experience
or physics-based models and may vary from one component
to another. The higher the level of knowledge about ageing
is, the more accurate the prognosis results. It becomes in-
teresting to define and implement performance metrics for
prognosis based on the level of knowledge contained in out
generic aging model in order to compare the results obtained
for the componentsand qualify the prognosisresult at the sys-
tem level.
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