C. Benchmark,

M. Akbar and S. Aliabadi, Hybrid numerical methods to solve shallow water equations for hurricane induced storm surge modeling, Environmental Modelling & Software, vol.46, pp.118-128, 2013.

G. Ansanay-alex, T. Babik, J. C. Latché, and D. Vola, An L2 stable approximation of the Navier Stokes convection operator for low order non conforming finite elements, International Journal for Numerical Methods in Fluids, vol.66, issue.5, pp.555-580, 2011.

E. Audusse, F. Bouchut, M. O. Bristeau, R. Klein, and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput, vol.25, pp.2050-2065, 2004.

E. Audusse, D. M. Hieu, P. Omnes, and Y. Penel, Analysis of modified Godunov type schemes for the twodimensional linear wave equation with Coriolis source term on cartesian meshes, Journal of Computational Physics, vol.373, pp.91-129, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01618753

A. Bermúdez and M. E. Vázquez, Upwind methods for hyperbolic conservation laws with source terms, Comput. & Fluids, vol.23, pp.1049-1071, 1994.

C. Berthon and F. Foucher, Efficient well balanced hydrostatic upwind schemes for shallow water equations, J. Comput. Phys, vol.231, pp.4993-5015, 2012.

R. Bleck, An oceanic general circulation model framed in hybrid isopycnic-cartesian coordinates, Ocean Model, vol.4, pp.55-88, 2002.

A. Bollermann, S. Noelle, and M. Lukácová-medvidová, Finite volume evolution Galerkin methods for the shallow water equations with dry beds, Commun. Comput. Phys, vol.10, issue.2, pp.371-404, 2011.

L. Cea and M. E. Vázquez-cendón, Unstructured finite volume discretization of bed friction and convective flux in solute transport models linked to the shallow water equations, Journal of Computational Physics, vol.231, pp.3317-3339, 2012.

F. Couderc, A. Duran, and J. P. Vila, An explicit asymptotic preserving low froude scheme for the multilayer shallow water model with density stratification, Journal of Computational Physics, vol.343, pp.235-270, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01340629

M. J. Castro-díaz, J. M. González-vida, and C. Parès, Numerical treatment of wet/dry fronts in shallow flows with a modified Roe scheme, Mathematical Models and Methods in Applied Sciences, vol.16, issue.6, pp.897-931, 2006.

M. J. Castro-díaz, J. A. López-garcía, and C. Parés, High order exactly well-balanced numerical methods for shallow water systems, Journal of Computational Physics, vol.246, pp.242-264, 2013.

M. J. Castro-díaz, A. Pardo-milanés, and C. Parés, Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique, Mathematical Models and Methods in Applied Sciences, vol.17, pp.2055-2113, 2007.

M. Dumbser and V. Casulli, A staggered semi-implicit spectral discontinuous Galerkin scheme for the shallow water equations, Applied Mathematics and Computation, vol.219, issue.15, pp.8057-8077, 2013.

A. Duran and F. Marche, Recent advances on the discontinuous Galerkin method for shallow water equations with topography source terms, Computers & Fluids, pp.88-104, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00998024

A. Duran, J. P. Vila, and R. Baraille, Semi-implicit staggered mesh scheme for the multi-layer shallow water system, C. R. Acad. Sci. Paris, vol.355, pp.1298-1306, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02081576

A. Ern, S. Piperno, and K. Djadel, A well-balanced Runge-Kutta discontinuous Galerkin method for the shallow-water equations with flooding and drying, Int. J. Numer. Meth. Fluids, vol.58, pp.1-25, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00153788

R. Fauzi and L. H. Wiryanto, On the staggered scheme for shallow water model down an inclined channel, AIP Conference Proceedings, pp.1867-020002, 2017.

U. S. Fjordholm, S. Mishra, and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, Journal of Computational Physics, vol.230, issue.14, pp.5587-5609, 2011.

J. M. Gallardo, C. Parés, and M. J. Castro-díaz, On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas, J. Comput. Phys, vol.227, pp.574-601, 2007.

T. Gallouët, J. M. Hérard, and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography, Computers and Fluids, vol.32, pp.479-513, 2003.

L. Gosse, A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms, Comput. Math. Appl, vol.39, pp.135-159, 2000.

J. M. Greenberg and A. Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal, vol.33, pp.1-16, 1996.

N. Grenier, J. Vila, and P. Villedieu, An accurate low-Mach scheme for a compressible two-fluid model applied to free-surface flows, Journal of Computational Physics, vol.252, pp.1-19, 2013.
DOI : 10.1016/j.jcp.2013.06.008

URL : https://hal.archives-ouvertes.fr/hal-01905434

P. H. Gunawan, Numerical simulation of shallow water equations and related models, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01216642

P. H. Gunawan and S. R. Pudjaprasetya, Explicit staggered grid scheme for rotating shallow water equations on geostrophic flows, Progress in Computational Fluid Dynamics, vol.18, issue.1, pp.46-55, 2018.
DOI : 10.1504/pcfd.2018.10010645

URL : https://doi.org/10.1504/pcfd.2018.10010645

R. Herbin, W. Kheriji, and J. C. Latché, On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations, Mathematical Modelling and Numerical Analysis, vol.48, pp.1807-1857, 2014.
DOI : 10.1051/m2an/2014021

URL : https://hal.archives-ouvertes.fr/hal-00805510

R. Herbin, J. C. Latchã?, and T. T. Nguyen, Consistent explicit staggered schemes for compressible flows Part i: the barotropic Euler equations, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00821069

S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms, vol.2, pp.631-645, 2001.
DOI : 10.1007/978-1-4613-0017-5_10

URL : http://www.numdam.org/article/M2AN_2001__35_4_631_0.pdf

G. Kesserwani and Q. Liang, Well-balanced RKDG2 solutions to the shallow water equations over irregular domains with wetting and drying, Computers and Fluids, vol.39, pp.2040-2050, 2010.
DOI : 10.1016/j.compfluid.2010.07.008

G. Kesserwani and Q. Liang, Locally limited and fully conserved RKDG2 shallow water solutions with wetting and drying, J. Sci. Comput, vol.50, pp.120-144, 2012.
DOI : 10.1007/s10915-011-9476-4

URL : http://eprints.whiterose.ac.uk/79216/8/WRRO_79216.pdf

A. Kurganov and D. Levy, Central-upwind schemes for the saint-venant system, Mathematical Modelling and Numerical Analysis, vol.36, pp.397-425, 2002.

D. Le-roux, V. Rostand, and B. Pouliot, Analysis of Numerically Induced Oscillations in 2D Finite Element Shallow Water Models Part I: Inertia Gravity Waves, SIAM Journal on Scientific Computing, vol.29, issue.1, pp.331-360, 2007.

R. J. Leveque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasisteady wave-propagation algorithm, J. Comput. Phys, vol.146, pp.346-365, 1998.

G. Li, V. Caleffi, and J. Gao, High-order well-balanced central WENO scheme for pre-balanced shallow water equations, Computers & Fluids, vol.99, pp.182-189, 2014.
DOI : 10.1016/j.compfluid.2014.04.022

M. Lukácová-medvidová, S. Noelle, and M. Kraft, Well-balanced finite volume evolution Galerkin methods for the shallow water equations, J. Comput. Phys, vol.1, pp.122-147, 2007.

G. Madec, The NEMO team, NEMO ocean engine, Notes PÃ?le Model, vol.27, 2008.

A. Meister and S. Ortleb, A positivity preserving and well-balanced DG scheme using finite volume subcells in almost dry regions, Applied Mathematics and Computation, vol.272, pp.259-273, 2016.
DOI : 10.1016/j.amc.2015.08.121

V. Michel-dansac, C. Berthon, S. Clain, and F. Foucher, A well-balanced scheme for the shallow-water equations with topography, Comput. Math. Appl, vol.72, pp.568-593, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01513186

J. Murillo and P. García-navarro, Augmented versions of the HLL and HLLC Riemann solvers including source terms in one and two dimensions for shallow flow applications, Journal of Computational Physics, vol.231, pp.6861-6906, 2012.

I. K. Nikolos and A. I. Delis, An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography, Comput. Methods Appl. Mech. Engrg, vol.198, pp.3723-3750, 2009.

S. Noelle, N. Pankratz, G. Puppo, and J. R. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys, vol.213, pp.474-499, 2006.

S. Noelle, Y. Xing, and C. W. Shu, High-order well-balanced finite volume WENO schemes for shallow water equation with moving water, Journal of Computational Physics, vol.226, issue.1, pp.29-58, 2007.

M. Parisot and J. Vila, Centered-potential regularization of advection upstream splitting method : Application to the multilayer shallow water model in the low Froude number regime, SIAM Journal on Numerical Analysis, vol.54, pp.3083-3104, 2016.

M. Ricchiuto and A. Bollermann, Stabilized residual distribution for shallow water simulations, J. Comput. Phys, vol.228, pp.1071-1115, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00538892

G. Russo, Central schemes for conservation laws with application to shallow water equations, pp.225-246, 2005.

A. F. Shchepetkin and J. C. Mcwilliams, The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model, vol.9, pp.347-404, 2005.

Y. E. Shi, R. K. Ray, and K. D. Nguyen, A projection method-based model with the exact C-property for shallow-water flows over dry and irregular bottom using unstructured finite-volume technique, Computers & Fluids, vol.76, pp.178-195, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00947777

A. L. Stewart and P. J. Dellar, An energy and potential enstrophy conserving numerical scheme for the multilayer shallow water equations with complete Coriolis force, Journal of Computational Physics, vol.313, pp.99-120, 2016.

W. C. Thacker, Some exact solutions to the nonlinear shallow water wave equations, J. Fluid Mech, vol.107, pp.499-508, 1981.

S. Vater, N. Beisiegel, and J. Behrens, A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: One-dimensional case, Advances in Water Resources, vol.85, pp.1-13, 2015.

R. A. Walters, E. Hanert, J. Pietrzak, and D. Le-roux, Comparison of unstructured, staggered grid methods for the shallow water equations, Ocean Modelling, vol.28, pp.106-117, 2009.

N. Wintermeyer, A. R. Winters, G. J. Gassner, and T. Warburton, An entropy stable discontinuous Galerkin method for the shallow water equations on curvilinear meshes with wet/dry fronts accelerated by GPUs, J. Compt. Phys, vol.375, pp.447-480, 2018.

Y. Xing and C. Shu, High order finite difference WENO schemes with the exact conservation property for the shallow water equations, J. Comput. Phys, vol.208, pp.206-227, 2005.

Y. Xing and C. Shu, A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms, Commun. Comput. Phys, vol.1, pp.100-134, 2006.

Y. Xing, C. Shu, and S. Noelle, On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations, Journal of Scientific Computing, vol.48, pp.339-349, 2011.

Y. Xing and X. Zhang, Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes, Journal of Scientific Computing, vol.57, issue.1, pp.19-41, 2013.

K. Xu, A well-balanced gas-kinetic scheme for the shallow-water equations with source terms, Journal of Computational Physics, vol.178, pp.533-562, 2002.

L. Zhao, B. Guo, T. Li, E. J. Avital, and J. J. Williams, A well-balanced explicit/semi-implicit finite element scheme for shallow water equations in dryingâ??wetting areas, International Journal for Numerical Methods in Fluids, vol.75, pp.815-834, 2014.

J. G. Zhou, D. M. Causon, and C. G. Mingham, The surface gradient method for the treatment of source terms in the shallow-water equations, J. Comput. Phys, vol.168, pp.1-25, 2001.