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Abstract. Systems and products are changed throughout their lifecycle to adapt 

to users’ needs changes or to technological advances, among other reasons. The 

redesign process consists in modifying one or several parameters to reach the 

awaited redesign targets (better performance for instance). However, due to de-

pendencies among parameters, changing one parameter may have unintended im-

pacts on others. The problem we study in the redesign process concerns its un-

derlying process of change propagation through the so called dependency model. 

The dependencies among parameters are correlation or causal. As a first contri-

bution, the paper argues that the most interesting links to identify, model and 

work on are causalities. Therefore, the challenge to overcome is to identify the 

existing causal links among parameters using data exploration or expert 

knowledge mappings. The second contribution discusses a Causal dependencies 

identification and modelling approach for Redesign process, CaRe in short, 

which uses the Bayesian Network theory. CaRe is made to generate a causal 

Bayesian Network that allows evidential and causal inferences, supporting rede-

sign decision-makings. The steps of CaRe are discussed in detail and future re-

search works are presented at the end of the paper.  

Keywords: redesign, dependency model, change propagation, causality, Bayes-

ian networks 

1 Introduction 

This research deals with change propagation during the redesign process. Throughout 

its lifecycle, a system or product undergoes many redesign or renewal and upgrade op-

erations [1]. Redesign or upgrade consists in partial or total redesign of the system trig-

gered by causes such as user needs, obsolescence of some functions or components, 

etc., see [2, 3]. 

A system consists of a set of physical and functional interdependent elements. Fur-

thermore, the system and its environment influence on each other. Changes propagation 

is the fact that an engineering change to one component (physical or functional) of the 
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system or its environment results in one or more additional changes to other compo-

nents, when those changes would not otherwise have been required or observed [4, 5].  

The redesign consists of changing one or more of system parameters. However, due 

to their (explicit or implicit) dependencies, changing one parameter would generate 

others. The prediction and management of the impacts of these undesired changes rep-

resent a great challenge for complex systems [2]. The aim of this research work is to 

contribute to the better identification of these impacts through identifying, appropri-

ately modelling and exploiting causal dependencies among the system parameters. 

Having a better understanding of the possible (wanted and unwanted) consequences 

allows a better (re-)design decision-making. The unwanted consequences should be 

controlled far in advance before any real change in the system; they do not have to 

violate the system constraints. 

As far as we were able to find out, in the engineering change management literature, 

no study does focus on the very nature of dependency links. This paper studies both 

causal and correlation dependency links used in a redesign process as a fundamental 

element of the dependency model. Nevertheless, the main target is put on the causal 

dependencies that provide more capabilities to designers.  

To obtain such causal dependency model, we propose an approach based on the sys-

tem architecture. The system architecture is defined as a physical structure, the func-

tional structure and the mapping between these two structures [6]. Determining by this 

way, the architecture facilitates the identification of the causal dependencies model. In 

some cases, the correlation links may persist in the model depending on the quality of 

used data or expert knowledge. Once, in hands, such causal dependencies model, if 

modelled by an appropriate dependency language, may be used for redesign decision-

makings. In our research we use the Bayesian Network as the dependency theory for 

modelling, mainly due to the various reasoning possibilities it offers.  

The remainder of this paper is organized as follows. First, some main change man-

agement concepts and change propagation methods are presented in Section 2. This 

section will end up with a summary conclusion about the dependency modelling and 

engineering change management. The main motivations of our research are explained 

there. The Bayesian approach is then explained very briefly to allow the understanding 

of the approach (Section 3). In section 4, we present in detail the proposed approach, 

called “Causal dependencies identification and modelling approach for Redesign pro-

cess”, “CaRe” in short. The paper ends with a summary of our findings and discusses 

the future works in section 5. 

2 Literature review 

An engineering change is any change or modification made in the form, fit, material, 

dimension and function of a product or a component [7]. Change management is de-

fined by [8] as “the comprehensive evaluation and approval or disapproval of a change 

that takes into consideration all effects of the change”. Change management is studied 

by lots of authors, see [2-5]. The change propagation is studied using various tools. For 

instance, Clarkson and his colleagues [2, 4, 5] use DSM (Design Structure Matrix) and 



 

 

other similar matrix-based tools (MDM-Multiple-Domain Matrix, DMM-Domain 

Mapping Matrix, HoQ - House of Quality). However, no DSM-derived approach stud-

ies the nature of the links that could be correlation and causality.  

Other proposed methods are specialized for geometrical change propagation. Cohen 

et al. [3] propose the C-FAR (Change Favourable Representation) methodology to trace 

and predict change propagation in computer-aided mechanical design. Most of the CAD 

(Computer-Aided Design) tools has a kind of change propagation features. Their main 

drawback is the fact that they propagate only a specific type de change.  

The relationships between parameters may be a correlation or causality. However, 

“Correlation does not imply causation” [9]. When there is a correlation link between 2 

parameters, this means that if a value of one of the parameters is observed, it is also 

expected to observe a given value of the second. The existence of causal link between 

2 parameters implies that the modification of the cause will have an impact on the ef-

fect.  

Correlation relationships express what we know or believe about the world, while 

causal relationships describe physical constraints. Correlation relationships character-

ize static conditions while the causal analysis deals with dynamic situations [10].  

Relying on these distinctions, we postulate that the most interesting links to identify for 

changes propagation during the redesign process are causal. The redesign process in-

volves actions or interventions on the system (change of the architecture or the func-

tions, replacement of a component, etc.). Intervention (surgery on mechanisms) is one 

of the fundamental characteristics of causality [11]. The identification of the causality 

makes it possible to predict the consequences on the effects while acting on their cause 

parameter. Therefore, the first challenge is to identify the existing causal link among 

parameters. The research we presented here is focused on determination of causalities 

and assess their consequences during the redesign or upgrade process. 

3 main approaches have been proposed to model causal relationships and to make 

causal inferences namely: the Neyman–Rubin causal model, the Structural Equation 

Model and Directed Acyclic Graphs also called Bayesian Networks (BN). It has been 

demonstrated that BN is the most commonly used tool to represent causal relationships 

and to make causal inferences [11]. 

3 Bayesian Network 

A Bayesian Network (BN) is a Directed Acyclic Graph (DAG) represented by the 

pair (V, E) where V is a set of vertices and E a set of directed edges connecting vertices 

[12]. A marginal or conditional probability distribution table is associated to each ver-

tex. The set of probabilities of the network, also called the network parameters, is de-

noted by P. The couple (G, P), with G = (V, E) a DAG, is a Bayesian network if it 

satisfies the Markov condition.  

Edges in a BN do not necessary represent causal relationships among variables [11]. 

There are causal and belief (non-causal) networks. Non-causal networks express only 

the conditional independences between the nodes of the graph induced by the Bayes’ 
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theorem and the Markov condition. Causal networks, in addition to independence rela-

tions, express cause-effect relationships between the nodes. 

3.1 Causal discovery from observational data 

The BN can be obtained thanks to expert knowledge. But, this becomes hard or unfea-

sible for large systems for practical reasons. However, it is also possible to make causal 

inference from the observation data [11, 13, 14]. This possibility is of great interest for 

complex systems. Performing causal inference based on observational data requires 

some assumptions [14, 15]: 

 We must assert explicit causal assumptions about the process that generated the ob-

served data.  

 Compliance with Causal Markov Condition. To fulfill Causal Markov Condition : 

─ There must be no hidden common causes. No two variables in the set of observed 

variables V can have a hidden common cause, or, if they do, it must have the same 

unknown value for every unit in the population under consideration. 

─ Absence of selection bias which is dependency created between two variables 

having a common effect when this common effect is instantiated. 

─ Absence of causal feedback loops: if X has a causal influence on Y, Y does must 

not have a causal influence X. 

Several causal BN construction algorithms are proposed in the literature. This involves 

either constraint-based learning algorithm (e.g. PC algorithm [13]) or hybrid learning 

algorithms such as Min-Max Hill Climbing algorithm [16]. Since most of these con-

struction algorithms are heuristics, their use often requires the validation by experts of 

the constructed network. 

3.2 Evidential reasoning and causal reasoning 

The difference between a causal and a non-causal Bayesian network can also be ob-

served in the inference process. To illustrate the difference between evidential (obser-

vational) and causal reasoning, let us consider the causal Bayesian network represented 

in Figure 1 [17]. The full joint distribution of the left-side BN (Figure 1 (a)) is: 

P(X1,X2,X3,X4,X5)=P(X1). P(X2|X1). P(X3|X1). P(X4|X2,X3). P(X5|X4) (1) 

 



 

 

  
(a) BN representing causal relationship 

among season (X1), it is raining or not (X2), 

the sprinkler is on or not (X3), the pavement 

is wet or not (X4), and the pavement is slip-

pery or not (X5) 

(b) Modified Bayesian network (removal of 

the causal link between the season X1 and the 

sprinkler X3) following an intervention on 

the sprinkler (turned on) 

Fig. 1. Evidential and causal reasoning (adapted from [17]). 

Evidential reasoning.  

From the graph presented in Fig.1 and the joint distribution probability, it is possible to 

determine any conditional probability given some evidences. For example, the proba-

bility that the sprinkler is on, after observing that the pavement is slippery, is: 

 

P(X3=on|X5=true)=
P(X3=on, X5=true)

P(X5=true)
(2) 

= 
∑ P(X1,X2,X3=on, X4,X5=true)X1,X2,X4

∑ P(X1,X2,X3,X4,X5=true)X1,X2,X3,X4

 

=  
∑ P(X1)P(X2|X1)X1,X2,X4

P(X3 = on|X1)P(X4|X2,X3 = on)P(X5 = true|X4)

∑ P(X1)X1,X2,X3,X4
P(X2|X1)P(X3|X1)P(X4|X2, X3)P(X5 = true|X4)

 

Causal reasoning.  

The causal reasoning is the reasoning process that takes place when a certain inter-

vention occurs on one of the model parameters. For example, what happens if one turn 

on the sprinkler? Contrary to the observation phenomenon, the intervention will have 

two effects: 1) modification of the value of the parameter that undergoes the action (X3 

= on) and 2) modification of the structure of the graph (removal of the causal link be-

tween the season X1 and the sprinkler X3 (see Figure 1 (b)). The joint probability dis-

tribution becomes: 

P(X1,X2,X3,X4,X5)=P(X1).P(X2|X1).P(X4|X2,X3=on).P(X5|X4) (3) 



6 

 

4 Proposed approach for change propagation analysis model 

construction 

The causal dependencies identification and modelling approach for redesign process, 

CaRe, is based on the determination of causal links among the system parameters. We 

use the BN formalism to model the causal dependencies exploiting expert knowledge 

and data exploitation. The CaRe approach is composed of five steps (see Figure 2): 

Step 1. Definition of the system boundary 

Step 2. System architecture identification 

Step 3. Determination of interfaces and exchanges between components via 

these interfaces 

Step 4. Quantification of exchanges between components and construction 

of the causal model 

Step 5. Exploitation of the change propagation model 

4.1 Step 1 - Definition of the system boundary 

The goal is to identify the system elements to consider. In particular, one must ensure 

that the causal Markov condition is fulfilled, that is, there are no hidden common causes 

(left-side situation in Fig.2) or selection bias or causal feedback loops (right-side situ-

ation in Fig.2). This step is critical for the reliability of the model. Its realization re-

quires the participation of experts in the different areas covered by the system parame-

ters. 

N1

N2

N0

Common hidden 
cause

N1

N2

N0

Hidden loop

Studied system Studied system

System boudaries

 

Fig. 2. System boundary  

4.2 Step 2 - System architecture identification 

Product architecture is the scheme by which the function of a product is allocated to 

physical components [6].  Here, we define first the functions of the system. The system 

physical components are then identified. Finally, their mapping is established. This step 

allows to determine components involved in the realization of each of the functions. 

Functions should be characterized by quantitative indicators.  

 

 

 

 



 

 

Fig. 3. CaRe: the proposed approach for the causal dependency modelling 

4.3 Step 3 - Determination of interfaces and exchanges between components 

and functions via these interfaces 

We then determine the relationship among components and functions. Two components 

or functions are linked when they share an interface. Four types of exchanges can be 

done through an interface [18]: Material, Information, Spatial, Energy (MISE in short) 

exchanges. The interfaces define the change propagation channels (see Fig.3). 

It is also necessary to identify the exchanges between the functions of the system using 

functional DSM. This step allows to select the relevant parameters for the rest of the 

approach. Indeed, only components or functions with at least one interface with another 

component or function will be retained. 
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The components and their MISE exchanges, the functional model and their interdepen-

cies, and finally the components-functions mapping allow to complete the architecture 

of the system. 

 

C1

C2

Cn

C3

F1

F2

FmF3

Structural part of the 
system architecture

Fucntional part of the 
system architecture

Components-
Functions mapping

MISE exchange

 

Fig. 4.  Architecture and exchanges among components and functions and their mapping 

4.4 Step 4 - Quantification of exchanges between components and construction 

of the causal model 

The goal is to quantitatively assess the identified links and to build the causal model by 

exploiting the data representing the exchanges between functions/components.  

Data collection.  

In order to facilitate understanding of the data collection process, we consider the trailer 

exposed in Fig. 2 of [6]. This trailer is composed of 6 components (Box, Hitch, Fairing, 

Bed, etc.) and realize 6 functions (“Protect cargo from weather”, “Connect to vehicle”, 

“Minimize air drag”, “Support cargo load”, etc.). All parameters characterizing a func-

tion or a component or shared with other function/component are identified:  

 Function: Fx_MISE_xy (Parameter y characterizing or shared by function x).  

For example, “Connect to vehicle” function (identified by x) might be characterized 

by the dimensions of the contact surface and the maximum force it is expected to 

sustain. Each of these parameters will be identified by a specific y (y1 and y2). 

 Component: Cx_MISE_xy (Parameter y characterizing or shared by component x).  

We proceed in the same way as previously replacing functions by components. 

Observed values of each parameter are then collected for different periods of time. The 

historical data table takes the form of Table 1.  

Table 1.  Historical data for causal model construction 

 



 

 

Causal model building.  

The causal Bayesian network representing causal relationships among parameters is 

learned from historical data using a causal Bayesian network learning algorithm. Build-

ing a Bayesian model requires the determination of its structure (vertices and edges) 

and the marginal and conditional probabilities distributions. But first, a choice has to 

be made on how to model vertices or nodes. Two choices may be made: 

 A node represent the state (changed or not) of the corresponding parameter following 

a change. In this case, nodes are discrete (binary random variable) and the network 

parameters are conditional probability tables. In this configuration, it is relatively 

easy to convert a likelihood DSM into a Bayesian model, see [19]. However, this 

presupposes that a certain number of conditions are met, including: 1) Being able to 

define the states (changed or not) of each parameter; and 2) The possibility to an 

expert to quantifies all change propagation probability from one component to the 

other. 

 A node represent the value of the correspond parameter. If we suppose that functions 

and components parameter are continuous, then nodes are continuous too. In most 

cases, these parameters are also expected to follow a normal distribution. In this case, 

root nodes parameters are marginal distributions and the other nodes parameters are 

expressed as a Gaussian linear function of parent nodes [20]. This approach requires 

only sufficient data. As parameters are supposed to follow a normal distribution, one 

can define a normal fluctuation interval [𝜇 ±  𝑘𝜎] for each parameter, 𝜇 being the 

mean and 𝜎 standard deviation. 

We recommend to proceed by the second modeling approach. Considered parameters 

are supposed to be continuous and the researched BN is a Gaussian BN. Each node 

represents a random variable corresponding to the value of the corresponding parame-

ter. The structure of the causal Bayesian network representing the change propagation 

model can then be learned using one constraint-based [13] or hybrid learning algorithm 

[16]. In addition to historical data, most of these learning algorithms allow to exploit 

expertise in order to reduce the learning process and/or to improve the quality of the 

built network. The result of this learning process is a network with nodes representing 

value of functions and components parameters and arcs corresponding to the causal link 

existing between the connected nodes. 

4.5 Step 5 - Exploitation of the change propagation model  

For this step, an inference process taking into account the causal aspect of the network 

is defined (cf. Section 3.2. Evidential reasoning and causal reasoning). For a given 

change made on a parameter, the inference algorithm update the parameters’ value and 

identify all other impacted parameters following this change. These impacted parame-

ters are identified by the calculation of the conditional probabilities after having modi-

fied the structure of the network and updated the value of the modified parameter (see 

example in Section 3.2.). Those parameters for which the updated value is outside the 

normal fluctuation interval [𝜇 ±  𝑘𝜎] are considered to be the impacted parameters. It 

is also possible to quantify this impact by calculating the difference between the up-

dated value and the initial value. 
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5 Conclusion and future work 

Existing systems are more and more subject to redesign process because of the rapid 

advances in technology and the constantly evolution of users’ needs, among other rea-

sons. Changes propagation management and the control of their consequences on the 

system functionalities and performances are a major challenge in many industrial sec-

tors.  

Change propagates along existing links between components or parameters of the 

system being redesigned. In this research, we analyze the two types of links that may 

exist among components or parameters, namely correlation and causality relationships. 

Based on this analysis, we postulate that the privileged changes propagation links dur-

ing the redesign process are the causal links. We then review main existing methods for 

causal relationships identification and causal inferences. The findings suggest that 

Bayesian Networks are the most appropriate framework to represent causal relation-

ships and to make causal inferences. An approach for change propagation analysis 

model construction, CaRe (for Causal dependencies identification and modelling ap-

proach for Redesign process) is proposed. This approach is based on Bayesian Network 

theory and uses DSM (Design Structure Matrix).  

Some assumptions made in our approach require further research. All the parameters 

necessary to build the model are supposed known and their historical data available. 

However, this is not always the case for real system. Therefore, incomplete and missing 

data should be considered in the learning process. Parameter are supposed continuous 

variables and the researched BN is a Gaussian Bayesian network. Hybrid Bayesian net-

work containing both discrete and continuous variables could be the most flexible so-

lution for complex systems. 
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