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Abstract

The periodically supported Timoshenko beam subjected to moving forces has

been investigated by numerous researches. The existed models have been de-

veloped for linear supports, and this article presents a new one for nonlinear

supports. By using a periodic condition and the Fourier series development,

the dynamic equation of the Timoshenko beam leads to a relation between the

beam displacements and the reaction forces of the supports. This relation does

not depend on the support behavior and it exists also for the Euler-Bernoulli

beam. Then, the responses can be obtained by combining this relation and the

constitutive law of the supports. A numerical method based on discretization

of the time and frequency responses has been developed for nonlinear supports.

Moreover, the influence of the beam model has been studied with numerical ex-

amples of linear and nonlinear supports. The results show that the Timoshenko

beam should be used for the moving forces with high speed and/or the supports

with large stiffness.
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1. Introduction

The periodically supported beam subjected to moving forces has been inves-

tigated in numerous publications [1–10]. In these articles, the Euler-Bernoulli

or Timoshenko beams resting on identical supports at periodical intervals have

been considered in steady-state. The response to moving forces are calculated5

analytically when the supports are linear. However, these models cannot be

extended easily for nonlinear supports. Recently, the dynamics of a periodically

supported beam has been represented by the system equivalence [11] by using

a periodic condition of reaction forces. This model could work for nonlinear

supports, but the author has not presented a method to compute the dynam-10

ical responses. Some other researches have considered the model of beams on

nonlinear foundations (i.e. the beam is supported continuously) by using the

perturbation technique [12–14], the Galerkin method [15] or the numerical meth-

ods [16, 17].

This article presents a complete analytic model for the dynamics of beams15

resting on periodic nonlinear supports. A relation between the beam displace-

ment and the reactions forces has been established from the periodic condition

and the dynamic equation of the Timoshenko beam. Then, a numerical method

has been developed to compute the response form this relation and the con-

stitutive law of the nonlinear supports. Moreover, a comparison between the20

Timoshenko and Euler-Bernoulli beam models has been performed with numer-

ical examples of linear and nonlinear behaviors.

2. Periodically supported Timoshenko beam

2.1. Dynamical equations in steady-state

Let’s consider an infinite Timoshenko beam resting on identical supports at25

periodical intervals as shown in Figure 1. The beam is subjected to the moving

forces Qj characterized by the distance to the first force Dj. Let Rn(t) be the

reaction force of a support at the coordinate x = nl (with n ∈ Z).
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Figure 1: Forces applied on a periodically supported beam

In steady-state, we suppose that all supports are equivalent and their re-

sponses are described by the same function, but with a delay which equals to

the time for the forces to cover the distance between them. In other words, the

reaction force repeats when the moving forces pass from one support to another

Rn(t) = R

(

t−
nl

v

)

(1)

where R(t) is the reaction force of the support at the origin of the reference

system x = 0. The total force applied on the beam can be represented with the

help of the Dirac functions

F (x, t) =
∞
∑

n=−∞

R
(

t−
x

v

)

δ(x− nl)−
K
∑

j=1

Qjδ(x+Dj − vt) (2)

In addition, we have the dynamic equations of the Timoshenko beam















ρS
∂2wr

∂t2
= κSG

(

∂2wr

∂x2
−

∂φr

∂x

)

+ F (x, t)

ρI
∂2φr

∂t2
= EI

∂2φr

∂x2
+ κSG

(

∂wr

∂x
− φr

) (3)

where wr, φr are the displacement and the rotation of the section of the beam;

ρ,E are the density, the Young’s modulus and S, I, κ,G are the section, the30

inertia, the shear coefficient and the shear modulus of the beam.

Equations (2) and (3) define the dynamics of the beam and its supports in

the steady-state. Thereafter, we will resolve these equations by performing a

Fourier transform with regard to the time t, and then using the Fourier series

development with regard to x. Let’s denote ∂t, ∂x the derivations with regard

to t and x. By performing the Fourier transform of equation (3) with regard to

3



t, we obtain











κSG ∂xφ̂r = κSG ∂2
xŵr + ρSω2ŵr + F̂

−κSG ∂xŵr = EI ∂2
xφ̂r − (κSG− ρIω2)φ̂r

(4)

where the hat stands for the Fourier transform with regard to t. Particularly,

we obtain the following result from equation (2)

F̂ = e−
iω
v
x



R̂(ω)

∞
∑

n=−∞

δ(x − nl)−

K
∑

j=1

Qj

v
e−

iω
v
Dj



 (5)

Thus, e
iω
v
xF̂ is periodic with regard to x. Therefore, if we put

ŵr = Ψ(x, ω)e−
iω
v
x and φ̂r = Φ(x, ω)e−

iω
v
x (6)

equation (4) becomes











κSG
(

∂xΦ− iω
v Φ

)

= κSG
(

∂2
xΨ− 2 iω

v ∂xΨ− ω2

v2 Ψ
)

+ ρSω2Ψ+ e
iω
v
xF̂

κSG
(

iω
v Ψ− ∂xΨ

)

= EI
(

∂2
xΦ− 2 iω

v ∂xΦ− ω2

v2 Φ
)

− (κSG− ρIω2)Φ

(7)

By the Floquet’s theorem [18], equation (7) has a periodic solution. We

can find this solution by using the Fourier series developments of Φ and Ψ (see

Appendix A). Thereafter, by combining the results of Ψ and Φ with equation

(6) we obtain



















ŵr(x, ω) = R̂(ω)
∞
∑

n=−∞

p̃ne
ix( 2πn

l
−ω

v ) − p̃0
l

v

K
∑

j=1

Qje
− iω

v
(x+Dj)

φ̂r(x, ω) = R̂(ω)
∞
∑

n=−∞

q̃ne
ix( 2πn

l
−

ω
v ) − q̃0

l

v

K
∑

j=1

Qje
− iω

v
(x+Dj)

(8)

where p̃n, q̃n (n ∈ Z) are the Fourier coefficients of Ψ,Φ calculated by equation

(A7) in Appendix A. We can reduce equation (8) by defining η(x, ω), γ(x, ω) as

follows


















η(x, ω) =
∞
∑

n=−∞

p̃ne
ix( 2πn

l
−

ω
v )

γ(x, ω) =
∞
∑

n=−∞

q̃ne
ix( 2πn

l
−ω

v )
(9)
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Indeed, η, γ in the last equation can be reduced to simple analytical functions

as shown in equations (B11) and (B14) of Appendix B. Then, by substituting

equation (9) into equation (8), we obtain



















ŵr(x, ω) = R̂(ω)η(x, ω)− p̃0
l

v

K
∑

j=1

Qje
−

iω
v
(x+Dj)

φ̂r(x, ω) = R̂(ω)γ(x, ω)− q̃0
l

v

K
∑

j=1

Qje
− iω

v
(x+Dj)

(10)

Equation (10) is a simple relation between the Fourier transforms of the beam

displacement and the reaction force. This is a result of the periodicity condition

and the dynamic equation of the Timoshenko beam, which do not depend on

the support behaviour. Once the reaction force is calculated, this equation can35

be used to compute the response of the beam. In the next section, we will

introduce a system equivalence based on this relation.

2.2. System equivalence

In order to calculate the reaction force of the support, we need to compute

the displacement of the beam at the support position w(t) = wr(0, t), or its

Fourier transform ŵ(ω) = ŵr(0, ω). By substituting x = 0 into equation (10),

we have

ŵr(0, ω) = R̂(ω)η(0, ω)− p̃0
l

v

∑

j

Qje
−iω

v
Dj

(11)

Hence, we can also write

R̂(ω) = KT ŵ(ω) +QT (12)

where KT and QT are defined by

KT = η−1(0, ω) and QT = KT p̃0
l

v

K
∑

j=1

Qje
−iω

v
Dj (13)

with p̃0(ω), η(0, ω) are calculated by equations (A10) and (B15) in the appen-40

dices.

Equation (12) is a linear relation between the force and the displacement

applied on the support at x = 0, and it holds for all supports because of the

5



periodicity condition. This relation is the same as the constitutive law of an

equivalent spring with stiffness KT and pre-force QT . Therefore, we call the45

system equivalence of a periodically supported Timoshenko beam, which existed

also for Euler-Bernoulli beams (see [11]). Equation (12) explains the distribution

mechanism of the moving forces Qj to the supports via the beam. When a

moving force comes toward and leaves away the support along the direction of

the beam, the reaction force of the support increases and decreases respectively.50

This process is the same as a force applied on the support via the equivalent

spring.

The comparison of the system equivalences with two parameters stiffness

and pre-force for Euler-Bernoulli and Timoshenko beams is shown in Table 1.

We see that the stiffness K depends on two parameters λ1,2 and C1,2 which are55

different between the two beam models. However, if the shear modulus κG and

the ratio E/ρ tend to infinity, λ1,2 and C1,2 of the Timoshenko beam tend to the

ones of the Euler-Bernoulli beam. Therefore, the stiffness and pre-force for the

two beam models are equivalent when the Timoshenko beam does not include

the shear modulus κG and the ratio E/ρ. This phenomenon agrees well with60

the beam theories.

Table 1: System equivalence for Euler-Bernoulli and Timoshenko beams

R̂(ω) = K(ω)ŵ(ω) +Q(ω)

Q(ω) = K(ω)
p̃0l

v

K
∑

j=1

Qje
−iω

Dj

v

K(ω) = 2EI(λ2
1 + λ2

2)
(

C1

λ1

sin lλ1

cos lλ1−cos lω
v

− C2

λ2

sinh lλ2

cosh lλ2−cos lω
v

)−1

Euler− Bernoulli beam Timoshenko beam

λ2
1,2 =

√

ρSω2

EI

C1,2 = 1

p̃0l =
1

EI ω4

v4
−ρSω2

λ2
1,2 =

√

ρSω2

EI + ω4

4

(

ρ
E − ρ

κG

)2
± ω2

2

(

ρ
E + ρ

κG

)

C1,2 = 1−
ρIω2

∓EIλ2

1,2

κSG

p̃0l =
κSG−ρIω2+EI ω2

v2

κSG
(

EI ω4

v4
−ρSω2

)

−ρSI(κG+E−ρv2)ω4

v2
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Table 2: Parameters of a periodically supported beam

Mass density ρ kg/m3 7850

Young’s modulus E GPa 210

Shear modulus G GPa 81

Shear coefficient κ 0.4

Section S m2 7.69e-3

Flexion inertia I m4 3.055e-5

Sleeper spacing l m 0.6

Moving force Q kN 100

Speed of moving force v km/h 300

Example

Figures 2 and 3 show an example of the stiffness and the pre-force for the

Timoshenko and the Euler-Bernoulli beams with the parameters presented in

Table 2. We see that the two beam models give almost the same equivalent pre-65

force. Otherwise, the Timoshenko beam gives a smaller equivalent stiffness than

the Euler-Bernoulli beam. It is remarkable that the difference takes place only

at the maximum peaks of the stiffness which correspond to high frequencies.

In other words, the influence of the beam models is more important at high

frequencies. In the next sections, we will calculate the responses for two beam70

models with linear and nonlinear support behaviours in order to compare the

two beam models.

3. Calculation of responses

3.1. Linear supports

Let’s consider the viscoelastic supports represented by a stiffness ks and a

damping coefficient ηs. The dynamical stiffness of the supports isKs = ks+iωηs

and their constitutive law is given by

R̂(ω) = −Ksŵ(ω) (14)
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Figure 2: Equivalent stiffness of Timoshenko (circle) and Euler-Bernoulli (continuous line)

beams with moving velocity 150 km/h (green) and 300 km/h (red)
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Figure 3: Equivalent pre-force of Timoshenko (circle) and Euler-Bernoulli (continuous line)

beams with moving velocity 150 km/h (green) and 300 km/h (red)

By combining equations (12) and (14), we obtains the response of the supports














R̂(ω) =
KsQT

KT +Ks

ŵs(ω) =
−QT

KT +Ks

(15)
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Then, by substituting the last results and equation (13) into equation (10) we

obtain the response of the beam














ŵr(x, ω) = QT

(

Ksη(x, ω)

Ks +KT
− η(0, ω)e−iω

v
x

)

φ̂r(x, ω) = QT

(

Ksγ(x, ω)

Ks +KT
− γ(0, ω)e−iω

v
x

) (16)

Equations (15) and (16) describe completely the responses in the frequency75

domain of the supports and the beam. The real-time responses can be obtained

by performing the inverse Fourier transforms.

Example
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Figure 4: Responses of the supports with Timoshenko (circle) and Euler-Bernoulli (continuous

line) beams with a moving velocity 150 km/h (green) and 300 km/h (red)

The responses have been calculated for the linear support by using equation

(16) with the beam parameters given in table 2 and the support parameters80

ks = 20 MN/m, ηs = 0.1 MNs/m. Figure 4 shows the reaction force and the

displacement of the support in the frequency domain and the time domain.

Although the equivalent stiffness of the two beam models are different, the
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responses are almost the same because they are affected more by the lower fre-

quencies. Moreover, the larger velocity leads to responses of smaller amplitudes,85

but of greater frequency range. Next, we will investigate the influence of the

beam model on the responses by parametric studies.

Influence of beam models

The Timoshenko beam theory shows that the two beam models can be equiv-

alent in static when EI
κl2SG ≪ 1. It is remarkable that this value corresponding90

to the previous example is 0.0715, which is closed to the limit of this condition.

Therefore, it is necessary to study the influence of the beam model on the dy-

namic responses. The external parameters which could affect on the responses

are the moving force speed and the stiffness of the support. Figures 5 and 6
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Figure 5: Influence of the moving force speed on the reaction forces

show the maximum of the reaction force versus these parameters. When the95

moving force speed or the stiffness of the support increase, the reaction forces

increase, and the difference between the two beam models is more important.

These results show that the Timoshenko beam model should be used for moving

forces of high speed or supports of large stiffness.
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Figure 6: Influence of the support stiffness on the reaction forces

3.2. Nonlinear supports100

Now we consider a system of supports that has a nonlinear behaviour as

shown in figure 1. The reaction force of a support is given by

R(t) = −(ksw + ηsw
′ + f(w)) (17)

Combining equations (12) and (17) gives a system of two equations with two

unknowns R and w. In order to simplify the linear part of the constitutive law,

we put

P (t) = R+ ksw + ηsw
′ (18)

By performing the Fourier transform, we can also write as follows

P̂ (ω) = R̂+Ksŵ (19)

where Ks = ks + iωηs. By combining equations (19) and (18) with equations

(12) and (17) respectively, we obtain











P = −f(w)

P̂ = (KT +Ks)ŵ +QT

(20)
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When f(w) = 0, the last equation is exactly the same result as for linear

supports presented in equation (15). When f(w) 6= 0, we got one equation

in the frequency domain and the other in the time domain. To resolve this

problem, we will discretize the unknown functions P (t) and w(t) and their

Fourier transforms. It is remarkable that these functions (and their Fourier105

transforms) have bounded supports (see the numerical examples in section 3.1).

Therefore, we can use the Shannon sampling theorem [19] to discretize these

functions.

Numerical method

Suppose that it exists tmax, ωmax provided that











P (t) ≃ 0, w(t) ≃ 0 if |t| ≥ tmax

P̂ (ω) ≃ 0, ŵ(ω) ≃ 0 if |ω| ≥ ωmax

(21)

We discretize the responses w(t), P (t) and their Fourier transforms by consid-

ering their values at t = nT and ω = nΩ with |n| ≤ N . The discretization has

to satisfy the Shannon sampling theorem [19]

ωmax ≥
π

T
and tmax ≥

π

Ω
(22)

Because tmax = NT and ωmax = NΩ, the last condition becomes

NTΩ ≥ π (23)

The discretization of the first equation of (20) becomes

Pn = −f(wn) |n| ≤ N (24)

where Pn = P (nT ) and wn = w(nT ). In order to discretize the second equation

of (20), we need to compute the Fourier transforms of the discretized responses

Pn and wn, which are given by (see [19])















P̂d(ω) =
∑

n
Pne

−inTω =
P̂ (ω)

T
|ω| ≤

π

T

ŵd(ω) =
∑

n
wne

−inTω =
ŵ(ω)

T
|ω| ≤

π

T

(25)

12



Therefore, the discretization of the Fourier transforms (P̂ , ŵ) is deduced from

the last equation















P̂m = P̂ (mΩ) = T
∑

n
Pne

−inmTΩ |mΩ| ≤
π

T

ŵm = ŵ(mΩ) = T
∑

n
wne

−inmTΩ |mΩ| ≤
π

T

(26)

By combining the conditions of equations (23), (24) and the last equation, we

obtain

NΩT = π (27)

and we have














P̂m = T
N
∑

n=−N

Pne
−inmTΩ |m| ≤ N

ŵm = T
N
∑

n=−N

wne
−inmTΩ |m| ≤ N

(28)

We can also rewrite the last equation in vector forms

P̂ = A P and ŵ = A w (29)

where P , w are column vectors of Pn, wn(−N ≤ n ≤ N) and A is a square

matrix defined from equation (28). Then, by substituting the last equation into

the second equation of (20), we obtain

A P = K A w +Q (30)

where Q is a column vector of Qn = QT (nΩ) and K is a diagonal matrix of110

Kn = KT (nΩ) +Ks(nΩ) (with −N ≤ n ≤ N).

Finally, by combining equations (24) and (30), we obtain

K A w +A f +Q = 0 (31)

where f is a column vector of fn = f(wn).

Equation (31) is nonlinear with regard to the unknown w. If f(w) ≡ 0

(linear support), we can obtain the solution of this equation as follows

w0 ≡ −
(

K A
)−1

Q = −A−1
(

K−1Q
)

(32)

13



The last result is exactly the discretization of the analytic solution in equation

(15). In a general case, we can use a numerical solver for equation (31). In this

article, we use the solver ”fsolve” of MATLABr. A difficulty is that this solver115

does not compute complex solutions. We need to decompose the unknown w

into their real and imaginary parts. The initial value of the solver is taken by

the linearised solution presented in equation (32).

Example

Let’s consider a nonlinear support described by the constitutive law in120

equation (17) with ks = 20MN/m, ηs = 0.1MNs/m and the nonlinear law

f(w) = cw3 with c = 10kN/mm3. We calculate the responses of a support by the

numerical method in equation (31) with the parameters N = 250, T = 0.001s

(thus, Ω = π/NT = 4π which corresponds to the frequency 2Hz). Figure 6
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Figure 7: Responses of the supports with Timoshenko (circle) and Euler-Bernoulli (continuous

line) beams with a linear (green) and a nonlinear (red) support behaviours

shows the results with the two beam models for linear and nonlinear behaviours.125

We see that the responses have similar forms for the two beams models and sup-

port behaviours. In particular, the reaction forces in the frequency domain have

14



the same maximum pick at zero, but the nonlinear support has larger amplitudes

in the high frequencies.

4. Conclusion130

The system equivalence of a periodically supported beam has been developed

for the Timoshenko beam and applied to nonlinear supports. This model has

been compared with the existing model for an Euler-Bernoulli beam. Then,

a numerical method has been developed for nonlinear supports based on the

time-frequency transform which permits a fast calculation of the response of the135

support systems. Moreover, the numerical examples showed that the influence

of the beam model is more important when the speed of the loads is higher

and/or the support stiffness is larger.
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Appendix A: Calculation of Ψ(x, ω) and Φ(x, ω)

We will find the periodic solution of equation (7) by using the Fourier series

developments of Φ and Ψ

Ψ(x, ω) =

∞
∑

n=−∞

pn(ω)e
i2πnx

l and Φ(x, ω) =

∞
∑

n=−∞

qn(ω)e
i2πn x

l (A1)

with pn, qn are computed by

pn(ω) =
1

l

l/2
∫

−l/2

Ψ(x, ω)e−i2πn x
l dx and qn(ω) =

1

l

l/2
∫

−l/2

Φ(x, ω)e−i2πn x
l dx

(A2)
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It is remarkable that the Fourier coefficients of ei
ω
v
xF̂ in equation (5) are calcu-

lated by

1

l

l/2
∫

−l/2

[

R̂(ω)

∞
∑

n=−∞

δ(x− nl)−
K
∑

j=1

Qj

v e−
iω
v

Dj

]

e−i2πn x
l dx = R̂(ω)

l − δ0n
v

K
∑

j=1

Qje
−

iω
v

Dj

(A3)

where δ0n = 1 if n = 0 and δ0n = 0 if n 6= 0. Therefore, by performing the

Fourier series development of equation (7) and by using the last equation, we

obtain










κSG
(

i2πn
l − iω

v

)

qn = −κSG
(

ω
v − 2πn

l

)2
pn + ρSω2pn + R̂(ω)

l − δ0n
v

K
∑

j=1

Qje
−

iω
v

Dj

κSG
(

iω
v − i2πn

l

)

pn = −EI
(

ω
v − 2πn

l

)2
qn −

(

κSG− ρIω2
)

qn

(A4)

Then, the following result is deduced from the second equation of (A4)

qn =
−κSG

(

iω
v − i2πn

l

)

pn

EI
(

ω
v − 2πn

l

)2
+ (κSG− ρIω2)

(A5)

Then, by substituting the last equation into equation (A4), we obtain


















pn = p̃nR̂(ω)− δ0n
p̃0l

v

K
∑

j=1

Qje
−

iω
v
Dj

qn = q̃nR̂(ω)− δ0n
q̃0l

v

K
∑

j=1

Qje
− iω

v
Dj

(A6)

where p̃n, q̃n are calculated by














p̃n =
κSG− ρIω2 + EI

(

ω
v − 2πn

l

)2

lzn

q̃n = −
iκSG

(

ω
v − 2πn

l

)

lzn

(A7)

with

zn = κSGEI
(

ω
v − 2πn

l

)4
− ρISω2(κG+ E)

(

ω
v − 2πn

l

)2
+ ρSω2(ρIω2 − κSG)

(A8)

By substituting equation (A6) into equation (A1), we obtain:


















Φ(x, ω) = R̂(ω)
∞
∑

n=−∞

p̃ne
i2πn x

l − p̃0
l

v

K
∑

j=1

Qje
−

iω
v
Dj

Ψ(x, ω) = R̂(ω)
∞
∑

n=−∞

q̃ne
i2πn x

l − q̃0
l

v

K
∑

j=1

Qje
− iω

v
Dj

(A9)
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Remark : We can obtain the expressions of p̃0, q̃0 by substituting n = 0 into

equation (A7)














p̃0 =
κSG−ρIω2+EI ω2

v2

l
[

κSG
(

EI ω4

v4
−ρSω2

)

−ρSI(κG+E−ρv2)ω4

v2

]

q̃0 =
−iκSGω

v

l
[

κSG
(

EI ω4

v4
−ρSω2

)

−ρSI(κG+E−ρv2)ω4

v2

]

(A10)

Appendix B: Analytical expressions of η(x, ω) and γ(x, ω)145

The function zn in equation (A8) is a second-order polynomial with regard

to
(

ω
v − 2πn

L

)2
and we can rewrite it as follows

zn(ω) = κSGEI
[

(

ω
v − 2πn

l

)2
− λ2

1

] [

(

ω
v − 2πn

l

)2
+ λ2

2

]

(B1)

where λ1, λ2 are given by










λ2
1 =

√

ω4

4

(

ρ
E − ρ

κG

)2
+ ρSω2

EI + ω2

2

(

ρ
E + ρ

κG

)

λ2
2 =

√

ω4

4

(

ρ
E − ρ

κG

)2
+ ρSω2

EI − ω2

2

(

ρ
E + ρ

κG

)

(B2)

In order to simplify the expression of p̃n, we substitute equation (B1) into the

first equation of (A7), we can write

p̃n(ω) =
1

lEI(λ2
1 + λ2

2)

[

C1
(

ω
v − 2πn

l

)2
− λ2

1

−
C2

(

ω
v − 2πn

l

)2
+ λ2

2

]

(B3)

Then, by taking the equality of the coefficients of two expression of p̃n in equa-

tions (A7) and (B3), we obtain










C1 = 1−
ρIω2

−EIλ2

1

κSG

C2 = 1−
ρIω2+EIλ2

2

κSG

(B4)

Similarly, we have

q̃n(ω) =
−i

lEI(λ2
1 + λ2

2)

[

ω
v − 2πn

l
(

ω
v − 2πn

l

)2
− λ2

1

−
ω
v − 2πn

l
(

ω
v − 2πn

l

)2
+ λ2

2

]

(B5)

In order to deduce the analytical expression of η(x, ω) in equations (9), we

need to calculate the infinite sum of the series which are presented in equation

(B5). Let’s consider the following function

f(x) =
sinλ1(l − x) + e−iωl

v sinλ1x

cos lλ1 − cos ωl
v

ei
ω
v
x ∀x ∈ [0, l] (B6)
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Because f(0) = f(l), the Fourier coefficients of this function are calculated by

cn =
1

l

l
∫

0

f(x)e−i 2πnx
l dx =

2

l

λ1
(

ω
v − 2πn

l

)2
− λ2

1

(B7)

We can write this function in the Fourier series expansion as follows

f(x) =

∞
∑

n=−∞

cne
i 2πnx

l (B8)

By substituting equations (B6), (B7) into the last equation, we obtain

sinλ1(l − x) + e−iωl
v sinλ1x

cos lλ1 − cos ωl
v

=
2

l

∞
∑

n=−∞

λ1e
ix( 2πn

l
−ω

v )
(

ω
v − 2πn

l

)2
− λ2

1

(B9)

Similarly, we have

sinhλ2(l − x) + e−iωl
v sinhλ2x

cosh lλ2 − cos ωl
v

=
2

l

∞
∑

n=−∞

λ2e
ix( 2πn

l
−ω

v )
(

ω
v − 2πn

l

)2
+ λ2

2

(B10)

Finally, the analytical expression of η(x, ω) in equations (9) can be obtained by

combining (B3) and the two last results

η(x, ω) =
1

2EI (λ2
1 + λ2

2)

[

C1

λ1

sinλ1(l − x) + e−iωl
v sinλ1x

cos lλ1 − cos ωl
v

−
C2

λ2

sinhλ2(l − x) + e−iωl
v sinhλ2x

cosh lλ2 − cos ωl
v

]

(B11)

In the similar way, we can deduce the analytic expression of γ(x, ω) by

applying the derivation with regard to x of equations (B9) and (B10)

cosλ1(l − x)− e−iωl
v cosλ1x

cos lλ1 − cos ωl
v

=
2

l

∞
∑

n=−∞

i
(

2πn
l − ω

v

)

eix(
2πn
l

−
ω
v )

(

ω
v − 2πn

l

)2
− λ2

1

(B12)

coshλ2(l − x)− e−iωl
v coshλ2x

cosh lλ2 − cos ωl
v

=
2

l

∞
∑

n=−∞

i
(

2πn
l − ω

v

)

eix(
2πn
l

−ω
v )

(

ω
v − 2πn

l

)2
+ λ2

2

(B13)

Then, by combining the two last equations and equations (B4), we obtain the

analytical expression of γ(x, ω) in equation (9)

γ(x, ω) =
i

2EI (λ2
1 + λ2

2)

[

cosλ1(l − x)− e−iωl
v cosλ1x

cos lλ1 − cos ωl
v

−
coshλ2(l − x)− e−iωl

v coshλ2x

cosh lλ2 − cos ωl
v

]

(B14)
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Remark : We obtain the expression of η(0, ω) by substituting x = 0 into equation

(B11)

η(0, ω) =
1

2EI (λ2
1 + λ2

2)

[

C1

λ1

sinλ1l

cos lλ1 − cos ωl
v

−
C2

λ2

sinhλ2l

cosh lλ2 − cos ωl
v

]

(B15)
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