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Abstract. Inhomogeneous velocity profiles in granular flows are well known from both experiments and

simulations, and considered as a hallmark of nonlocal behavior. By means of extensive contact dynamics simu-

lations, we show that the sigmoidal velocity profiles in 2D flows of rigid disks are controlled by the roughness of

driving boundary walls. We find that the velocity profile becomes linear for a critical value of wall roughness up

to an exponential decay close to the walls with a characteristic length that does not depend on the flow thickness

and rate. We describe the velocity profiles by introducing a state parameter that carries wall perturbation. By

assuming that the local shear rate is a linear function of the state parameter, we obtain an analytical expression

that fits velocity profiles. In this model, the nonlinear velocity profiles are explained in terms of the effects of

wall roughness as boundary condition for the state parameter.

1 Introduction

Many natural processes, such as debris flows [1, 2], and

industrial operations in powder technology [3], involve

granular flows with various particle properties, boundary

geometries and driving mechanisms. Dissipative contact

interactions and the absence of long-range cohesive forces

lead to a complex dynamics, in which the energy input and

stresses from the boundary are balanced by internal dis-

sipation and momentum exchange between particles. In

the classical Mohr-Coulomb model, only quasi-static de-

formations and limit states are considered and the behav-

ior is modeled in terms of a yield surface characterized

by an isotropic effective (or internal) friction coefficient

μ = σt/σn, where σt is the shear stress and σn is the nor-

mal stress [4]. This model was later supplemented in soil

mechanics with a flow rule by considering dilatancy as a

function of a state variable measuring the distance to the

critical state (steady isochor flow) and a phenomenological

evolution rule of the state variable [5].

More recently, the frictional behavior was extended to

inertial states, in which both the effective friction coeffi-

cient μ and packing friction Φ are described as functions

of the inertial number I = γ̇ds(ρs/σn)
1/2, where γ̇ is the

shear rate, ds is the mean particle diameter and ρs is parti-

cle density [6, 7].

A key pending issue is the observation of flow inhomo-
geneities, which can not be predicted or analyzed within

the afore-mentioned models of granular flow. The most

common example is spontaneous strain localization in

shear bands of small thickness [8]. In the Mohr-Coulomb

framework, this phenomenon is described as a split of the
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material into two rigid blocks slipping past each other and

explained as material instability [9]. In simple shear flows,

it is observed that, depending on the wall roughness and

shear rate, the flow may consist of a solidlike region that

does not flow or creeps and a fluidlike region that flows,

with an interface that may evolve in time [10].

Even when the flow occurs in the whole bulk of the

material, the shear rate is often observed to be nonuniform

despite uniform stress across the flow [11]. This feature

is obviously in contrast with the μ(I) rheology, in which μ
is assumed to be a unique function of I so that a constant

value of μ across the flow implies a uniform value of I and
thus a uniform shear rate. Similar inhomogeneous velocity

profiles have been observed in other soft glassy materials

such as emulsions and colloidal suspensions [12, 13]. Re-

cently, several models based on a nonlocal formulation of

the rheology have been introduced to account for these ob-

servations [14–16].

In this paper, we use contact dynamics simulations

to investigate the velocity profiles in a systematic way

in stress-homogeneous 2D shear flows driven by moving

rough walls and confined by a constant pressure perpen-

dicular to the flow. We are interested in the effects of

wall roughness and flow thickness. As we shall see, inde-

pendently of the inertial number, wall roughness controls

the velocity profile as long as the flow thickness is below

130d, where d is mean particle size. Above this thickness,

the shear strain is uniform across the flow. We show that

this observation can be rationalized in a model accounting

for a state parameter as carrier of perturbation introduced

by wall roughness.
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Figure 1. Boundary conditions for simple shear flow. The arrows

represent the particle velocities. The boundary walls and particle

velocities are periodic in the horizontal direction.

Figure 2. Illustration of wall roughness. The gray particles are

attached to the wall while the white particle is mobile and be-

longs to the flow.

2 Numerical procedures

An assembly of 6000 disks is confined between two rough

horizontal walls as shown in Fig. 1. The particle size dis-

tribution P(d) is uniform in particle volumes (P(d) ∼ d−2)
with diameters in the range [dm, dM] where dM = 2dm.

This particle size polydispersity is necessary in 2D to favor

long-range geometrical disorder. The system is periodic

along the flow. The walls are made rough by attaching a

periodic array of particles (‘wall particles’) of diameter dw
which can not rotate. The wall roughness is controlled by

the size ratio R = dw/ds and the distance �w between wall

particles; see Fig. 2. The top and bottom walls are moved

horizontally at constant velocities v and −v, respectively,
in the horizontal direction x. The bottom wall is immobile

along the vertical direction y whereas the top wall is free

to move vertically and subjected to a constant compressive

stress σn = σyy. The nominal inertial number Ie defined

from boundary conditions is set to 0.01. In these condi-

tions, we are sure to avoid the intermittent regime at low

inertial number in which averages and velocity profiles de-

pend on the integration time [10].

We assume that the particles are very stiffwith a Young

modulus well above the confining stress σn. In this limit,

the particles may be considered as fully undeformable and

simulated by the contact dynamics method (CDM), which

is a discrete element method based on nonsmooth contact
laws [17, 18]. In this framework, the equations of dynam-

ics for all degrees of freedom are integrated together with

the kinematic constraints arising from unilateral contacts

and Coulomb friction law. Hence, unlike molecular dy-

namics method, which employs particle overlaps as strain

variable, in CDM the forces are calculated simultaneously

with particle velocities via an iterative implicit scheme.

In our simulations, we set the friction coefficient between

particles to μs = 0.3 and the normal and tangential restitu-

tion coefficients to zero. In dense granular flows, the flow

behavior is insensitive to the values of restitution coeffi-

cients since energy is mostly dissipated by frictional slip-

ping events, and the collisions have a multi-contact nature.

3 Velocity profiles

In order to extract average velocity profiles from the sim-

ulation data, we map the information carried by the parti-

cles to an Eulerian regular grid of 128 × 64 points. At each

point r of the grid at a given time t, the local mass and mo-

mentum are respectively given by ρm(r, t) =
∑

i miδ(r−ri)
and pm(r, t) =

∑
i miviδ(r − ri), where ri(t) is the po-

sition of particle i at time t, mi is its mass and vi is its

velocity. Equivalent continuum fields are defined by con-

volution with a Gaussian distribution: ρ̃(r) = G ∗ ρm and

p̃m(r) = G∗pm, where G(r) = (1/πw2) exp(−(r−ri)2/w2)

is a Gaussian function of width w = 2d, defining the

spatial resolution. The velocity field is then given by

v(r, t) = p̃m/ρ̃, which satisfies the mass and momentum

conservation [19]. This convolution leads to smooth deriv-

able fields.

At a given value of the nominal inertial number Ie de-

fined from the nominal shear rate γ̇e = 2v/h, the average

height h of the flow remains constant. We divided the flow

into 50 horizontal layers of thickness δh � d. The velocity

profiles were obtained by averaging over time along each

layer. The profiles shown below were calculated in the

steady state over a cumulative shear strain higher than 6.

Figure 3 shows velocity profiles for Ie � 0.01 and sev-

eral values of the roughness angle δw defined by (see Fig.

2):

sin δw =
�w

ds(1 + R)
. (1)

The velocity profiles clearly depend on the roughness an-

gle and they present a sigmoidal shape, in agreement with

measurements reported by several authors [11, 20] . But

we also see that for a critical value of this angle δc
w � 0.75

radians or nearly 45◦, the profile is remarkably linear. We

also have nearly the same profile for two very different

values of δw above and below δc
w.

The use of roughness angle is motivated by the obser-

vation that the velocity profiles for different combinations

of size ratio R and �w are controlled only by the rough-

ness angle, which combines these parameters (not shown

here). It is a physically plausible parameter as the effect of

roughness depends on how momentum is transmitted from

wall particles to the mobile particles of the sheared sam-

ple. The amplitude is clearly given by msv, but its effect

depends on its direction. For given dw, the lowest value of

δw is dw/(dw + ds), which vanishes only when dw/ds → 0.
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Figure 3. Velocity profiles for four different values of roughness

angle δw and a constant nominal inertial number Ie � 0.01 in the

steady state, for a fixed average flow thickness h/d ≈ 50. Solid

lines are fits by equation (6).
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Figure 4. Shear rate at the center of flow normalized by the

nominal shear rate as a function of roughness angle.

Figure 4 displays the shear rate γ̇∗ at the center of the

flow normalized by the nominal shear rate γ̇e for a set of

simulations in which both �w and dw have been changed.

At the minimum value of δw, the velocity profile has its

largest deviation from the linear profile, corresponding to

the lowest value of γ̇∗. As δw increases from its minimum

value, γ̇∗ increases and reaches its highest value at δc
w. At

this point, the velocity profile is linear and the shear rate at

the center of flow coincides with the nominal shear rate γ̇e.

When δw is further increased, γ̇∗ again declines. This non

monotonous dependence of the velocity profile on rough-

ness angle reveals the nature of the wall-flow interaction.

Indeed, the angle δc
w � 45◦ corresponds to the major prin-

cipal direction of the strain-rate tensor or the direction of

maximal contraction. Hence, at δw = δc
w, the direction

along which the wall momenta are on the average trans-

mitted to the granular material is consistent with that of

the flow. For larger and smaller values of δw, the mismatch

between the two directions leads to lower transmission of

wall momenta and hence lower shear rate at the center of

the flow.

Note that in many experiments and numerical simu-

lations, the walls are made rough by attaching contigu-

ous particles of the same size as flowing particles to the

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

2y
/h

vx/v

h/d = 22
h/d = 77
h/d = 131

Figure 5. Velocity profiles for three different values of flow

thickness in the steady state at constant nominal shear rate γ̇e

and wall roughness δw = 0.44.

wall. For such a ‘natural’ roughness, we have R = 1 and

�w = dw, so that the roughness angle is 30◦, which is below

δc
w. According to our data, this angle leads to a nonlinear

profile with γ̇∗/γ̇e � 0.6, thus the counterintuitive conclu-

sion that ‘natural’ roughness is not the best way of setting

a granular material in motion. Given the value of the criti-

cal roughness angle, for contiguous wall particles the best

size ratio is R � 2.3 in 2D, for which a linear velocity

profile is expected.

4 Perturbation model

The picture briefly presented above is all the more plausi-

ble that the nonlinear velocity profiles find here their origin

in the diffusion of momenta from the boundary layer. Put

differently, the nonlinear profiles are a consequence of the

perturbation of a linear profile by the wall and its rough-

ness. Hence, for large enough values of flow thickness

h, the velocity profile is expected to become linear. Fig.

5 displays the velocity profiles at constant values of wall

roughness and inertial number but for three different val-

ues of h. We see that the profile is linear for h/d = 131.

The distance over which the perturbation produced by wall

roughness propagates (the exponential falloff of velocity

near the walls) is essentially the same in these simulations

(note that the distances are normalized by h). Most experi-

mental or numerical studies in plane-strain geometry have

been performed for a flow thickness below 40d. Thick

flows (100d) were simulated by da Cruz et al. but without

focusing on boundary effects [7].

In order to capture the wall effect on velocity profiles,

let us consider a scalar state parameter χ that carries the

effect of wall roughness across the flow. This parameter

can be a descriptor of the microstructure or dynamic het-

erogeneities of the flow. The flow behavior will depend

on both the shear rate and this state parameter. This pa-

rameter reflects the effects of the two walls so that χ(y) at
a position y is the sum two contributions f (h/2 + y) and
f (h/2 − y) by the same function f but depending on the

distances h/2 + y and h/2 − y from the two walls:

χ(y) = f (h/2 + y) + f (h/2 − y) (2)
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It is easy to see that all even derivatives of χwith respect to

y have the same structure as in (2) so that all even deriva-

tives are proportional to χ(y). The only regular function

satisfying this condition is hyperbolic cosine:

χ(y) = χ∗ cosh(y/ξ) (3)

where χ∗ = χ(0) and ξ is a characteristic length, which can

be interpreted as the distance over which wall perturbation

propagates. It should be intrinsic, proportional to d and

independent of h.
The shear strain field γ̇(y) is assumed to depend on the

state parameter. As γ̇(y) has the same symmetry as χ(y),
it can be expanded to first order as γ̇(y) � B + Aχ(y). The
constant B can be determined as a function of shear rate γ̇∗
at the center of flow:

γ̇(y) � γ̇∗ + Aχ∗
(
cosh

y

ξ
− 1

)
(4)

By integrating with respect to y and given the symmetry

of the velocity field, we get

vx(y) = γ̇∗y + Aχ∗
{
ξ sinh

y

ξ
− y

}
(5)

This functional form fits excellently our data as shown in

Fig. 3. The effect of flow thickness h can be analyzed by

considering equation (5) at y = h/2 where vx = v:

v = γ̇∗h/2 + Aχ∗
{
ξ sinh

h
2ξ

− h/2
}

(6)

This relation suggests that, for a given driving velocity v, A
declines as h increases. Hence wall perturbation declines

everywhere in the flow; see Fig. 5. This result is indepen-

dent of the precise mechanism of wall perturbation or the

state variable that carries the perturbation. It only requires

that ξ be independent of system size. By analyzing the

simulation data for different values of the inertial number

(up to Ie = 0.08), wall roughness δw and flow thickness h,
we find that ξ declines only slightly from 7d to 6d as Ie

increases. For a given flow thickness, on the other hand,

the amplitude A declines as δw increases and nearly van-

ishes at δc
w, then increases again for larger values of δw.

This is consistent with linear profiles observed at critical

roughness.

5 Conclusion

In this paper, we used extensive contact dynamics simu-

lations to analyze the effect of wall roughness on simple

shear flows of granular materials in the steady state. It was

shown that the velocity profile is linear for a flow thick-

ness of the order of 130d. For smaller thickness, the ve-

locity profile has a sigmoidal shape that varies with wall

roughness. ‘Roughness angle’ that encodes the geometry

of wall roughness and sensitively describes the velocity

profile. We showed that, independently of flow thickness,

the velocity profile becomes linear at a critical value of
roughness angle. Physically, we argued that this angle co-

incides with the most contractive direction in the flow, sug-

gesting thus that for this critical angle momentum is opti-

mally transmitted from the walls to mobile particles of the

flow. We also introduced a simple model based on a state

parameter that carries wall perturbation across the flow.

Assuming linear perturbation, we found an expression for

velocity profiles that accurately fits the data and explains

some of the observed features. This framework suggests

that a state variable can be used to enrich a purely local

rheological law.

We are grateful to Jean-Noel Roux for useful discus-

sions and references that he brought to our attention.
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