?. References-;-thackeray, M. David, W. Bruce, P. Goodenough, J. Tarascon et al., LiMn 2 O 4 cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries, J. Electrochem. Soc, vol.18, issue.1, pp.179-187, 1981.

W. David, R. Ibberson, Y. Gao, J. Dahn, Y. Xia et al., Insights into the Nature and Evolution upon Electrochemical Cycling of Planar Defects in the ?-NaMnO 2 Na-Ion Battery Cathode: An NMR and First-Principles Density Functional Theory Approach, Synthesis and Characterization of Li 1+x Mn 2?x O 4 for Li-Ion Battery Applications. J. Electrochem. Soc. 1996, 143, 100? 114, vol.25, p.943, 1033.

A. Liechtenstein, V. Anisimov, J. Zaanen, L. Wang, T. Maxisch et al., Linking Local Environments and Hyperfine Shifts: A Combined Experimental and Theoretical 31 P and 7 Li Solid-State NMR Study of Paramagnetic Fe(III) Phosphates, Phys. Rev. B: Condens. Matter Mater. Phys, vol.30, issue.44, p.5467, 1995.

R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders et al., Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations, Structure Solution of Metal-Oxide Li Battery Cathodes from Simulated Annealing and Lithium NMR Spectroscopy. Chem. Mater, vol.123, issue.48, pp.5550-5557, 1993.