L. Almeida, M. Duprez, Y. Privat, and N. Vauchelet, Optimal release strategy for the sterile mosquitoes technique

L. Almeida, Y. Privat, M. Strugarek, and N. Vauchelet, Optimal releases for population replacement strategies, application to Wolbachia, preprint, p.1807624, 2018.

R. Anguelov, Y. Dumont, and J. Lubuma, Mathematical modeling of sterile insect technology for control of anopheles mosquito, Comput. Math. Appl, vol.64, pp.374-389, 2012.
URL : https://hal.archives-ouvertes.fr/halsde-00732800

H. J. Barclay and M. Mackuer, The sterile insect release method for pest control: a density dependent model, Environ. Entomol, vol.9, pp.810-817, 1980.

L. Beal, D. Hill, R. Martin, and J. Hedengren, GEKKO Optimization Suite, Processes, vol.6, p.106, 2018.

P. Bliman, Feedback Control Principles for Biological Control of Dengue Vectors
URL : https://hal.archives-ouvertes.fr/hal-01944958

P. Bliman, M. S. Aronna, F. C. Coelho, M. A. Da, and . Silva, Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control, Journal of mathematical biology, vol.76, issue.5, pp.1269-1300, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01579477

P. Bliman, D. Cardona-salgado, Y. Dumont, and O. Vasilieva, Implementation of Control Strategies for Sterile Insect Techniques
URL : https://hal.archives-ouvertes.fr/hal-01943683

H. Bossin, Y. Dumont, and M. Strugarek, Using sterilizing males to reduce or eliminate Aedes populations: insights from a mathematical model, Applied Mathematical Modelling, vol.68, pp.443-470, 2019.

K. Bourtzis, Wolbachia-based technologies for insect pest population control, Advances in Experimental Medicine and Biology, vol.627, 2008.

L. Cai, S. Ai, and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math, vol.74, pp.1786-1809, 2014.

D. E. Campo-duarte, O. Vasilieva, D. Cardona-salgado, and M. Svinin, Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations, Journal of mathematical biology, vol.76, pp.1907-1950, 2018.

C. Dufourd and Y. Dumont, Impact of environmental factors on mosquito dispersal in th e prospect of sterile insect technique control, Comput. Math. Appl, vol.66, pp.1695-1715, 2013.

Y. Dumont and J. M. Tchuenche, Mathematical studies on the sterile insect technique for the chikungunya disease and Aedes albopictus, Journal of Mathematical Biology, vol.65, pp.809-855, 2012.

H. Dutra, L. Santos, E. Caragata, J. Silva, D. Villela et al., From lab to field: the influence of urban landscapes on the invasive potential of Wolbachia in Brazilian Aedes aegypti mosquitoes, PLoS neglected tropical diseases, vol.9, issue.4, p.3689, 2015.

V. A. Dyck, J. Hendrichs, and A. S. Robinson, The Sterile Insect Technique, Principles and Practice in Area-Wide Integrated Pest Management, 2006.

J. Z. Farkas and P. Hinow, Structured and unstructured continuous models for wolbachia infections, Bulletin of Mathematical Biology, vol.72, pp.2067-2088, 2010.

A. Fenton, K. N. Johnson, J. C. Brownlie, and G. D. Hurst, Solving the Wolbachia paradox: modeling the tripartite interaction between host, Wolbachia, and a natural enemy, The American Naturalist, vol.178, pp.333-342, 2011.

M. Huang, X. Song, and J. Li, Modelling and analysis of impulsive releases of sterile mosquitoes, Journal of Biological Dynamics, vol.11, pp.147-171, 2017.

H. Hughes and N. F. Britton, Modeling the Use of Wolbachia to Control Dengue Fever Transmission, Bull. Math. Biol, vol.75, pp.796-818, 2013.

E. B. Lee and L. Markus, Foundations of optimal control theory, SIAM series in applied mathematics, 1967.

J. Li and Z. Yuan, Modelling releases of sterile mosquitoes with different strategies, Journal of Biological Dynamics, vol.9, pp.1-14, 2015.

G. Sallet and M. A. Silva, Monotone dynamical systems and some models of Wolbachia in aedes aegypti populations, ARIMA, vol.20, pp.145-176, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01320616

G. Schraiber, A. N. Kaczmarczyk, R. Kwok, M. Park, R. Silverstein et al., Constraints on the use of lifespan-shortening wolbachia to control dengue fever, Journal of Theoretical Biology, vol.297, pp.26-32, 2012.

S. P. Sinkins, Wolbachia and cytoplasmic incompatibility in mosquitoes, Insect Biochemistry and Molecular Biology, vol.34, pp.723-729, 2004.

M. Strugarek, Modélisation mathématique de dynamiques de populations, applicationsàapplicationsà la lutte anti-vectorielle contre Aedes spp, Diptera:Culicidae), 2018.

M. Strugarek and N. Vauchelet, Reduction to a single closed equation for 2 by 2 reaction-diffusion systems of Lotka-Volterra type, SIAM J. Appl. Math, vol.76, pp.2068-2080, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01264980

R. C. Thome, H. M. Yang, and L. Esteva, Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide, Math. Biosci, vol.223, pp.12-23, 2010.

J. H. Werren, L. Baldo, and M. E. Clark, Wolbachia: master manipulators of invertebrate biology, Nature Review Microbiology, vol.8, pp.741-751, 2008.

T. Walker, P. H. Johnson, L. A. Moreira, I. Iturbe-ormaetxe, F. D. Frentiu et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, vol.476, pp.450-453, 2011.

H. Yang, M. Macoris, K. Galvani, M. Andrighetti, and D. Wanderley, Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiol Infect, vol.137, pp.1188-1202, 2009.