Usefulness of Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) DNA Viral Load in Whole Blood for Diagnosis and Monitoring of KSHV-Associated Diseases

To cite this version:
Aude Jary, Valentin Leducq, Romain Palich, Adélie Gothland, Diane Descamps, et al.. Usefulness of Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) DNA Viral Load in Whole Blood for Diagnosis and Monitoring of KSHV-Associated Diseases. Journal of Clinical Microbiology, American Society for Microbiology, 2018, 56 (6), pp.1-4. 10.1128/JCM.00569-18. hal-01984174

HAL Id: hal-01984174
https://hal.archives-ouvertes.fr/hal-01984174
Submitted on 31 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Title: Usefulness of Kaposi sarcoma-associated herpesvirus (KSHV)-DNA viral load in whole blood for the diagnosis and monitoring of KSHV-associated diseases.

Aude Jary¹ #, Valentin Leducq¹, Romain Palich², Adélie Gothland¹, Diane Descamps³, Véronique Joly⁴, Sidonie Lambert-Niclot⁵, Corinne Amiel⁶, Ana Canestri⁷, Audrey Mirand⁸, Elyanne Gault⁹, Astrid Vabret¹⁰, Marc-Antoine Valantin², Christine Katlama², Vincent Calvez¹, Nicolas Dupin¹¹, Jean-Philippe Spano¹², Anne-Geneviève Marcelin¹ #

¹Sorbonne Université, INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié Salpêtrière, Laboratoire de virologie, F-75013 Paris, France
²Sorbonne Université, INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié Salpêtrière, Service de Maladies Infectieuses et Tropicale, F-75013 Paris, France
³IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Service de Virologie, Hôpital Bichat, AP-HP, Paris, France
⁴IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Service de Maladies Infectieuses et Tropicales, Hôpital Bichat, AP-HP, Paris, France
⁵Sorbonne Université, INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Saint Antoine, Service de Virologie, F-75012 Paris, France.
⁶Service de Virologie, AP-HP Hôpital Tenon, Paris, France
⁷Service de Maladies Infectieuses et Tropicale, AP-HP Hôpital Tenon, Paris, France
⁸Service de Virologie, CHU Clermont-Ferrand, France
Keywords: Kaposi sarcoma-associated herpesvirus, Kaposi sarcoma-associated diseases, DNA, whole blood, biomarker

Address correspondence to Aude Jary, aude.jary@aphp.fr
Address correspondence to Anne-Geneviève Marcelin, anne-genevieve.marcelin@aphp.fr
Kaposi Sarcoma-Associated Herpesvirus (KSHV) is the etiologic agent of Kaposi’s sarcoma (KS) but also in multicentric variant of Castleman disease (MCD) and primary effusion lymphoma (PEL), diseases occurring primarily in HIV-infected patients (1). Several studies have demonstrated that KSHV-DNA levels and virus state in the target cells differ according to the pathology and its severity (2). In peripheral blood from patients with active disease, KSHV-DNA levels were higher from patients with MCD, followed by patients with PEL and then from patients with KS (3). Moreover, variations of KSHV-DNA rates in blood were associated with progression or regression under successful treatment of KS (4, 5) and MCD (6). However recently, Haq and colleagues demonstrated that KSHV plasma levels has a very limited value, the only potential role was the suggestion that an undetectable plasma KSHV exclude a diagnosis of MCD (7).

This retrospective transversal study included 149 patients with KS (111), MCD (32) and PEL (6). One whole blood sample per patient and 4 total effusion fluids from PEL patients were analyzed and obtained at the time of diagnosis. Extracted DNA were amplified by real-time PCR which focus on both ORF73 and albumin genes (8). Quantification was expressed in copies/million cells. GraphPad software was used to perform non-parametric tests: the Mann-Whitney U, Spearman rank and Kruskal-Wallis tests.

Patients’ characteristics and results are shown in table 1. KSHV-DNA viral load was undetectable in 22% of studied cases or detectable with low levels in KS patients while it was always detectable in MCD and PEL patients. The three KSHV-associated diseases were associated with significantly different levels of KSHV-DNA in whole blood ($p<0.0001$) (Fig. 1). KSHV-DNA rates from MCD’s patients were the highest (median, $3.94 \log_{10} \text{copies/10}^6 \text{cells}$ [range, 1.00-7.00]), followed by PEL patients ($3.46 \log_{10} \text{copies/10}^6 \text{cells}$ [2.23-4.83]) and
finally KS patients (1.92 log_{10} copies/10^6 cells [1.00-5.60]). In patients with KS and MCD, KSHV-DNA levels and CD4 count cells were negatively correlated (respectively \(r_s=-0.25; p=0.02 \) and \(r_s=-0.43; p=0.02 \)) confirming the role of immunosuppression in KSHV-diseases development(5). Among PEL patients, KSHV-DNA levels in total effusion fluids were approximately 100 to 1000 times higher than in blood which is in agreement with the physiopathology of the disease but also linked to the high number of KSHV copies per lymphoma cell (2). KSHV-DNA levels in whole blood of patients with MCD were significantly higher than those of KS patients (\(p<0.0001 \)) in contrast to Haq and al results in plasma. We know that KSHV virus remain mostly latent in KS and PEL whereas in MCD, about 15% of them are in lytic cycle(2). Moreover, latent and replicating viral KSHV-DNA are presents in cells (9). Thus, plasma samples might underestimate KSHV-DNA levels in peripheral blood compartment in comparison to whole blood, especially in MCD’s patients.

Our study reinforce that KSHV-DNA biomarker would be helpful to guide diagnosis of and manage KSHV-associated diseases. Even if for KS diagnosis, KSHV-DNA quantification should be interpreted with cautious (about a quarter undetectable), increase levels in blood should trigger KS disease progression or other underlying KSHV-malignancies.
Acknowledgments

We thank the CANCERVIH network and especially Marianne Veyri for her administrative support.

Potential conflicts of interest: No conflicts of interest
References

Table 1: Characteristics’ patients and results of KSHV-DNA status and viral load in peripheral blood from the 149 patients included with KSHV-associated diseases

<table>
<thead>
<tr>
<th>Disease (No)</th>
<th>Male sex (%)</th>
<th>Median age [range], years</th>
<th>HIV-infected patients</th>
<th>Median CD4 count [range], cells/mm³, No (%)</th>
<th>Patients KSHV-DNA status, ≥1log₁₀ copies/10⁶ cells</th>
<th>Median KSHV-DNA levels, log₁₀ copies/10⁶ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No (%)</td>
<td>VIH+ No (%)</td>
<td>VIH− No (%)</td>
</tr>
<tr>
<td>KS (111)</td>
<td>102 (92)</td>
<td>54 [23-93]</td>
<td>76 (68)</td>
<td>210 [1-823] (74)</td>
<td>60/76 (79)</td>
<td>20/28 (71)</td>
</tr>
<tr>
<td>MCD (32)</td>
<td>27 (84)</td>
<td>49 [27-87]</td>
<td>27 (84)</td>
<td>239 [10-920] (27)</td>
<td>26/27 (96)</td>
<td>2/2 (100)</td>
</tr>
<tr>
<td>PEL (6)</td>
<td>6 (100)</td>
<td>58,5 [34-85]</td>
<td>5 (83)</td>
<td>162 [18-450] (5)</td>
<td>4/4 (100)</td>
<td>1/1 (100)</td>
</tr>
</tbody>
</table>

NOTE: KSHV: Kaposi Sarcoma-associated Herpesvirus; KS: Kaposi Sarcoma; MCD: Multicentric Castleman Disease; PEL: Primary Effusion Lymphoma; No: number
Figure 1 Legend:

Levels of Kaposi sarcoma-associated herpesvirus (KSHV) in whole blood and effusion fluid samples from patients with Kaposi Sarcoma (KS), Castleman multicentric disease (MCD) and Primary effusion lymphoma (PEL) at the time of KSHV-associated diseases diagnosis.

Horizontal lines: median value (m); cross: average; boxes: Quartile 1 and Quartile3; whiskers: 95% confidence interval; black circles: outliers; Kruskal-Wallis test ($p<0.0001$); Mann-Whitney U test ($p<0.016$)