M. O. Abdullah, I. A. Tan, and L. S. Lim, Automobile adsorption air­ conditioning system using oil palm biomass-based activated carbon: A review, Renewable and Sustainable Energy Reviews, vol.15, issue.4, pp.2061-2072, 2011.

M. A. Ajeel, M. K. Aroua, and W. M. Daud, Anodic degradation of2chlorophenol by carbon black diamond and activated carbon composite electrodes, Electrochimica Acta, vol.180, pp.22-28, 2015.

M. A. Ajeel, M. K. Aroua, and W. M. Daud, p-Benzoquinone anodic degradation by carbon black diamond composite electrodes, Electrochimica Acta, vol.169, pp.46-51, 2015.

M. A. Ajeel, M. K. Aroua, and W. M. Daud, Preparation and characterization of carbon black diamond composite electrodes for anodic degradation ofphenol, Electrochimica Acta, vol.153, pp.379-384, 2015.

M. A. Alfaro, S. Ferro, C. A. Martinez-huitle, and Y. M. Vong, Boron doped diamond electrode for the wastewater treatment, Journal of the Brazilian Chemical Society, vol.17, pp.227-236, 2006.

M. Avramov-lvié, J. M. Léger, B. Beden, F. Hahn, and C. Lamy, Adsorption of glycerol on platinum in alkaline medium: Effect of the electrode structure, Journal ofElectroanalytical Chemistry, vol.351, issue.1-2, p.80240, 1993.

M. L. Avramov-lvié, J. M. Leger, C. Lamy, V. D. Jovié, S. D. Petrovié et al., Pd and Pt-Ru anode electrocatalysts supported on multi­ walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol), Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.308, issue.1-2, pp.241-251, 1991.

J. C. Card, G. Valentin, and A. Storck, The activated carbon electrode: A new, experimentally verified mathematical mode! for the potential distribution, Journal of The Electrochemical Society, vol.137, issue.9, 1990.

J. Chaminand, L. A. Djakovitch, P. Gallezot, P. Marion, C. Pinel et al., Glycerol hydrogenolysis on heterogeneous catalysts, Green Chemistry, vol.6, issue.8, pp.359-361, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00007381

D. 'hondt, E. Van-de-vyver, S. Sels, B. F. Jacobs, and P. A. , Catalytic glycerol conversion into 1,2-propanediol in absence ofadded hydrogen, Chemical Communications, issue.45, pp.6011-6012, 2008.

M. L. Dieuzeide, M. Jobbagy, A. , and N. , Vapor-phase hydrogenolysis of glycerol to 1,2-propanediol over Cu/AhO3 catalyst at ambient hydrogen pressure, Industrial & Engineering Chemistry Research, vol.55, issue.9, pp.2527-2533, 2016.

A. Elmouwahidi, Z. Zapata-benabithe, F. Carrasco-marin, and C. Moreno-castilla, Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes, Bioresource Technology, vol.111, pp.185-190, 2012.

K. Y. Foo and B. H. Hameed, Utilization ofrice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation, Bioresource Technology, vol.102, issue.20, pp.9814-9817, 2011.

K. Y. Foo and B. H. Hameed, Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation, Bioresource Technology, vol.130, 2013.

, Biobased Propylene Glycol Market: Global Industry Analysis and Opportunity Assessment, Future Market lnsights, pp.20-26, 2014.

X. He, P. Ling, J. Qiu, M. Yu, X. Zhang et al., Efficient preparation of biomass-based mesoporous car bons for supercapacitors with both high energy density and high power density, Journal of Power Sources, vol.240, 2013.

L. Huang, Y. Zhu, H. Zheng, G. Ding, L. et al., Direct conversion of glycerol into 1,3-propanediol over Cu-H4SiW12O40/SiO2 in vapor phase, Catalysis Letters, vol.131, issue.1-2, 2009.

K. Ishiyama, F. Kosaka, I. Shimada, Y. Oshima, and J. Otomo, Glycerol electro-oxidation on a carbon-supported platinum catalyst at intermediate temperatures, Journal of Power Sources, vol.225, pp.141-149, 2013.

D. Kalderis, S. Bethanis, P. Paraskeva, D. , and E. , Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times, Bioresource Technology, vol.99, issue.15, pp.6809-6816, 2008.

S. Kongjao, S. Damronglerd, and M. Hunsom, Electrochemical reforming ofan acidic aqueous glycerol solution on Pt electrodes, Journal of Applied Electrochemistry, vol.41, issue.2, pp.215-222, 2011.

A. Kraft, Doped diamond: A compact review on a new, versatile electrode material, International Journal ofElectrochemical Science, 2007.

Y. Kusunoki, T. Miyazawa, K. Kunimori, T. , and K. , Highly active metal-acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions, Catalysis Communications, vol.6, issue.10, pp.645-649, 2005.

Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez, and M. T. Koper, Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth, ACS Catalysis, vol.2, issue.5, 2012.

C. S. Lee, Y. L. Ong, M. K. Aroua, and W. M. Daud, Impregnation of palm shell-based activated carbon with sterically hindered amines for CO2 adsorption, Chemical Engineering Journal, vol.219, 2013.

H. Liu, S. Liang, T. Jiang, B. Han, and Y. Zhou, Hydrogenolysis of glycerol to 1,2-propanediol over Ru-Cu bimetals supported on different supports, CLEAN­ Soil, Air, Water, vol.40, issue.3, 2012.

E. P. Maris and R. J. Davis, Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts, Journal ofCatalysis, vol.249, issue.2, 2007.

M. Markets, Propylene Glycol Market worth $4.2 Billion by 2019, Markets and Markets, 2016.

P. Mcmom, G. Roberts, and G. J. Hutchings, Oxidation of glycerol with hydrogen peroxide using silicalite and aluminophosphate catalysts, Catalysis Letters, vol.63, issue.3-4, pp.193-197, 1999.

Y. Nakagawa and K. Tomishige, Heterogeneous catalysis of the glycerol hydrogenolysis, Catalysis Science and Technology, vol.1, issue.2, 2011.

S. Omar, B. Girgis, and F. Taha, Carbonaceous materials from seed hulls for bleaching ofvegetable oils, Food Research International, vol.36, issue.1, 2003.

N. N. Pandhare, S. M. Pudi, P. Biswas, and S. Sinha, Selective hydrogenolysis of glycerol to 1,2-propanediol over highly active and stable Cu/MgO catalyst in the vapor phase, Organic Process Research and Development, vol.20, issue.6, pp.1059-1067, 2016.

M. Panizza, C. , and G. , Application of diamond electrodes to electrochemical processes, Electrochimica Acta, vol.51, issue.2, pp.191-199, 2005.

J. Qi, L. Xin, D. J. Chadderdon, Y. Qiu, Y. Jiang et al., Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration, Applied Catalysis B-Environmental, vol.154, 2014.

C. V. Rode, A. A. Ghalwadkar, R. B. Mane, A. M. Hengne, S. T. Jadkar et al., Selective hydrogenolysis of glycerol to 1,2-propanediol: Comparison ofbatch and continuous process operations, Organic Process Research and Development, vol.14, issue.6, 2010.

L. Roquet, E. M. Belgsir, J. M. Léger, and C. Lamy, Kinetics and mechanisms of the electrocatalytic oxidation of glycerol as investigated by chromatographie analysis of the reaction products: Potential and pH effects, Electrochimica Acta, vol.39, issue.16, 1994.

P. Saila and M. Hunsom, Effect of additives on one-pot electrochemical conversion of emiched crude glycerol, Korean Journal ofChemical Engineering, pp.1-6, 2015.

S. Aldrich, , 2016.

M. Simôes, S. Baranton, C. , and C. , Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration, Applied Catalysis B: Environmental, vol.93, issue.3-4, 2010.

M. Simôes, S. Baranton, C. , and C. , Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification, Applied Catalysis B: Environmental, vol.110, pp.40-49, 2011.

J. Tang, T. Wang, X. Sun, Y. Hu, Q. Xie et al., Novel synthesis of reduced graphene oxide-ordered mesoporous carbon composites and their application in electrocatalysis, Electrochimica Acta, vol.90, 2013.

R. Valencia, J. A. Tirado, R. Sotelo, F. Trejo, and L. Lartundo, Synthesis of 1,2-propanediol through glycerol hydrogenolysis on Cu-Al mixed oxides, Reaction Kinetics, Mechanisms and Catalysis, vol.116, issue.1, pp.205-222, 2015.

E. S. Vasiliadou and A. A. Lemonidou, Parameters affecting the formation of 1,2-propanediol from glycerol over Ru/Si Oz catalyst, Organic Process Research and Development, vol.15, issue.4, 2011.

A. Wolosiak-hnat, E. Milchert, and G. Lewandowski, Optimization of hydrogenolysis of glycerol to 1,2-propanediol, Organic Process Research and Development, vol.17, issue.4, 2013.

S. Xia, Z. Yuan, L. Wang, P. Chen, and Z. Hou, Catalytic production of 1,2propanediol from glycerol in bio-ethanol solvent, Bioresource Technology, vol.104, pp.814-817, 2012.

S. Xia, L. Zheng, L. Wang, P. Chen, and Z. Hou, Hydrogen-free synthesis of 1,2-propanediol from glycerol over Cu-Mg-Al catalysts, RSC Advances, vol.3, issue.37, pp.16569-16576, 2013.

G. D. Yadav, P. A. Chaudan, and D. P. Tekale, Hydrogenolysis of glycerol to 1,2-propanediol over nano-fibrous Ag-OMS-2 catalysts, Industrial and Engineering Chemistry Research, vol.51, issue.4, 2012.

G. Yildiz and F. Kadirgan, Electrocatalytic oxidation of glycerol: I. Behavior of palladium electrode in alkaline medium, Journal of The Electrochemical Society, vol.141, issue.3, 1994.
DOI : 10.1149/1.2054799

Z. Yuan, J. Wang, L. Wang, W. Xie, P. Cheri et al., Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/Mgü catalysts, Bioresource Technology, vol.101, issue.18, 2010.
DOI : 10.1016/j.biortech.2010.04.016

Z. Zhang, L. Xin, J. Qi, D. J. Chadderdon, K. Sun et al., Selective electro-oxidation of glycerol to tartronate or mesoxalate on Au nanoparticle catalyst via electrode potential tuning in anion-exchange membrane electro-catalytic flow reactor, Applied Catalysis B: Environmental, vol.147, 2014.

, Peer review completed, p.12, 2017.