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Abstract

We investigate the validity of the fractional Gagliardo-Nirenberg-Sobolev inequality

) 1 lwrai S I W eyl 1 macays ¥ F € WEPPHQ) A W2P2(Q).

Here, s1,s9,r are non-negative numbers (not necessarily integers), 1 < p1,p2,q < oo, and
we assume, for some 6 € (0, 1), the standard relations
6 1-6 ) s—r

1
(2)r<s:=931+(1—9)32and—:(—+— .
g \p1 p2 N

Formally, estimate (1) is obtained by combining the “pure” fractional Gagliardo-Nirenberg
style interpolation inequality

@) Ifllwsr) S ”f”Wsl pl(Q)llf”WSQ r2(q) (With 1/p :=0/p1+(1-6)/p2)
with the fractional Sobolev style embedding

1 1 s-
(4) WSP(Q)— WH9(Q), 0<r<s, 1<p<g<oco,—=—-—> "
g p N

,p(s—r)<N.

Estimates (3) and (4) are true “most of the time”, but not always; the exact range of
validity of (3) and (4) has been known. Combining these results, we infer that (1) is valid
“most of the time”. However, the validity of (1) when (3) and/or (4) fail was unclear. The goal
of this paper is to characterize the values of s1,s9,7,p1,p2,¢,0,N such that (1) holds.

1 Introduction

This is a follow-up of [5], and we use the same notation as in [5]. There, we have investigated
the validity of the Gagliardo-Nirenberg (GN) interpolation estimate

1f lwer@ S s m ol f 1y ¥ F € WP AW2P2(Q). (1.1)

Here, the real numbers s1,s9,5=0, 1 < p1,p2,p <oco and 0 € (0,1) satisfy the relations

1 6 1-60
81<89,8=0s1+(1—-0)sg and — = — + ——. 1.2)
p D1 P2

We say that Q is a standard domain in RN if

Q is either RY, or a half space, or a Lipschitz bounded domain in RY. (1.3)

Keywords. Sobolev space; Gagliardo-Nirenberg inequalities; Sobolev embeddings; Gagliardo-Nirenberg-
Sobolev inequalities; Interpolation inequalities
2010 AMS classification subject. 46E35



When all the smoothness exponents, s1,s2 and s, are integers, the validity of (1.1) was estab-
lished by Gagliardo [8] and Nirenberg [13]. For general non-negative exponents, non necessarily
integers, (1.1) may fail. In [5], we gave a necessary and sufficient condition for the validity of
(1.1). This involves the following assumption:

1
sgisaninteger =1, ps=1landO0<sg—s;<1—-—. (1.4)
P1

More specifically, we have proved the following
Theorem A ([5]). Let Q be a standard domain in RY.
1. Assume that (1.4) fails. Then (1.1) holds for every 6 € (0,1), with s and p given by (1.2).

2. Assume that (1.4) holds. Then (1.1) fails for every 6 € (0,1), with s and p given by (1.2).

Let us also recall the following well-known Sobolev style embeddings. Let s,r, p,q satisfy

N N
0<r<s<oo,1<p<q<oo,r——=s——. (1.5)
q p

Then we have “most of the time” W2 (Q) — W"4(Q2). More specifically, we have the following
result, well-known to experts.

Theorem B. Let Q be a standard domain in RY. Let s,r, p,q, N satisfy (1.5). Then we have
WP (Q) — W™9(Q) (1.6)

with the following exceptions, where (1.6) fails.

1. When
N=1,sisaninteger =1, p=1,1<g<ooandr=s-1+1/q, (1.7)
we have
WeL(Q) 4 WV, (1.8)
2. When
N . .
N=1,1<p<oo,q=00and s—— =r=0is an integer, (1.9)
p
we have
WSP(Q) &~ WH(Q). (1.10)

For the convenience of the reader, we present in the appendix a proof of some special cases
of Theorem B that we could not find in the literature, and give references for the other ones.

The Gagliardo-Nirenberg-Sobolev (GNS) inequalities are inequalities obtained, at least for-
mally, by combining (1.1) with (1.6). They are of the form

I lwrac@) S Wpsron il Fyeanaiys ¥ F € WEPPHQ) N Wo2P2(Q), (1.11)



where

0<s1<s92,720,1<p1,p2,q <00,(s1,p1) #(s2,p2),0 €(0,1),

1 6 1-0 - (1.12)
r<s::931+(1—9)32,—:( )_s r.
q N

b1 D2

[More specifically, (1.11) can be obtained either by using first (1.1), next (1.6), or by applying
first (1.6) in order to obtain the embeddings W%/-?; — W79/ j=1,2, next by applying (1.1) to
the couple (W91 'W72:92) with interpolation parameter 6. Both procedures lead to the same
family of inequalities.]

The conditions (s1,p1) # (s2, p2) and r < s are imposed in order to exclude from (1.11) the GN
interpolation inequalities (1.1) and the Sobolev embeddings (1.6). Indeed, let us note that, when
(s1,p1) =(s2,p2) and r < s = s1 = sg, estimate (1.11) amounts to (1.6), whose validity is settled
by Theorem B. On the other hand, when r = s, (1.11) becomes (1.1), and we are in position to
apply Theorem A.

We also note that, in (1.12), the parameter q is determined by all the other ones.

Estimate (1.11) is valid in “many cases”. Indeed, assuming (1.12), by combining Theorems
A and B we obtain a wide range of s1,s9,7,p1,p2,q,0,N such that (1.11) holds. Here are two
typical “historical” examples.

Ladyzhenskaya’s inequality ([10]). Let Q c R? be a bounded Lipschitz domain. Then

If e SUFIVZIVAILE Y F e Wy Q). (1.13)

Inequality (1.13) can be obtained as follows. First, Theorem A with s; =0, sg =1, p; =2,
p2=2,0=1/2yields

If ez SUFIRIF ez, Y F e WH(Q). (1.14)

Next, Theorem Bwith N =2,s=1/2, p=2,r=0, g =4 gives
I lize SUF lyres, ¥ f e WY2E(Q). (1.15)

We obtain (1.13) from (1.14)—(1.15). O
Nash’s inequality ([12]). Let Q c R2 be a bounded Lipschitz domain. Then

IF e SUFIVEIVEILE, ¥ F e Wy Q). (1.16)

In order to obtain (1.16), we start, as above, from the GN interpolation style inequality

If lgyuzas SIFIFZIF IR0, ¥ F € WHA(Q) (1.17)

and the Sobolev style inequality
1£ e SIf lyreas, ¥ f € WY243(Q). (1.18)

We obtain (1.16) from (1.17)—(1.18). O

The above technique works well when estimates (1.1) and (1.6) are valid. For example, it

allows to recover a family of estimates of the style ||fllzs < IIfIIIQJp1 IIfII‘I}V_SZ,p2 (see e.g. [19]).

However, it may happen (and it does happen) that (1.11) holds despite the fact that one (or
both) of the estimates (1.1) or (1.6) fails. Here is such an example.

Example 1. Assume that N =1. We have

If lpssae S IF s I F g, ¥ F € W@ nWHHQ). (1.19)

3



It is natural to try to derive (1.19) by combining the (formal) GN inequality

Iflwssan S I asal Fllygan ¥ F € W2QnWHHQ) (1.20)

with the Sobolev estimate
If wonse S UF llysoas, ¥ F e WIE43(Q). (1.21)
Here, (1.20) fails, (1.21) holds and, by Theorem 1 below, (1.19) holds.

On the other hand, it may happen that (1.11) fails (despite the fact that (1.12) holds). Here
is such an example.

Example 2. Assume that N = 1. Then, as a consequence of Theorem 1 below, the following
estimate fails.

1flwzse S Iyeell Flga, ¥ F € W2HQ)n WhH(Q). (1.22)

In this case, the analogues of (1.20) and (1.21) are

1f lwsnan S UFIaeal Fllygan ¥ F € WHA@QnWHI(Q), (1.23)
respectively
1f lwess SIf lywsaas, Y f € W3/4’4/3(Q). (1.24)

This time, (1.23) fails, (1.24) holds, and (1.22) fails.

Our main result provides a complete answer to the question of the validity/failure of (1.11).

Theorem 1. Let Q be a standard domain in RN. Let s1,s9,7,p1,p2,q,0,N satisfy (1.12). Then
the GNS inequality (1.11) holds with the following exceptions, when it fails.

1
1. N=1,sgisaninteger =1, 1<pj<oo,pe=1,s1=s9—-1+—,

P1
0 0
[I<pi<oo,r=sg—1]Jor |sg+——-1<r<sg+—-0].
p1 p1
N . .
2. N=1,s1<sg9,s1—— =sg—— =risaninteger, g =0, (p1,p2) # (00,1) (for every 0 € (0, 1)).
P1 P2
In the special case where
S1<r<so, (1.95)

which is a traditional assumption, considered for example in the seminal work of Nirenberg
[13], Theorem 1 takes the following form.

Corollary 1. Let Q be a standard domain in RY. Let s1,s9,7,p1,p2,q9,0,N satisfy (1.12) and
(1.25). Then the GNS inequality (1.11) holds with the following exceptions, when it fails.

1
1. N=1,sgisaninteger =1, 1<pj<oo, pe=1,s1=s9—-1+—,
P1

6 6
So+——1<r<sg+——-0and r=sj.
P1 P1

N
2. N=1,p1=00,1<pg <00, q=00,s1=r=01is an integer, sg =r + — (for every 6 € (0, 1)).
D2



Remark 1. Assume that 0 <s; <r < sy are integers and that (1.12) holds. By Corollary 1, (1.11)
holds except when

N=1, p1=00, 1<pg<oo, g =00, s;1=r=0is an integer, so=r+ —
D2 (1.26)

(for every 6 € (0,1)).

This corresponds to the framework of Nirenberg’s paper [13]. [As observed by a number of
people, the exceptional case (1.26) had been overlooked in [13].]

Remark 2. Let us note a striking phenomenon. Let N =2,s1=1,s9=N,r=0, p1=N, p2=1,
g =00, 0€(0,1). Then WY (RN) n WNLRY) — LORY) (since WV L(RY) — L®(RY)). Therefore,
we have the additive inequality

1f iz SN ey + 1 f iy, ¥ F € WEN@RN) n WNL(RN). (1.27)

However, by Theorem 1 item 2, there is no multiplicative version of (1.27), i.e., there is no
0 € (0,1) such that

Iz SUENGan 1 F Igns, ¥ F € WEN@®RY) n WHRY) (1.28)

(see Case 5.4; for an alternative proof, see [6, Appendix]). This in sharp contrast with the GN
situation, where additive and multiplicative versions are equivalent.

Remark 3. As we will see in the course of the proof of Theorem 1, the following condition plays
a crucial role in the arguments:

N N
S]—— =8§9——. (1.29)
P1 D2

If (1.29) holds, the equality

N N N

r—— 29(81——) +(1—9)(82——)

q P1 P2

holds for every 8 € (0,1). Therefore, in Theorem 1 item 2, every 6 € (0,1) is admissible, while in
item 1, there exists a non-empty open interval of admissible 6 € (0,1).

Remark 4. An analogue of Theorem 1 in Besov spaces has been established in [9].

Our paper is organized as follows. Section 3 is devoted to the proof of Theorem 1. The proof
relies heavily on the identification of most of the Sobolev spaces with Triebel-Lizorkin spaces
(see e.g. [18, Section 2.3.5], [15, Section 2.1.2]). This approach turned out also to be effective in
the proof of Theorem A in [5], and we refer the reader to [5, Sections 2 and 5] for a collection of
properties and tools useful in this context. For the convenience of the reader, an initial Section
2 gathers the minimal material related to Sobolev and Triebel-Lizorkin spaces that we need in
order to prove Theorem 1. The appendix is devoted to a proof of Theorem B.
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2 Basic properties of Sobolev spaces

To start with, let us define a convenient norm on the Sobolev space W2(Q), with Q c RN a
standard domain. Given s >0 and 1 < p < o0, let m = |s]| be the integer part of s and and set

D™ fllLe), ifs=m
If lwsr) = D™f(x)—D™f(y)|P Up (2.1)
Flwes ) (// | f(x) ) dxdy , fm<s<m+1
ala lx—yWNHemp

(with the obvious modification when p = 0o). Then (see e.g. [18, Section 2.3.8])

Lemma 1. Let Q c RY be a standard domain. Let s >0 and 1 < p <oo. Then

f=Nfllwse = If lwse) = 1fllLe + 1f lwsr@ (2.2)
is equivalent to the “usual” norms on W*2?(Q).
We endow W*P(Q)) with this norm.

Definition 1. Let w € C(RY) be such that ¢ = 1 in B1(0) and suppy < B2(0). Define ¢ = v and,
for j =1, yj(x):= w(x/2) —p(x/2/71). Set @pj = g—le € #. [Equivalently, we have ¢g = % 1y
and, for j =1, ¢;(x) = oNJj (p0(2j x)—2NU _1)(p0(2j ~1x).] Then for each tempered distribution f in
RY we have

f: ZfJ in y/:y/(RN), with fj::f*(pj- (2.3)
j=0

f =X j>0f; is “the” Littlewood-Paley decomposition of f € %"
Note that & f; =y ;Zf is compactly supported, and therefore f; € C* for each ;.

Definition 2. Starting from the Littlewood-Paley decomposition, we define the Triebel-Lizorkin
spaces F, , = Ff,,q([R%N) as follows. We let

I1£ls, = || (2 F) ,0<p=<00,0<q <o, (2.4)

LI(N) Il Lp(RN)
F;,q::{fE.S”';IIfIIFIs)q<oo},0<p<oo,0<qSoo. (2.5)

j=0

The space Fg, , is still defined as in (2.5), with p = g = oco.

Note that we do not define the spaces Fg, , when q < oo; this is a delicate matter (see [18,
Section 2.3.4, p. 50]).

Most of the Sobolev spaces can be identified with Triebel-Lizorkin spaces [18, Section 2.3.5],
[15, Section 2.1.2].

Lemma 2. The following equalities of spaces hold, with equivalence of norms:
1. If s >0 is not an integer and 1 < p < oo, then WSP(RN) =F;
2. If s=0is an integer and 1 < p < oo, then WSP(RN) = F; 9-

When s = 0 is an integer and either p =1 or p = 0o, the Sobolev space W*? cannot be identified
with a Triebel-Lizorkin space.



Definition 3. A regular Sobolev space is a space WP = WP (RY) which can be identified with
a Triebel-Lizorkin space. Equivalently, W is regular if and only if either [s is not an integer
and 1 < p <oo] or [s is an integer and 1 < p < co]. The remaining Sobolev spaces, W*1 and W4
with £ = 0 an integer, are exceptional.

Lemma 3. Let 0<ry<rg<ooand 1<p <gq <oo be fixed. Then for every integer £ = 0,
u e LP(RY) and R > 0 we have the direct Nikolskii’s estimates

supp @ < B(0,R) = |D*ull @) SR* NPy g, (2.6)
and the reverse Nikolskii’s estimates
supp % < B(0,r3R)\ B(0,71R) = llull ory SR ID*wl 1o gy- 2.7)

See e.g. [17, Chapter 5, Lemma 3.14] for the first result, and [7, Lemma 2.1.1] for the second
one.

In particular, let f; be as in the Littlewood-Paley decomposition. Then the direct estimates
apply to u := fj, with j =0 and R := 2/*1 The reverse estimates apply to u := fj with j =1,
R:=2/ r1:=1/2,r9:=2.

Another useful tool is the following.

Lemma 4. Let sq,s2,s€ R, 0< p1,p2,p <00 and 6 € (0,1) satisfy s; < sg and (1.2). Then for
every 0<q1,q2,q9 <oo we have

1Fls, SIFIGs IFIY YV fes (2.8)

pP1,91 p2,92

The above result is due to Oru [14] (unpublished); for a proof, see [4, Lemma 3.1 and Section
II1].

We emphasize the fact that the values of N, q1,q2,q are irrelevant for the validity of (2.8),
and that the essential assumptions are s; # sg and the proportionality relations (1.2).

We next establish various estimates needed in the proof of Theorem 1.

Lemma 5. Let —-co<s<oo,1<p<ooand 0<t<oo. Then

1Fllgsw S UFllps,, YV f € /@Y. (2.9)

Proof. When p = oo, the conclusion is clear. Assume that p <oco. Let f =3 ;50f; be the
Littlewood-Paley decomposition of f € #'(RY). We may assume that || /|| Fs, < 00. Set

2

[t

glx):= H (2jsfj(x))

j=0
so that [|fllFs, = llgllLe <oo.
We have 2js|fj(x)| < g(x), Vx, Vj. By the direct Nikolskii’s estimates (2.6) (with g := 00), we

have

N/ iNip-j iN/p-j
Ifjllzee S 27PN FilLe <27P 7 lgliLe =277 fllps

so that

1Fll s = sup 2/ NPl £l 00 SN Fllps . O
00,00 ] ’



Lemma 6. Let s=0 and 1 < p <oo. Then

1Fllgse S 1 llwsr, ¥ f € WHP@RY). (2.10)

00,

Proof. We start with a preliminary remark. Let f e L°(RY) and let f =Y =0 fj be its Littlewood-
Paley decomposition. With ¢; as in Definition 1, we have

I£illee < Iz ll@jlir < Clifllze, (2.11)

for some C > 0 independent of f, p and j.

We now proceed with the proof of the lemma. Its conclusion follows from Lemmas 5 and 2,
except when s = 0 is an integer and p =1 or p = oco. For s =0 integer and p =1 or p = o0, let
fewsP(RN)andlet f =Y j=0 fj be its Littlewood-Paley decomposition.

When p = o0, (2.7) and (2.11) yield, for j =1,

Ifillee S 2757 ID* fillLeo = 27 WD )jllzeo S 27 ID° Fllzoo < 27 |1 f o, (2.12)

Since, on the other hand, we have, by (2.11), | follz~ < IIfllLe, we find that ”f”Fgo,oo S lwseeo.

Similarly, when p =1, (2.6), (2.7) and (2.11) imply, for j =1,

filzeo S 2NN il S 2N DS il = 28~ (D )l

< o(N=s5)j ID*fli < o(N=s)j 1F o, (2.13)

while
Ifollzee Sfollzr SMFNL < If llysa- (2.14)
Combining (2.13) with (2.14), we find that [|f | ps-x S I llyps.1- O

Lemma 7. Let N>2,s>0and 1<p <q <oo. Let 0 =04 € R be defined by 0 —N/q =s—N/p.
Then

WSPRN) - FY .. (2.15)

Proof. Lemma 6 shows that (2.15) holds when g = co.

Assume next that ¢ < co. By Theorem B, we have WSP(RY) — WZ4(RN). [Item 1 (resp. item
2) is ruled out since N = 2 (resp. q < 00).] On the other hand, for sufficiently small £ > 0 and
p<q<P=p+e, we are in position to apply Lemma 2 and obtain that

WPRY) - WHIRN)=F3 , —FJ . (2.16)
Finally, let P < q <oo. Let 8 = P/q €(0,1), so that
1 0 1-6
—=—+ and oy =00p+(1-0)0. (2.17)
q P o
By (2.17), (2.16) with ¢ = P and Lemma 4, we find that
1Fllgoq, < 1F100p 1l S1F lwsogys ¥ € WHPRY). O
,00 P,co 00,00

Lemma 8. We have

[FRVEDS 1fllgo Vies" (2.18)

Proof. Let f =3 ;> f; be the Littlewood-Paley decomposition of f. Then

> fi 211l

j=J

I fllLe < sup <
J=0

=

=lflgo . O
Loo 00,1

Lo



3 Proof of Theorem 1

Outline of the proof. We investigate the validity of (1.11) by considering a number of cases, which
are of interest only when

at least one of the conditions (1.4), (1.7) or (1.9) is satisfied. 3.1)

Therefore, even if (3.1) is not explicitly assumed in a case, we may assume that (3.1) holds.

In the “positive” cases where (1.11) holds, it suffices to establish its validity only when 2 =
RYN. Indeed, combining (1.11) in Q = RN with the existence of a universal extension operator
P :W5P(Q) — WSP(RYN), we obtain the validity of (1.11) in all standard domains.

In the “negative” cases where (1.11) fails, it suffices to prove that (1.11) fails in some ball
B. Indeed, assuming this fact and using the existence of a universal extension operator P :
WSP(B) — WP (Q) (with B c Q), we find that (1.11) fails in any domain Q.

In view of the above, we will work either in RY (in the positive cases) or in a (fixed) ball B
(in the negative cases).

It will be convenient to consider not only s1,s9,7,p1,p2,9,0,N, but also s and p as in Theo-
rem A, given respectively by

$:=0s1+(1-0)s9, 3.2)
1 6 1-6

—=—t—. 3.3)
p P1 P2

Before proceeding with the proof, let us recall the assumption s; < s9, which is part of (1.12).

The proof is divided into eight cases. We will explain at the end why all situations where
(3.1) holds are contained in one of these cases.

Case 1. ¢ =00, r =0 1is an integer, r <s; and s; —N/p1 #s2—N/p2

Case 2. s1 =89

Case3. p=1

Case 4. (1.1) holds (i.e., (1.4) fails) and s1 —N/p1 #s2—N/pso

Case 5. s1<s9,q=o00and s1—N/p1=s9—N/ps is an integer =0

Case 6. N =1,s9=11is aninteger, po=1,1<pj<ocoands;=sg—1+1/p;
Case7. N=1,s9=11is aninteger, po=1,1<pij<ocoand sg—1+1/p1<si<sg
Case 8. N =2,s9=11s aninteger, po=1,1<pij<ocoand sg—1+1/p1<si<sg

Case 1. Assume that ¢ = oo, r =0 is an integer, r <s; and s;1 — N/p1 # sg — N/po. Then (1.11)
holds

Proof. We note that s —r—N/p1 #sg—r—N/pg and that s;—r =0, j =1,2. We are thus in
position to combine Lemmas 4 and 6 and find that

||f||p0 <IfI° N £ 5305 Nipg ~ ”f”Wsl -rp1 ||f||W32 —rpy ”f”Wslpl ”f”WSsz (3.4)
Replacing in (3.4) f with 0%f, with @ a multi-index such that |a| = r, we find that

ID" fllpo SIID” f||Ws1 — f||Ws2 -rpg ||f||Ws1 P1 ||f||Ws2 P2 - (3.5)
Combining (3.4) and (3.5) with Lemmas 1 and 8, we find that

1 lwreo = 1f Lo+ 1D fllzee S IIfIIFO +1D" fIIFo S Wporo0 1 Hyomps - O



Case 2. (1.11) holds when s1 = s9

Proof. With no loss of generality, we may assume that 1 < p; < pg < oco. [Recall that we have
assumed (s1,p1) # (s2,p2), and thus when s; = sg we must have p; # po.] It follows that r <
s =81 =89 and p1 < p < pe. Let us note that, in view of the assumption s; = s9, (1.1) holds.
Therefore, (1.11) holds also, possibly except when (1.6) fails. We find that we only have have to
investigate the validity of (1.11) when

N
s—— =ris an integer =0 and g = co. (3.6)

p
In this case, the validity of (1.11) follows from Case 1. O

Case 3. (1.11) holds when p =1

Proof. In this case we have p = p; = p2 = 1 and thus s; < s2. In particular, (1.1) holds. The
only possible obstruction for the validity of (1.11) can arise from Theorem B item 1. We thus
investigate the case where N =1, s >1is an integer, 1<qg <oo,r=s—-1+1/q.

We let S1, So such that:
1. We have s1 <S1<s<8S2<s2,and S; is not an integer, j = 1,2.
2. Ifwelet Rj:=S;-1+1/q, j=1,2,then R; > 0.

The last condition is satisfied provided S, j = 1,2 are sufficiently close to s (since s—1+1/q =
1/q > 0).

Define 1,11, 19 € (0,1) by the relations
S = /181 +(1- /I)Sz, Sl =A181+ a- /11)82, Sg =A9s1+ a- /12)82. 3.7)

Clearly, we have

r=AR1+(1-A)Ro, (3.8)
A1+ -A)A2 =0, 3.9
A1-21)+1-1)(1-22)=1-86. (3.10)

Let us note that, since 1 < g <oo and S; is not an integer, j = 1,2, we have
WS LR) — WEH(R), j=1,2. (3.11)
Using successively: (3.8) and Theorem A, (3.11), (3.9)—(3.10) and Theorem A, we find that

1w S 1F Wy 1 Mgty S 1 sy 1 iy

1-
1-Aq 1-22 _
(g I ) (1 T2 ) = Uy LNy

This completes Case 3. O

In view of Case 2 and Case 3, from now on we may assume that
$1 <89 (3.12)
and
1< p<oo, (3.13)

and in particular that (1.7) fails. [Note that the value p = oo is excluded, in view of (1.12).]
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Case 4. Assume that (1.1) holds (i.e., that (1.4) fails) and that s; —N/p1 # so—N/po. Then (1.11)
holds

Proof. We may assume that (3.12) and (3.13) hold. It suffices to investigate the cases where (1.6)
fails. In view of Theorem B and of the assumption (3.13), we thus have that r = 0 is an integer,
g=00,l<p<ooands=r+N/p.

It will be convenient to rely on geometric interpretations of the conditions (1.2) and (1.4)
with s1 < sg. Condition (1.2) asserts that the point (s,1/p) belongs to the open line segment
I =1(s1,82,p1,p2) determined by its endpoints (s1,1/p1) and (sg,1/p2). On the other hand,
condition (1.4) is equivalent to the fact that the right endpoint of I, i.e., (s2,1/p2), is of the
form (k,1), with & positive integer, and that in addition the slope of I is < —1. Therefore, given
$1,S2,pP1,P2, if (1.4) is satisfied for some couple (s, p) with (s,1/p) € I, then it is satisfied by every
such couple. Equivalently, given I, if (1.1) holds for some couple (s, p) with (s,1/p) € I, then (1.1)
holds for every such couple.

Using these considerations, (3.12) and the assumption that (1.1) is satisfied by (s, p), we
obtain the following fact (which can also be checked analytically). Let s1 <S1<s< S92 <s9 and
define P1, Py such that the points (S;,1/P;), j = 1,2, belong to I. Define A, A1, A2 as in (3.7).
Then

1 /1j+1—/1j 219 1 ﬂ+1—/1 (3.14)
- - » JJ=L4L,4, —=—— .
P, p1 p2 p Pi1 Py
and
A 1-1; .
1 s SUF Wgrsnmy 1 lgoghs> ¥ F € WPPHRN) nWo2P2(RY), ¥ j = 1,2. (3.15)

We choose S; such that S; —r >0, j = 1,2; this is possible since s —r = N/p > 0.

We next note that, under the assumption s; —N/p1 # sa — N/pg, the function I 3 (s,1/p) —
s—N/p is strictly monotone, and thus in particular S1 —N/P1 # So—N/P5. Since r < S1, by Case
1 we have

1Flwree SN sy oy 1 Ids 2y - (3.16)

We complete Case 4 by combining (3.16), (3.15) and (3.9)—(3.10). O
In Case 5 below, we assume (3.12), i.e., s1 < s9.

Case 5. Assume that ¢ = co and that s; — N/p1 =so— N/pg is an integer = 0. Then (1.11) fails
except in the trivial case where p; =00, pa =1
Proof. Let us note that we have po<pjandr=s—-N/p=s1—N/p1=s2—N/p2 =0 is an integer.

Case 5.1. py=ocoand pa=1
In this case, we have s1 =r, sg =r+ N, and thus W3:P1 = W™ and W22 — W' whence
(1.11).

Case 5.2. pg>1and p; <oo
We have W52:P2 — W51.P1 which implies W51:P1nW52:P2 = W51.P1 However, we have W51-P1 o>
W™ so that (1.11) fails.

Case 5.3. po>1and p; =oco (so that s; =r)

In this case, (1.11) becomes || f llwreo < | £ 1%rc0 [ £ [5m.5» Which fails since W¥2:P2 o~ W2,

Case5.4. po=1land 1< pj;<oo
This is a more delicate case. We want to prove that the estimate

I lwree S Igoron 1 Iyt as ¥ F € WORPHB) AW HA(B) (3.17)

fails in the unit ball B.

11



When r =0, this is an immediate consequence of the analysis in [6, Appendix]. We present a
a proof valid for all integers r = 0.

Fix some function ¢ € CZ°(B) such that ¢(x) = x7/r! near the origin. For such ¢, we have
0<Cj<oo,j=1,2,3, where

C1:=1@lwsioi@yys C2:= @lyrvigyy, C3:=1@lyroeorn).
Set

M) =17 p(Ax), VA > 1,

so that ¢ € C2(B).
A simple scaling argument shows that
|(P/1|W31’P1(B) - Cy, |<PA|Wr+N,1(B) — Cg as A — oo, |(,0A|Wr,oo(B) =Cs3, (3.18)
loMlzig) — 0as A — oo, V1<t<oo (3.19)
and
D™p* —0a.e. inBas A — oo, Vm =0 integer. (3.20)

In view of (3.18)—(3.20), of Lemma 1 and of the Brezis-Lieb lemma ([3]), for every fixed
function f € C°(B) and for every fixed number >0 we have

%E{.lo||f+,5</’1”%1,p1(3) = 1F 155101y +(C1 B7 (3.21)
and
lim |f + B lyyrenagy = I lygrevag) + C2p- (3.22)

Using (3.21)—(3.22) and a straightforward induction argument, for every sequence (f;) of
positive numbers we may choose a sequence (1) such that

J+1 J J P 4 J
——(CP Y (BHP =Y Biph < ——(CP* Y. (B)P, VI =1 (3.23)
4J = = J+1 =
J 1 J 1 Ws1:P1(B) J 1
and
J+1 L J 4J J
Co Y Bi<|> Bjo" < Ce Y Bj, VI=1 (3.24)
4J i3 j=1 A =!
(see [11] for a similar construction).
On the other hand, we have
J 1 o J 1, J
Y B =|—| X BjeY [(0)|=)_B;. (3.25)
j=1 Wreo(B) X1 Jj=1 J=1
We consider a sequence (f3;) of positive numbers such that
Y Bj=ocoand ) (B}’ <oo (3.26)
Jj=1 j=1

(note that this is possible, since p1 > po =1).
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We now argue by contradiction and assume that (3.17) holds. We obtain a contradiction (via
(3.23)—(3.26)) by testing (3.17) on fj:= ZJ 1[3](,0 7 and letting J — oo.

Case 5 is complete. O

Case 6. Assume that N =1, s9 =1 1is an integer, po =1, 1<pj<ooand sy =s2—1+1/p1. Then
(1.11) holds if and only if: [1 < p; <oco and p1/0 < q <oo] or [p; =oco and g = o]
Proof. We first assume that s =1 (and thus s; = 1/p1 and r = 1/q); as we will see below, the case
where sg = 2 easily reduces to this special case.
Case 6.1. sg=1and p; =00

By Theorem B, when 1 < g <oco we have

WEL(Q) N L®(Q) = WHH(Q) £ WY1 (Q),

and thus (1.11) cannot hold.
On the other hand, when g = oo, the estimate ||f ||z < ||f||LoO (VallEs=
in view of the embedding W11(Q) — L®(Q).

Case 6.2. s9=1,1<pi<ooand q = p1/0 (and thus r =0/p1)
By Theorem A and the embedding WH1(R) — L*®(R), we have

W1 1 holds for every 0 € (0, 1),

1Flwra = 1F Wgomnove S NFI o IFIED < UFIG w0 I IS,

whence (1.11).

Case6.3. ss=1,1<pi<ooand p1/60 <q <oo
By Theorem B and the previous case, we have

1 lwra = 1f lwvaa S UF lworpr.eie S III‘“IIV‘,I/},IP1 il=¥

Case 6.4. ss=1,1<pi<ocoand q<p1/6
Note that we must have ¢ > 1. We will prove that, for every 1 < g < p1/6, the estimate

“f”Wl/th S ”f“Wl/PlPl ”f”Wl 15 VfEWl/Pl pl(I)mwl l(I) (327)

fails in the interval I = (-2,2).
For 0<e<1/2,a>0, b >0, we consider the function v = v, 4 : (-2a,2a) — R given by:

0, if |x| > (1+¢&)a
v(x):=10, if x| <a . (3.28)
affine, in (a,(1+¢)a) and in (—(1+¢)a,—a)

By straightforward calculations, we have
[vlwriw) =20 (3.29)
and
C;b'|lne| < |v|§vw,t«_za,2a» < Cb'|Ing|, V1< t<oo (with 0 < C;,C} < 00). (3.30)

Arguing by contradiction and assuming the validity of (3.27), we obtain a contradiction (via
(3.29)—(3.30)) by testing (3.27) with v, 11 and letting € — 0.

Case 6.5. ss=1,1<pi<ooand g =00
This is a sub-case of Case 5.4.

Case 6.6. sg =2
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Let us note that sq,s9,7,p1,p2,q are in a positive case if and only of s; —sg9+1,1,r —sg +
1,p1,p2,q are in a positive case.
Therefore, in a positive case we are in position to apply (1.11) with s9 =1 and find that

172 Plgyr-ssrra SUFCE P10, 1752 Pl
< ”f”Wsl P11 ”f”WSZ 1,Vf € WSl’pl(R)nWsz’l(R),

I lLe < 1 f lyr-serra S IIfIIWM,lp1 IIfIIWn
< ||f||W81 »1 ||f||Ws2 LY f e WSLPLR) N WE2 L (R).

(3.31)

(3.32)

We obtain (1.11) from (3.31), (3.32) and Lemma 1.

If we are in a negative case, then there exists a sequence
(F))jz1 € WHs2FLPUD) AW HHID) \ {0}
such that

VFillgrsarta 2 G U1y gerpy IF7IL, V72 1. (3.33)

We consider some finite length open interval J such that I c J. By Lemma 1 and the exis-
tence of extension operators, there exist functions g;:J — R, Vj = 1, such that

1 g ™V=fiinl.

2. llgjlwsirin = I fjllwsi-seioy gy, 18 jllwsa 1y = I fjllwracy, 18 wracy = I fjllyyr-se+raqr), V7 = 1.

Using (3.33) and the above properties of g, we find that (1.11) fails.
Case 6 is complete. O

Case 7. Assume that N =1, s9 =1 is an integer, po =1, 1 <p; <ocoand sg—1+1/p; <s1 < sg.
Then (1.11) holds
Proof. As explained in Case 6, we may assume that sg =1, and thus 1/p1 <s1 <1.

Case7.1. sy=1and 1<qg<p;
Let f € WrPL{(R) N WHL(R). Set A := ||fllws1.e1 and B := ||f|y1:. We may assume that A > 0
and B > 0. We want to prove the estimate

I 13rq S A%IBI-0, (3.34)

Let f = }.j>0f; be the Littlewood-Paley decomposition of f. In view of Lemma 2, (3.34)
amounts to

> 279fjl7, S A% BUT0. .
j=0

We now note that the following estimates hold:

Ifils S 2770 F e =277 NGl S 2770 f i <277B, Vj =1, (3.36)
Ifolle Slifollp: SNl < B, (3.37)
Ifile S2C YD) il <274B, vz 1 (3.38)
and
Ifilen <27 fllpsy =27 | fllwsro =27V A. (3.39)
Indeed:
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1. (3.36) follows from (2.7) and (2.11);
2. (3.37) is a special case of (2.6);
3. (3.38) is a consequence of (2.6) and (3.36);

4. (3.39) is an immediate consequence of the formula of || f|lzs1 combined with Lemma 2.
P1,P1
Combining (3.36)—(3.37) with (3.39) we find, via Holder’s inequality, that
IfjllLe S 2 Ps1ti-Digd pl-d, (3.40)

here, the number A € (0,1) is defined by the equation

1 A 1-A
+—.

- (3.41)
q p1 1

[The fact that 0 < A < 1 follows from the assumption 1< g < p1.]
From (3.37)—(3.38) and (3.40), we obtain, with x:= A/B >0,

I£/lze < min{2 /4B, 2~ As1+1-Rig2 pi-A]

3.42
—A9R1-o min{z—j/qx—ﬁ’ 2—(Asl+1—/1)jx/l—9}. ( )

In view of (3.42) and of the desired conclusion (3.35), it thus suffices to prove that

Y min {2(rq—1)jx—9q’ 9(r-As1-1+1)jq x(a—e)q} <1 (3.43)
j=0

We now invoke the following result, whose proof is postponed.

Lemma 9. Let a,f,7,6 € R be such that ad = By and a, > 0. Then there exist 0 < C; <C3 <00
such that

Ci< ) min{2™x7, 2570} <0y, va>0. (3.44)

J==o0

In order to obtain (3.43), it suffices thus to be in position to apply Lemma 9 with
a:=(1-A+As1—-r)q,B:=rq—-1,y:=(1-0)q,6:=0q.

We start by checking the identity
ad =Py, (3.45)

which is equivalent to
1
0(1—/1+7L31—r):(/1—9)(r——). (3.46)
q

On the other hand, we have, by (1.11), r = 1/¢g + 0(s1 — 1/p1). Plugging this value of r into
(3.46) shows that (3.46) reduces to (3.41), and thus (3.45) holds.

We next prove that a, 8> 0. We clearly have § > 0. In view of (3.45), it suffices to prove that
f>0andy>0.

The inequality g > 0 follows from r —1/q = 0(s1 — 1/p1).
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Finally, y > 0 is equivalent to A > 0, that we obtain as follows: we have ¢ > p, and thus

A 1-2 1 1 0 1-0

pn 1 ¢ p p1 1~
so that A > 6, as claimed.
Case 7.1 is complete.

Case 7.2. sgs=1and q = p;
Let, for sufficiently small € =0,  := p; — € and define R by

R-1/Q=r-19=s-1/p=0(s1—1/p1)>0.

Since for € = 0 we have 0 < R < s1, we find that, for small € >0, we have 0 <R < s1 <s, while
1<@ < pi. By Case 7.1, we have

I wra SUFIperen I 1500, ¥ F € WEPPL@R) N WHL(R). (3.47)
On the other hand, we have, by Theorem B,
WEQR) — WHI(R). (3.48)

Combining (3.47) and (3.48), we find that (1.11) holds.
Case 7 is complete. O

Case 8. Assume that N =2, s9 =1 is an integer, pe =1, 1 <p;<ooand sg—1+1/p1 <s1 < s9.
Then (1.11) holds
Proof. We consider several sub-cases.

Case 8.1. [p1 <g <oo]or[p1<q=o0and r is not a non-negative integer]
By Lemma 2, we have W9 = F , for some ¢. Let rj, j = 1,2, be given by Lemma 7, such that

WsiPi(RNV) — Fq > J =1,2. Tt is easy to see that r; >rg and 0r1 + (1 —0)rg =r. Therefore, we
are in position to apply Lemma 4 and find that

1 llwra = 1 flFr, S ||f||9r1 £ 1% r2 SUF s IIfllwszl, vV f e WSIPLRN) a WosL(RY). (3.49)

Case 8.2. p1 <q =00 and r =0 is an integer
Since q = 0o, (1.12) yields

:6(31—£)+(1—9)(82—JX),
pP1 1

and thus
{ N N} N
r=max{sS{——,S2—— =81 —— =81.
p1 1 p1

Arguing as in the proof of (3.49), but using Lemmas 6 and 8 instead of Lemmas 7 and 2, we
find that

£l S IIfIIFo SN FIL rIIfII r2 r

N LN (3.50)
SUFNsr-rmn ||f||Ws2 1y V€ WSLPLRY) n WH2 2 (R™).
Applying (3.50) to 0%f, with |a| = r, we obtain
ID"fllz~ S ID” fllel 2 flIWS2 i 3.51)

< ”f"Wsl P11 ||fllws2 1 Vf € WSl’pl(RN)nWsz’l(RN)-
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We complete the analysis of Case 8.2 by combining (3.50) and (3.51) with Lemma 1.
We have thus settled all the cases where g > p1.
Assume next that g < p;. We define 0 € R and ¢ by

1 60 1-6 1
r=0s1+(1-0)cand — =—+—=—. (3.52)
q D1 4 pP1

Since, by (1.12), we have

1 1 6 1-6
r<fsi+(1-0)sgsand - <—=—+ ——, (3.53)
g p p1 1
we find from (3.52) and (3.53) that 0 <sg and 1<t < p;.

It also follows from (1.12) and (3.52) that

N N N N N
9(81—— +(1—0)(32——)=r——:9(31—— +(1—0)(0——), (3.54)
D1 1 q pP1 t
so that
N N
NN 3.55
TR (3.55)
Case 8.3. 0=0

In this case, Theorem B and (3.55) imply that W21 — W9 Since p1,¢> 1 and (3.52) holds,
we are in position to apply Theorem A and find that

1 wra S N Gpsson 1 I S IF Ipsnn IIfIIWszl, V f e WLPLRN) A WE2 L (RY).

Case 8.4. 0 <0 and p; <oo
In this case, we have 0 # s1 and 1 < g <oo. By (3.52), (3.55) and Lemmas 2, 4 and 7, we find
that, for some appropriate 7, we have
I lwra =1 f lFr S ||f||9s1 ||f|| S ||f||Ws1 Pl ||f||W32 1, Y f e WSrPIRN) n Wizl®Y),

Pl Pl

Case 8.5. 0 <0, p1 =00 and [q <o0o] or [qg =00 and r is not a non-negative integer]
The argument is almost identical to the one used in Case 8.4. Using, in addition, Lemma 6,
we find that

|Flwra = 1 f ey, SIS, . ||f||1 L S Wsaeo 1 s V¥ f € WELR@Y) 0 W2 @),

Case 8.6. 0 <0, g =00 and r =0 is an integer

By (3.52), we have p; =t =00 and, by (3.55), 0 = sg— N < 0. Going back to (3.52), we find that
r <si, and thus we also have r < s9. We also note that 0 =0(s;—r)+(1—-60)(sg—r—N). Using
Lemma 8 and arguing as above, we have

1/l zee < IIfIIFo S P Vil 32 r-N

(3.56)
S Wgsrroo 1 I S Wporoo £ 10 1 ¥ F € WOLRRN) n W2 HRY).
Applying (3.56) to 0*f, with |a| = r, we obtain
ID" fliLe S IID" fIIWs1 —reo |D” fllws2 r1
$1,00(mpN s2,1mIN (3.57)
S IIfIIWslooIIfIIWszl, VfeWPPRT)NWA(RY).
We complete this case by combining (3.56) and (3.57) with Lemma 1.
Case 8 is complete. O

Proof of Theorem 1 completed. As explained at the beginning of the proof, we have to investigate
the cases where (3.1) is satisfied, i.e., at least one of (1.4), (1.7) or (1.9) holds.
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1. Case 1 was a sort of preliminary case, allowing us to rule out some limiting situations
(where ¢ = oo and r = 0 is an integer).

2. The cases where s; = sg have been investigated in Case 2, and in the other cases we could
assume, in addition to (3.1), that s1 < s9.

3. The cases where (1.7) holds form a sub-case of Case 3.
4. The cases where (1.9) holds are sub-cases of Cases 4 and 5.
5. The cases where N =1 and (1.4) holds were treated in Cases 6 and 7.
6. The cases where N =2 and (1.4) holds were investigated in Case 8.
The proof of Theorem 1 is complete. O
Proof of Lemma 9. Let J = J(x) € Z be the (unique) integer such that
27 YUY <2PIx 0 if j>Jand 27V ar = 2P x 0 if j< . (3.58)

It follows from (3.58) that
(y+6)(a+pP)
il 5 T <97 < plreodasp), (3.59)

On the other hand, the proportionality relation ad = By implies

Y+0o Y+0o
=danda—— =7. 3.60
ﬁa+ﬁ an aa+,6 Y ( )

Using (3.59) and (3.60), we obtain

(e ]

Y min{Z_“ij, 2ﬁjx_5} =) 2P7 170 4 Y 27U Y m 9P 70 4 27 5 ¥
Jj=-00 jsd j>dJ
~ xﬁ(y+6)/(a+,3)—§ +x—a(y+6)/(a+ﬁ)+y — 2,
whence (3.44). d

Appendix. Proof of Theorem B

As explained at the beginning of Section 3, in view of the arguments we present it suffices to
work in Q =RY or in a ball. The proof consists of three cases.

Case 1. “Ordinary” cases

The conclusion of the theorem is well-known when both s and r are integers; see e.g. [2, Sec-
tion 9.3]. Similarly, for the case where both W*? and W"¢ are regular spaces (in the sense of
Definition 3); see e.g. [15, Section 2.2.3].

By the above, it remains to consider the case where exactly one of the spaces WP, W9 ig
exceptional, while the other one is of fractional order.

Case 2. W5P is of fractional order, while W™? is exceptional
Thus g = 0o and r = 0 is an integer. We must have p > 1, for otherwise, by (1.5), s is an integer,
and thus W*! is exceptional.

The sequence (f,s) constructed in Case 5.4 in the proof of Theorem 1 satisfies ||fllwsr < 1,
while ||fjllwre~ — 0o as J — co. We find that (1.6) fails.
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Case 3. W*P is exceptional, while W"-? is of fractional order
Thus s = 1is an integer, p = 1, and 1 < q < co. [Indeed, if ¢ = co then r is an integer.] We consider
several sub-cases.

Case3.1. N=22andr<s-1
In this case, we have W51 — Ws~LN/(N-1) 1y Case 1. By the same case, we have Ws~LV/WV-1
W4, and thus W1 — W4,

Case3.2. N=2ands=1

In this case, the embedding W11 — W7 has been established by Solonnikov [16]. Another proof
of this embedding can be found in [1, Appendix D]. The proof there is presented only for N = 2,
but a similar argument holds for every N = 2; see also the references therein.

Case3.3. N=2,s=2ands—-1<r<s
By the previous case, we have

ueWs! = D lueWH! = D luew s*he, (4.1)

On the other hand, we clearly have 1 < g < N/(N —1). By the Sobolev embedding Wh! —
LN'WN-D e find that

ueLlnLNW-D, ra (4.2)

From (4.1) and (4.2), we obtain that W1 — W4,

Case3.4. N=1ands=1

In this case, it is possible to construct a function u : R — R such that suppu < (0,1) and u €
WLL(R), but u ¢ WY4:9((0,1)), V ¢ > 1 (see Lemma 10 below). Thus the embedding Wb — W44
fails.

Case3.5. N=1,s=2ands-1<r<s
By Case 3.4, there exists some u : R — R such that suppu < (0,1), w € Wh1\ erocs+1q. Let
v € W*1((0,1)) be such that v*~V = u. Then we have v € W1\ W9,

The proof of Theorem B is complete. O
Lemma 10. There exists a function © : R — R, with suppu < (0, 1), such that:

1. ue WH(R).

2. For every 1< ¢ < oo, u ¢ WY2:4((0,1)).

Proof. Let v =v,4 be as in (3.28). Consider a sequence u; := Veja;b; (- — d;), where b; := 1/52,

£j:= e_ej, and a; and d; are chosen such that the intervals I; := (d ;—2a;,d j+2a ;) have mutually
disjoint supports contained in (1/3,2/3). Let u := Y u;. Clearly, suppu < (0,1) and u € L?(R),
1< p < oo. By (3.29)—(3.30), we have u € WH1(R) and, for 1 < ¢ < oo,

N J —
|u|W1/q 4((0,1)) ~ Z| lel/q q(I ) QZ e O
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