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Penalisation techniques for one-dimensional re�ected rough di�erential

equations

Alexandre Richard∗ Etienne Tanré † Soledad Torres ‡

April 25, 2019

Abstract

In this paper we solve real-valued rough di�erential equations (RDEs) re�ected on a rough boundary.
The solution Y is constructed as the limit of a sequence (Y n)n∈N of solutions to RDEs with unbounded
drifts (ψn)n∈N. The penalisation ψn increases with n. Along the way, we thus also provide an existence
theorem and a Doss-Sussmann representation for RDEs with a drift growing at most linearly. In addition,
a speed of convergence of the sequence of penalised paths to the re�ected solution is obtained.
We �nally use the penalisation method to prove that under some conditions, the law of a re�ected Gaussian
RDE at time t > 0 is absolutely contiuous with respect to the Lebesgue measure.

Key words: Re�ected rough di�erential equation; Penalisation; Gaussian noise; Skorokhod problem.
MSC2010 Subject Classi�cation: 34F05, 60G15, 60H10.

1 Introduction

Solving (stochastic) di�erential equations with a re�ecting boundary condition is by now a classical prob-
lem. For a domain D ⊆ Re, a mapping σ : Re → Re×d, an initial value y0 ∈ D and an Rd-valued path
X = {Xt}t∈[0,T ] sometimes referred as the noise, this problem consists formally in �nding Re-valued paths
{Yt}t∈[0,T ] and {Kt}t∈[0,T ] such that ∀t ∈ [0, T ],

Yt = y0 +

∫ t

0

σ(Ys)dXs +Kt,

Yt ∈ D, |K|T <∞,

|K|t =

∫ t

0

1{Xs∈∂D}d|K|s and Kt =

∫ t

0

n(Xs)d|K|s,

where |K|t is the �nite variation of K on [0, t] and n(x) is the unit inward normal of ∂D at x. If X is a
Brownian motion and the integral is in the sense of Itô, this problem was �rst studied by Skorokhod [28],
and then by McKean [24], El Karoui [10], Lions and Sznitman [22], to name but a few. For this reason, it is
called the Skorokhod problem associated to X, σ and D (see De�nition 2.9).

In the last few years, this problem has attracted a lot of attention when the driver X is a β-Hölder contin-
uous path: in the �regular� case β ∈ ( 1

2 , 1), existence of a solution has been established in a multidimensional
setting by Ferrante and Rovira [13] and uniqueness was then obtained by Falkowski and Sªomi«ski [12]. In
that case, the integral can be constructed by a Riemann sum approximation and is known as a Young integral
[32]. Extensions of these results to the �irregular� case β < 1

2 can be handled with rough paths. We recall
that this theory was initiated by Lyons [23] and for a (multidimensional) β-Hölder continuous path X and σ
a bounded vector �eld, it provides a way to solve the equation dYt = σ(Yt)dXt, where X = (X,X) is the path
X with a supplementary two-parameters path X (in fact higher order correction terms such as X are needed
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if β ≤ 1
3 , but we shall assume β > 1

3 for simplicity). Solutions can be understood either as a limit of ODEs
driven by a smooth driver Xk which converges to X ([17, Chap. 10]), or directly as an equality between

Yt and
∫ t

0
σ(Ys)dXs when this integral is de�ned in the sense of controlled rough paths [15, 18] (alternative

approaches include the original de�nition of Lyons [23] and the one of Davie [6]). In this paper both notions
will be useful and shown to coincide for the penalised RDEs. Existence of solutions of re�ected RDEs with
β ∈ ( 1

3 ,
1
2 ) was proven by Aida [1] and Castaing, Marie, and Raynaud de Fitte [5] under slightly di�erent

conditions. While Deya, Gubinelli, Hofmanová, and Tindel [7] proved uniqueness for a one-dimensional path
re�ected on the horizontal line. In those works, the existence is obtained through Wong-Zakai or Euler-type
approximations, assuming that the boundary is either a convex or su�ciently smooth set, or a hyperplane.
On the other hand in the Brownian noise setting, the re�ected solutions have often been constructed by a pe-
nalisation procedure (see in particular [11, 22, 30]). The present approach extends this classical penalisation
technique to rough paths and covers the case of rough boundaries.

We focus on one-dimensional (e = 1) solutions to rough di�erential equations which are re�ected on a
moving boundary L : [0, T ] → R, where the driver is a d-dimensional rough path X with Hölder regularity
β ∈ ( 1

3 , 1) (note that by a slight abuse of notations, we may use X for X and the vocabulary of rough paths
even in the smooth case). Following a classical method for re�ected (stochastic) di�erential equations, we
consider the following sequence of penalised RDEs with drift:

Y nt = y0 + n

∫ t

0

(Y ns − Ls)−ds+

∫ t

0

σ(Y ns )dXs. (1.1)

For technical reasons, the drift function n(·)− will be replaced by a smoother function ψn with at most linear
growth, the interpretation remaining that of a stronger and stronger force pushing Y n above L. But unlike
classical ODEs and to some extent SDEs, solving RDEs with unbounded coe�cients is known to be tricky
[2, 20, 21]. However, in case only the drift is unbounded (smooth and at most linearly growing) and σ is
smooth and bounded, Riedel and Scheutzow [27] proved the existence of a semi�ow of solutions. We propose
an alternative approach, without considering the �ow but only the solution, based on an extension of a result
of Friz and Oberhauser [14]. That is we prove that any RDE with drift having a bounded derivative has a
unique global solution, and that it has a Doss-Sussmann�like representation [9, 29]. This last property turns
to be extremely useful as it allows to transport the monotonicity of ψn ≤ ψn+1 to the penalised solution,
leading to Y n ≤ Y n+1. We are then able to prove the uniform convergence of Y n andKn :=

∫ ·
0
ψn(Y ns −Ls)ds

to Y and K, which are then identi�ed as the solution to the Skorokhod problem described above. This reads
(recall we assumed e = 1):

Yt = y0 +

∫ t

0

σ(Ys)dXs +Kt and Yt ≥ Lt , t ∈ [0, T ], (1.2)

and the non-decreasing path K increases only when Y hits L. Here, the re�ection term also reads Kt =
sups≤t

(
(Ls − y0 −

∫ s
0
σ(Yu)dXu) ∨ 0

)
. Besides, when X is a Gaussian rough path, the convergence of the

sequence of penalised processes also happens uniformly in Lγ(Ω), γ ≥ 1. The uniqueness of Y as the solution
to the RDE with vector �eld σ and re�ected on L follows from Deya, Gubinelli, Hofmanová, and Tindel [7,
Th. 9], and the extension here to a non-constant boundary L bears no additional di�culty. Interestingly, it
relies on a rough Gronwall lemma introduced in [8]. We provide a new application of this rough Gronwall
lemma, obtaining a rate of convergence in the previous results. Namely, we obtain that the uniform distance
between Y n and Y is at most of order n−β , where β ∈ ( 1

3 , 1) is the regularity of the driving signal. Up to
a logarithmic factor, this result extends the optimal rate obtained in the Brownian framework by Sªomi«ski
[30].

The penalisation approach is a natural technique to solve re�ected (ordinary, stochastic or rough) dif-
ferential equations, and it also has fruitful applications to the study of the probabilistic properties of the
solution. As an example, we prove that if σ is constant and if the noise is a fractional Brownian motion
with Hurst parameter H ∈ [ 1

2 , 1), then at each time t > 0 the law of the solution Yt restricted to (0,∞) is
absolutely continuous with respect to the Lebesgue measure. We expect to carry further investigations in
this direction to relax the assumption on σ and to get properties of the density.

Organisation of the paper. In Section 2, a brief overview of rough paths de�nitions and techniques is
presented, followed by a set of precise assumptions and the statement of our main results. Then the existence
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of a solution to the penalised equation is proven in Section 3, followed by some penalisation estimates. Most
of the proofs that lead to the convergence of the penalised sequence to the re�ected solution (Theorems 2.12
and 2.13) are contained in Section 4: �rst it is proven that Y n andKn converge uniformly (we show monotone
convergence of Y n towards a continuous limit), then that Y is controlled by X in the rough paths sense,
which permits to use rough paths continuity theorems to show that Y and K solve the Skorokhod problem.
In Section 5, we prove Theorem 2.14 which gives a rate of convergence of the sequence of penalised paths to
the re�ected solution, as well as Theorem 2.15 which gives a probabilistic estimate of the aforementionned
rate. In Section 6, after recalling a few facts concerning Malliavin calculus and fractional Brownian motion,
we prove that the re�ected process with constant di�usion coe�cient and driven by fractional noise admits
a density at each time t > 0 (Theorem 2.16). Eventually, the proof of existence of solutions for RDEs with
unbounded drift (Proposition 2.11) can be found in Appendix A.

Notations. C is a constant that may vary from line to line. For k ∈ N and T > 0, Ckb ([0, T ];F ) (or simply
Ckb ) denotes the space of bounded functions which are k times continuously di�erentiable with bounded
derivatives, with values in some linear space F . If E and F are two Banach spaces, L(E,F ) denotes the
space of continuous linear mappings from E to F . In the special case E = Rd and F = R, we also write (Rd)′
to denote the space of linear forms on Rd. By a slight abuse of notations, we may consider row vectors as
linear forms and vice versa. In this case, if x ∈ Rd, the notation xT will be used for the transpose operation.
The tensor product of two �nite-dimensional vector spaces E and F is denoted by E ⊗ F . In particular,
Rd ⊗ Re ' Rd×e 'Md,e(R) is the space of real matrices of size d× e.
Let f be a function of one variable, and de�ne

δfs,t := ft − fs. (1.3)

The 2-parameter functions are indexed by the simplex S[0,T ] = {(s, t) ∈ [0, T ]2 : s ≤ t} rather than [0, T ]2.
If I is a sub-interval of [0, T ], then SI = {(s, t) ∈ I2 : s ≤ t}. For β ∈ (0, 1) and a function g : S[0,T ] → F ,
the Hölder semi-norm of g on a sub-interval I ⊆ [0, T ], denoted by ‖g‖β,I (or simply ‖g‖β if I = [0, T ]), is
given by

‖g‖β,I = sup
(s,t)∈SI
s6=t

|gs,t|
|t− s|β

.

The β-Hölder space Cβ2 ([0, T ];F ) is the space of functions g : S[0,T ] → F such that ‖g‖β <∞. The β-Hölder

space Cβ([0, T ];F ) is the space of functions f : [0, T ]→ F such that ‖δf‖β <∞ (hereafter ‖δf‖β will simply
be denoted by ‖f‖β). With a slight abuse of notations, we may write g ∈ Cβ([0, T ];F ) even for a 2-parameter
function, and if the context is clear, we may just write g ∈ Cβ .

Similarly, we also remind the de�nitions of the p-variation semi-norm and space. For p ≥ 1, a sub-interval
I ⊆ [0, T ] and g : S[0,T ] → F , denote by ‖g‖p,I (or simply ‖g‖p if I = [0, T ]) the semi-norm de�ned by

‖g‖pp,I = sup
π

m−1∑
i=0

|gti,ti+1
|p,

where the supremum is taken over all �nite subdivisions π = (t0, . . . , tm) of I with t0 < t1 < · · · < tm ∈ I,
∀m ∈ N. We de�ne Vp2 the set of continuous 2-parameter paths g with �nite p-variation, and Vp the set of
continuous paths f : [0, T ]→ F such that ‖δf‖p <∞ (with the same abuse of notations, ‖δf‖p will simply
be denoted by ‖f‖p).

Note that we shall use roman letters (p, q,...) for the variation semi-norms and greek letters (α, β,...) for
Hölder semi-norms in order not to confuse ‖ · ‖p and ‖ · ‖α. In case there might be a confusion, we shall write
‖ · ‖p-var or ‖ · ‖α-Höl, for instance ‖f‖1-var.

Remark 1.1. The space Cβ (resp. Vp) is Banach when equipped with the norm f 7→ |f0| + ‖f‖β . (resp.
|f0| + ‖f‖p ). When this property will be needed, the paths will start from the same initial conditions, thus
we may forget about the �rst term and consider ‖ · ‖β (resp. ‖ · ‖p) as a norm.

Lastly, the mapping φp(x) = x ∨ xp, x ≥ 0 will frequently appear in upper bounds of control functions
that are used to control the p-variations of penalised and re�ected solutions.
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2 Preliminaries on rough paths and the Skorokhod problem

In this section, we brie�y review the de�nitions of rough paths and rough di�erential equations, gathered
mostly from Friz and Victoir [17] and Friz and Hairer [15]. We also make precise the meaning of the Skorokhod
problem written in Equation (1.2).

2.1 Geometric rough paths

De�nition 2.1 (Rough path). • Let β ∈ ( 1
3 ,

1
2 ] (resp. p ∈ [2, 3)). A β-Hölder rough path (resp. p-

rough path) X is a couple X =
(
(Xt)t∈[0,T ], (Xs,t)s,t∈[0,T ]

)
∈ Cβ([0, T ];Rd) × C2β([0, T ];Rd ⊗ Rd) (resp. in

Vp([0, T ];Rd)× V
p
2 ([0, T ];Rd ⊗ Rd)) such that Chen's relation is satis�ed:

Xs,t − Xs,u − Xu,t = δXs,u ⊗ δXu,t,

for any s ≤ u ≤ t ∈ [0, T ]3. The space of such paths is denoted by C β([0, T ];Rd), or simply C β (resp.
V p([0, T ];Rd) and V p). For X ∈ C β (resp. in V p), we will need the following homogeneous rough path
�norm�

|||X|||β = ‖X‖β +
√
‖X‖2β (resp. |||X|||pp = ‖X‖pp + ‖X‖

p
2
p
2
).

• X ∈ C β([0, T ];Rd) (resp. in V p) is a geometric rough path if the symmetric part of X, sym(X) =(
Xij + Xji

)
i,j=1...d

, satis�es

sym(X)s,t =
1

2
δXs,t ⊗ δXs,t.

Intuitively, this relation implies that geometric rough paths admit a �rst order chain rule, as for smooth paths
or Stratonovich calculus. The space of geometric β-Hölder rough paths (resp. p-rough paths) is denoted by
C β
g

(
[0, T ],Rd

)
(resp. V p

g

(
[0, T ],Rd

)
).

Although our main results are expressed in Hölder spaces only, the p-variations play an important role in
the proofs, due to the nature of the compensator process K (which is non-decreasing and thus in V1).

For the following de�nition, we follow [7].

De�nition 2.2 (Control function). Let I be an interval and recall that SI denotes the simplex on I. A control
function is a map w : SI → R+ which is super-additive, i.e. w(s, t) + w(t, u) ≤ w(s, u) for all s ≤ t ≤ u ∈ I.
A control function is regular if lim|t−s|→0 w(s, t) = 0.

For instance, if ‖X‖pp,I < ∞ for some interval I ⊆ [0, 1], then wX(s, t) = ‖X‖pp,[s,t] is a control function

on SI . If X ∈ Vp(I), then wX is a regular control function.

2.2 Rough di�erential equations with drift

For a geometric rough path X ∈ C β
g

(
[0, T ],Rd

)
, we would like to give a meaning to the following formal

equation:

dYt = b(Yt)dt+ σ(Yt)dXt. (2.1)

We adopt the de�nition of solution given in [17, De�nition 12.1] (see also [14, De�nition 3]), which we recall for
the reader's convenience. Note that this de�nition gives a meaning to (1.1), but not directly to

∫
σ(Y ns )dXs.

De�nition 2.3 (RDE with drift). Let X ∈ C β
g

(
[0, T ],Rd

)
, with β ∈ ( 1

3 ,
1
2 ]. We call Y ∈ C0([0, T ],Re)

a solution to the RDE with drift (2.1) started at y0 ∈ Re if there exists a sequence (Xk)k∈N of Rd-valued
Lipschitz paths such that

• sup
k∈N

∣∣∣∣∣∣Xk
∣∣∣∣∣∣
β
<∞, where Xk = (Xk,Xk) and Xks,t =

∫ t
s
(Xk

u −Xk
s )dXk

u ;

• Xk converges pointwise to X;
• for all k, the ODE dY kt = b(Y kt )dt+ σ(Y kt )dXk

t has a solution and limk→∞ ‖Y k − Y ‖∞,[0,T ] = 0.
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The classical Doss-Sussmann representation (see Doss [9] and Sussmann [29]) provides a way to write the
solution of a stochastic di�erential equation as the composition of the �ow of σ with the solution of a random
ODE. It works for one-dimensional noises, even in some rough cases. However its multidimensional gener-
alization requires strong geometric assumptions on σ (see [9]). Instead we recall a less explicit formulation
borrowed from Friz and Oberhauser [14], which requires no additional assumption on σ and shall be enough
for our needs.

For some σ : Re → L(Rd,Re), consider the RDE

dỸt = σ(Ỹt) dXt, (2.2)

and if they exist, denote by y0 7→ UX;y0
t←0 the �ow of the solution (i.e. Ỹt = UX;y0

t←0 when Ỹ0 = y0), by J
X;y0
t←0 its

Jacobian and by JX;y0
0←t the inverse of the Jacobian.

Proposition 2.4 ([14]). Assume that b ∈ C1
b (Re;Re), σ ∈ C4

b (Re;L(Rd,Re)) and that X ∈ C β
g

(
[0, T ];Rd

)
,

with β ∈ ( 1
3 ,

1
2 ). Then for any y0 ∈ Re, there exists a unique solution Y to the RDE with drift (2.1) started

from y0. Moreover, this solution has the following Doss-Sussmann representation:{
Yt = UX;Zt

t←0

Zt = y0 +
∫ t

0
W (s, Zs)ds

, t ∈ [0, T ],

where
W (t, z) = JX;z

0←t b
(
UX;z
t←0

)
, (t, z) ∈ [0, T ]× Re. (2.3)

2.3 Assumptions

We shall assume throughout the paper that e = 1 (except in the more general Proposition 2.11) and

σ ∈ C4
b (R, (Rd)′). (2.4)

Since the penalisation term n(·)− in (1.1) is not di�erentiable, we approximate it by a smooth non-increasing
function ψn such that

∀y ∈ R, ψn(y) =

 0 if y > 0,
− 1

2 − ny if y ≤ − 1
n ,

convex interpolation if − 1
n < y ≤ 0.

(2.5)

In fact, for any n ∈ N we can choose ψn as above and which also satis�es:{
ψn ∈ C∞ and ψ′n ∈ C∞b ;

∀y ∈ R, ψn(y) ≤ ψn+1(y) and − 1
2 + ny− ≤ ψn(y) ≤ ny−.

(2.6)

We assume that the driving signal is a geometric β-Hölder rough path, for some β ∈ ( 1
3 ,

1
2 ], i.e. X =

(X,X) ∈ C β
g ([0, T ];Rd). The boundary process L is assumed to have at least the same Hölder regularity as

X, and further that

X̂ := (X,L) can be enhanced into a geometric β-Hölder rough path X̂ = (X̂, X̂) ∈ C β
g ([0, T ];Rd+1). (2.7)

In that case, we still denote by X the projection of X̂ on the X component, and by X = (X,X) the associated
rough path. Note that the previous assumption is not trivial in general because of the roughness β ≤ 1

2 . In
fact since we consider RDEs with drifts, we will also need (X,L, t) to be lifted into a geometric rough path.
In that case, since the identity function of R is smooth, it is always possible to realise this lift, in such a way
that the projection on (X,L) coincides with X̂ (see Young pairings [17, Section 9.4]). Observe that Young
pairings can also be used to obtain (2.7), but then one has to assume more regularity on L, namely that
L ∈ Vq, with q ≥ 1 such that 1

q + 1
p > 1 (p = β−1).

With these notations and assumptions, we consider

Y nt = y0 +

∫ t

0

ψn(Y ns − Ls)ds+

∫ t

0

σ(Y ns )dXs , t ∈ [0, T ]. (2.8)

For each n ∈ N, Proposition 3.1 ensures that there is a unique solution to (2.8).
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2.4 Gaussian rough paths

In case X is a Gaussian process, several papers give conditions (see in particular Cass, Hairer, Litterer, and
Tindel [4]) for X to be enhanced into a geometric rough path. Cass, Litterer, and Lyons [3] also proved
that such conditions yield that the Jacobian of the �ow has �nite moments of all order (see also [4] with a
bounded drift).

Let (Ω,F ,P) be a complete probability space, and let X = (X1, . . . Xd) be a continuous, centred Gaussian
process with independent and identically distributed components and let R(s, t) = E

(
X1
sX

1
t

)
denote the

covariance function of X1. Following Cass et al. [3], let

R

(
s, t
u, v

)
= E

[
(X1

t −X1
s )(X1

v −X1
u)
]

be the rectangular increments of R. Then for r ∈ [1, 3
2 ), we might assume that R has �nite second-order

r-variation in the sense

‖R‖r;[0,T ]2 :=

 sup
π=(ti)
π′=(t′j)

∑
i,j

R

(
ti, ti+1

t′j , t
′
j+1

)r
1
r

<∞. (HCov)

Under this assumption, X can almost surely be enhanced into a geometric rough path X = (X,X) and for
any α ∈ ( 1

3 ,
1
2r ), X ∈ C α

g . Moreover, this assumption permits to obtain upper bounds on the Jacobian of the
�ow of a Gaussian RDE, which shall help us obtain convergence results in Lγ(Ω) (Theorem 2.13).

Remark 2.5. A typical example of process satisfying (HCov) is the fractional Brownian motion (BHt )t≥0.
We recall that for any Hurst parameter H ∈ (0, 1), (BHt )t≥0 is the centred Gaussian process with covariance

E
(
BHt B

H
s

)
=

1

2

(
t2H + s2H − |t− s|2H

)
, ∀t, s ≥ 0.

Such a process is statistically H�self-similar and increment stationary (e.g. for H = 1
2 , this is a standard

Brownian motion). Most importantly regarding the theory of rough paths, if H ∈ ( 1
3 ,

1
2 ], its covariance satis�es

(HCov) with r = 1
2H , so that it can be enhanced into a geometric rough paths. If H ∈ ( 1

2 , 1), then one can
solve di�erential equations driven by BH in the Young sense (i.e. without needing to enhance BH). Besides,
its sample paths are almost surely β-Hölder continuous, for any β < H.

2.5 Controlled rough paths

We choose to de�ne controlled rough paths with respect to the p-variation topology. This is because the
compensator K and its approximations Kn are clearly in V1 while it seems more di�cult to prove that they
have some Hölder regularity. It then becomes possible to use rough paths continuity results such as Theorem
2.7.

De�nition 2.6 (Controlled rough path). Let p ∈ [2, 3) and X ∈ Vp([0, T ];Rd). A path Y ∈ Vp([0, T ];E) is

controlled by X if there exist a path Y ′ ∈ Vp([0, T ];L(Rd, E)) and a map RY ∈ V
p
2
2 ([0, T ];E) such that

∀s ≤ t ∈ [0, T ], δYs,t = Y ′sδXs,t +RYs,t.

The path Y ′ is called the Gubinelli derivative of Y (although it might not be unique), and RY is a remain-

der term. The space of such couples of paths (Y, Y ′) controlled by X is denoted by VpX(E) (CβX(E) for a
corresponding de�nition in β-Hölder norm, see [15, De�nition 4.6]).

Now if X ∈ V p([0, T ];Rd) and (Y, Y ′) ∈ VpX(L(Rd,Re)), then the rough integral of Y against X is de�ned
by ∫ T

0

YsdXs = lim
m→∞

∑
πm=(tmi )

Ytmi δXtmi ,t
m
i+1

+ Y ′tmi Xtmi ,tmi+1
, (2.9)
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where (πm)m∈N is an increasing sequence of subdivisions of [0, T ] such that limm→∞maxi(t
m
i+1− tmi ) = 0 and

tm0 = 0, tmm = T .
The existence of this integral has been established by Gubinelli [18] for the Hölder topology (see also [15,

Proposition 4.10]). In the p-variation topology, we refer to Friz and Shekhar [16, Theorem 31]:

Theorem 2.7. Let p ∈ [2, 3). If X ∈ V p([0, T ];Rd) and (Y, Y ′) ∈ VpX(L(Rd,Re)), then the rough integral
of Y against X exists (and the limit in (2.9) does not depend on the choice of a sequence of subdivisions).
Moreover, for any s, t ∈ [0, T ],∣∣∣∣∫ t

s

YudXu − YsδXs,t − Y ′sXs,t
∣∣∣∣ ≤ Cp (‖X‖p,[s,t]‖RY ‖ p2 ,[s,t] + ‖X‖ p

2 ,[s,t]
‖Y ′‖p,[s,t]

)
. (2.10)

Let us �nally recall Proposition 2.12 of [5].

Proposition 2.8. Let p ∈ [2, 3). Let X ∈ V p([0, T ];Rd) and assume that (Y n, (Y n)′)n∈N ⊂ V
p
X(L(Rd,Re))

is a sequence such that:

(Y n)′ and RY
n

converge in the uniform topology on [0, T ] (resp. [0, T ]2),

and

sup
n∈N

(
‖(Y n)′‖p,[0,T ] + ‖RY

n

‖ p
2 ,[0,T ]

)
<∞,

then (Y n, (Y n)′) converges uniformly to some (Y, Y ′) ∈ VpX and

lim
n→∞

‖
∫ ·

0

Y ns dXs −
∫ ·

0

YsdXs‖∞,[0,T ] = 0.

2.6 The Skorokhod problem

Having at our disposal a rough integral in the sense of Equation (2.9), we can give a meaning to Equation
(1.2), also referred to as Skorokhod problem associated to σ and L, denoted by SP (σ, L).

De�nition 2.9. Let X ∈ V p([0, T ];Rd). We say that (Y,K) solves SP (σ, L), or that it is a solution to the
re�ected RDE with di�usion coe�cient σ started from y0 ≥ L0 and re�ected on the path L, if

(i) (Y, σ(Y )) ∈ VpX and (Y,K) satis�es Equation (1.2), in the sense that both sides are equal, where the
integral

∫ ·
0
σ(Ys)dXs is understood in the sense of (2.9);

(ii) ∀t ∈ [0, T ], Yt ≥ Lt;

(iii) K is nondecreasing;

(iv) ∀t ∈ [0, T ],
∫ t

0
(Ys − Ls)dKs = 0, or equivalently,

∫ t
0
1{Ys 6=Ls}dKs = 0 .

Remark 2.10. In item (i), it is also possible to de�ne solutions to re�ected RDEs in the sense of Davie as
in Deya et al. [7]. For RDEs with bounded coe�cients (without re�ection), Davie's solution and the solution
in the sense of controlled rough paths coincide ([15, Proposition 8.8]).

2.7 Main results

Hereafter, we use the notation X ∈ C β
g even if β > 1

2 , although the iterated integral X is irrelevant in this
case. This notation permits to present our results in a uni�ed form.

Our �rst result states the global existence and uniqueness of solutions for RDEs with an unbounded drift
which has at most linear growth. It is generally a di�cult task to obtain global existence for RDEs when
the vector �elds are unbounded (which is the case of ψn), and known counter-examples show that global
solutions may not exist in general. Nevertheless, for an RDE with coe�cient V = (V1, . . . , Vd) on Re, where
each Vi has components V ki , there are several results in this direction ([20, 21], [17, Exercise 10.56] and [2])
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which ask roughly for V ki ∇V lj to be bounded and Hölder continuous for all i, j, k, l. Observe that in our case
(assuming L ≡ 0 for simplicity), the vector �eld V would be V (y, t) = (ψn(y), σ(y)) but that ψnσ

′ is not
bounded. However this general approach neglects the special nature of the drift term and its smooth driver
�dt� by considering it as any other component of the rough driver. On the other hand, it has been proven
recently by Riedel and Scheutzow [27] that under a linear growth assumption of b, the RDE with drift (2.1)
has a unique solution (there exists in fact a semi�ow of solutions). Under similar assumptions, we provide
here a Doss-Sussmann representation of the solution.

Proposition 2.11. Let σ ∈ C4
b (Re,L(Rd;Re)), n ∈ N and assume that

b ∈ C1(Re,Re) and ∇b ∈ Cb(Re,Re×e).

Let β ∈ ( 1
3 ,

1
2 ), and let X be a d-dimensional β-Hölder geometric rough path. Then for any initial condition

y0, there exists a unique solution Y to the drifted RDE on [0, T ]. Moreover, this solution is a path Y ∈ Cβ
which also solves: {

Yt = UX;Zt
t←0

Zt = y0 +
∫ t

0
W (s, Zs) ds

, t ∈ [0, T ],

where
W (t, z) = JX;z

0←t b
(
UX;z
t←0

)
, (t, z) ∈ [0, T ]× Re.

Our proof being inspired by the one of Friz and Oberhauser [14] (the di�erence is that b is bounded in
[14]), it is postponed to the Appendix. The idea is to derive �rst the local existence and a Doss-Sussmann
representation on a small time interval where the existence of the solution is known. Global existence is then
achieved by stability of the ODE in the Doss-Sussmann representation.

Besides enabling us to prove the previous proposition, the Doss-Sussmann representation also yields a
monotonicity property that will be very useful for the penalisation procedure. In particular, we will be able
to deduce that there exists a path Y which is the limit of the non-decreasing sequence (Y n)n∈N and that this
path is controlled by X (Proposition 4.9).
We are now in a position to state our �rst main result.

Theorem 2.12. Let X = (X,X) ∈ C β
g be a geometric β-Hölder rough path, β ∈ ( 1

3 , 1) \ { 1
2}. Assume that

{ψn}n∈N, σ and L satisfy conditions (2.4)-(2.7), and that y0 ≥ L0.

(i) Then the sequence
(
Y n· ,

∫ ·
0
ψn(Y ns − Ls)ds

)
n∈N, de�ned as the solution to (2.8), converges uniformly on

[0, T ] to some path (Y,K) ∈ CβX × V1.

(ii) Besides, (Y,K) is the unique solution to the re�ected RDE (1.2) (in the sense of De�nition 2.9), i.e.
it is the solution to the Skorokhod problem SP (σ, L).

So far, the result only involved deterministic rough paths. Using some recent results on Gaussian rough
paths leads to the following theorem.

Theorem 2.13. Let σ and {ψn}n∈N satisfy conditions (2.4)-(2.6) and let y0 ≥ L0 almost surely. Let X =
(X1, . . . , Xd) be an a.s. continuous, centred Gaussian process with independent and identically distributed
components, and let R be its covariance function. Assume that either X ∈ Cβ([0, T ];Rd) a.s. for some
β ∈ ( 1

2 , 1), or that:

• R has �nite second-order r-variations for some r ∈ [1, 3
2 ), as in (HCov);

• L satis�es almost surely condition (2.7) for any β < 1
2r and that E

[
‖L‖γβ

]
<∞, for any γ ≥ 1.

Then the conclusions of Theorem 2.12 hold in the almost sure sense and moreover, the convergence holds in
the following sense: ∀γ ≥ 1,

lim
n→+∞

E

[
sup
t∈[0,T ]

|Yt − Y nt |γ
]

= 0. (2.11)

Furthermore, we obtain a rate of convergence of the sequence of penalised processes to the re�ected
solution.

8



Theorem 2.14. Assume that the hypotheses of Theorem 2.12 hold. In particular, X is a β-Hölder path,
with β ∈ ( 1

3 , 1) \ { 1
2}. Then the penalised solution Y n converges to Y with the following rate: there exists

C > 0 such that

∀n ∈ N∗, sup
t∈[0,T ]

|Y nt − Yt| ≤ C n−β .

Compared with the Theorem 4.1 of Sªomi«ski [30], we see that our result matches the optimal rate, up to
a logarithmic correction. However the result of Sªomi«ski [30] is in Lp(Ω) whereas the previous theorem is
only a.s.. We will be able to close this gap partially in the next result. But let us observe �rst that Theorem
2.14 is proven through a Gronwall argument and the constant C appearing there is thus of exponential form.
Besides, the p-variation norm of JX (the Jacobian of the �ow of the RDE) appears in this exponential, and
JX is known to have only sub-exponential moments ([3, Theorem 6.5]). This explains the log appearing in
the following result.

Theorem 2.15. Assume that the hypotheses of Theorem 2.13 hold. In particular X is a Gaussian process,
and either X has β-Hölder paths a.s. with β ∈ ( 1

2 , 1), or its covariance has �nite second-order r-variations,
and then X has β-Hölder paths a.s. with β ∈ ( 1

3 ,
1
2r ). Then for any γ ≥ 1,

E
[∣∣ sup
n∈N

log
(
nβ‖δnY ‖∞,[0,T ]

)∣∣γ] <∞.
The last result of this paper is a nice application of the previous penalisation technique and results, which

are used to prove the existence of a density for the re�ected process when the noise is a fractional Brownian
motion. It is presented under simpli�ed assumptions as the general case would be out of the scope of the
present paper and will be further investigated in a separate work.

Theorem 2.16. Let B be a one-dimensional fractional Brownian motion with Hurst parameter H ∈ [ 1
2 , 1),

and let b ∈ C1
b . Let (Y,K) be the solution to the Skorokhod problem re�ected on the horizontal axis

∀t ≥ 0, Yt = y0 +

∫ t

0

b(Ys)ds+Kt +Bt.

Then for any t > 0, the restriction of the law of Yt to (0,∞), i.e. the measure [1{Yt>0}P] ◦ Y −1
t , admits a

density with respect to the Lebesgue measure.

Note that unless otherwise stated (mostly in Section 6), we will only consider the case β ∈ ( 1
3 ,

1
2 ). Indeed

if β ∈ ( 1
2 , 1), Young integrals can be used, which makes proofs easier.

3 Penalisation for RDEs

3.1 Flow of an RDE

In this paragraph, we gather several useful properties of the �ow of the solution of an RDE, and of its

Jacobian. Let β ∈ ( 1
3 ,

1
2 ) and p = 1

β ∈ (2, 3). Hereafter,
{
UX;y0
t←0 , t ∈ [0, T ]

}
denotes the solution to the

RDE (2.2) started from y0, with X ∈ C β
g

(
[0, T ];Rd

)
and σ ∈ C4

b (Re;L(Rd,Re)) (note that C3
b is enough for

existence and uniqueness in (2.2)).

First, we know that the smoothness of the �ow depends on the smoothness of σ: for any t, y0 7→ UX;y0
t←0

is Lipschitz continuous and twice di�erentiable (see for instance [14, Proposition 3]). Denote by JX;y0
t←0 its

Jacobian matrix, which according to [3, Corollary 4.6] is uniformly (in (t, y0) ∈ [0, T ] × R) bounded by a
quantity depending only on p, ‖X‖p,[0,T ] and the so-called α-local p-variation of X (see [3, De�nition 4.3]).
We denote this upper bound by CX

J .

Denote by JX;·
0←t := (JX;·

t←0)−1 its inverse matrix, which can be interpreted as the Jacobian of the �ow of

the same RDE with X evolving backward. Hence as noticed in the proof of [4, Theorem 7.2], JX;·
0←t is also

bounded by CX
J , so that altogether the following inequality is ful�lled:

sup
y0∈R

max
(
‖JX;y0
·←0 ‖∞,[0,T ], ‖JX;y0

0←· ‖∞,[0,T ]

)
≤ CX

J <∞. (3.1)
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Note also that with σ ∈ C4
b , J

X;·
0←t and J

X;·
t←0 are Lipschitz continuous, uniformly in t.

Besides, when X is Gaussian with i.i.d. components and satis�es (HCov), C
X
J has �nite moments of all orders

([3, Theorem 6.5] and [4, Theorem 7.2]). As observed in [4, Section 7], JX;z
0←· satis�es the following linear

RDE, for any �xed z:

dJX;z
0←t = dMtJ

X;z
0←t,

where M depends on the �ow UX;z
t←0. If e = 1 (recall e is the dimension of the space in which y lives), it is

thus a consequence of the fact that JX;z
0←0 = 1 and of the uniqueness in the previous equation that JX;z

0←t > 0
for any z ∈ R and any t ≥ 0. Hence it follows from (3.1) that

∀z ∈ R, JX;z
0←t ≥ (CX

J )−1(> 0). (3.2)

It will be important to keep in mind that all the above properties are independent of the choice of a drift
function b.

Finally, the mapping W (t, z) de�ned in (2.3) is continuous in t, Lipschitz continuous in z uniformly in
t if b is bounded (this is however not true anymore if b is unbounded). This ensures that there is a unique
solution to

z′t = W (t, zt), z0 = y0.

3.2 Existence of a global solution to (2.8)

The result below states the global existence of a solution to the rough di�erential equation (2.8). Due to the
boundary term L in (2.8), we cannot apply directly Proposition 2.11. However, provided that (2.8) can be
cast into a proper RDE with drift using Assumption (2.7), then the result will hold.

Proposition 3.1. Let σ ∈ C4
b (R; (Rd)′), n ∈ N and ψn satisfying (2.5)-(2.6). Let β ∈ ( 1

3 ,
1
2 ), let X be a

β-Hölder geometric rough path and let {Lt}t∈[0,T ] be a barrier process satisfying (2.7). Then for any initial
condition y0 such that y0 ≥ L0, there exists a unique solution to (2.8). Moreover, this solution is a path
{Y nt }t∈[0,T ] ∈ Cβ which also solves{

Y nt = U
X;Znt
t←0

Znt = y0 +
∫ t

0
Wn(s, Zns ) ds

, t ∈ [0, T ], (3.3)

where
Wn(t, z) = JX;z

0←t ψn

(
UX;z
t←0 − Lt

)
, (t, z) ∈ [0, T ]× R.

Remark 3.2. • For β > 1
2 , our assumptions on the coe�cients meet those from [19] and thus there

exists a unique solution to (2.8). Moreover, the previous Doss-Sussmann representation holds also true
by a simple application of the usual chain rule.

• If the dimension of the noise d equals 1, then the usual Doss-Sussmann representation [9] can be used.

Proof. For y ∈ R2, de�ne b̂n(y) = (ψn(y1 − y2), 0)T , where we used the notation y = (y1, y2)T ∈ R2. In the

same way, de�ne σ̂(y) =

(
σ(y1) 0

0 1

)
, so that σ̂ ∈ C4

b

(
R2;L(Rd+1,R2)

)
. Finally, let X̂ ∈ C β

g be the rough

path above (X,L), as in (2.7). Proposition 2.11 ensures that there exists a unique solution Ŷ n ∈ Cβ([0, T ];R2)
to the following RDE with drift

dŶ nt = b̂n(Ŷ nt )dt+ σ̂(Ŷ nt )dX̂t.

Since Y n corresponds to the �rst component of Ŷ n, the result follows.
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3.3 Penalisation estimates

In the sequel, we will use several times the following result, which gives uniform estimates for solutions of
integral equations with drift coe�cient ψn.

Lemma 3.3. Let Ψ > 0, `, {gn}n∈N be continuous functions such that gn0 = 0, and assume that for each
n ∈ N, fn is a solution to:{

fnt = fn0 + gnt + Ψ
∫ t

0
ψn(fnu − `u)du, ∀t ∈ [0, T ],

fn0 = f0 ≥ `0.

Then,

(i) For all t ∈ [0, T ],

∀n ∈ N, |δfn0,t − δ`0,t| ≤
√

26‖gn· − δ`0,·‖∞,[0,t] ;

(ii) Let β ∈ (0, 1). If `, {gn}n∈N ∈ Cβ([0, T ],R) and fn0 ≥ `0, then

∀t ∈ [0, T ], ∀n ∈ N, ψn(fnt − `t) ≤ Ψn(Ψ−β + Ψ1−β)n1−β ,

where Ψn = C(‖`‖β + ‖gn‖β + 1
2ΨT 1−β).

Proof. (i) Denoting knt := Ψ
∫ t

0
ψn(fnu − `u)du, let f

n
and gn be de�ned as follows:

f
n

t := δfn0,t − δ`0,t = −δ`0,t + gnt + Ψ

∫ t

0

ψn(fnu − `u)du

=: gnt + knt .

Observe that

(f
n

t )2 = (gnt )2 + (knt )2 + 2

∫ t

0

gnt dk
n
u = (gnt )2 + 2

∫ t

0

(knu + gnt ) dknu

≤ (gnt )2 + 2

∫ t

0

(gnt − gnu)dknu

where we used the inequality f
n

uψn(fnu − `u) ≤ (fnu − `u)ψn(fnu − `u) ≤ 0. It follows that

(f
n

t )2 ≤ (gnt )2 + 2knt ‖gnt − gn· ‖∞,[0,t] ≤ (gnt )2 + 2(|fnt |+ |gnt |)‖gnt − gn· ‖∞,[0,t]
≤ 5‖gn· ‖2∞,[0,t] + 4|fnt |‖gn· ‖∞,[0,t]

≤ 5‖gn· ‖2∞,[0,t] + 1
2

(
|fnt |2 + 16‖gn· ‖2∞,[0,t]

)
,

which implies the result.

(ii) The inequality ψn(x) ≥ − 1
2 − nx yields

fnt − `t ≥ fn0 − `0 + gnt − 1
2Ψt− nΨ

∫ t

0

(fnu − `u)du.

Denote g̃nt := gnt − 1
2Ψt and f̃n the solution to

f̃nt − `t = fn0 − `0 + g̃nt − nΨ

∫ t

0

(f̃nu − `u)du. (3.4)
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It follows from the comparison principle of ODEs that for any t ∈ [0, T ], fnt − `t ≥ f̃nt − `t. Solving
(3.4) yields

fnt − `t ≥ (fn0 − `0)e−nΨt −
∫ t

0

e−nΨ(t−u)dg̃nu

≥ (fn0 − `0)e−nΨt + g̃nt e
−nΨt + nΨ

∫ t

0

e−nΨ(t−u)(g̃nu − g̃nt )du , t ∈ [0, T ]. (3.5)

Since ψn(x) ≤ nx−, we now obtain from (3.5) that

ψn(fnt − `t) ≤ n
(
g̃nt e
−nΨt + nΨ

∫ t

0

e−nΨ(t−u)(g̃nu − g̃nt )du

)
−

≤ n‖g̃n‖βtβe−nΨt + ‖g̃n‖βn2Ψ

∫ t

0

e−nΨ(t−u)(t− u)βdu , t ∈ [0, T ]. (3.6)

It is clear that n‖g̃n‖βtβe−nΨt ≤ ‖g̃n‖βΨ−βn1−β . Thus one focuses now on the second term: an
integration-by-parts and the change of variables v = nΨu yield

n2Ψ

∫ t

0

e−nΨ(t−u)(t− u)βdu = −ntβe−nΨt + βn

∫ t

0

e−nΨuuβ−1du

= −ntβe−nΨt + βn1−βΨ1−β
∫ nΨt

0

vβ−1e−vdv

≤ Cn1−βΨ1−β .

Plugging the last inequality in (3.6) gives the desired result.

4 Existence of a solution to the Skorokhod problem

4.1 Existence of the limit process

We use �rst comparison theorems, the Doss-Sussmann representation (3.3) and Lemma 3.3 to get the following
result, which implies the existence of paths Z and Y as pointwise limits of (Zn) and (Y n).

Proposition 4.1. (i) Let the notations and assumptions of Theorem 2.12 be in force. Then the sequences
of paths (Zn)n∈N and (Y n)n∈N de�ned in (3.3) are nondecreasing with n. Besides, the following in-
equalities are satis�ed

sup
n∈N

sup
t∈[0,T ]

|Znt | < +∞ and sup
n∈N

sup
t∈[0,T ]

|Y nt | < +∞.

(ii) Now let the assumptions of Theorem 2.13 be in force. Then the previous conclusions hold in the almost
sure sense and moreover, for any γ ≥ 1,

E

[
sup
n∈N

sup
t∈[0,T ]

|Znt |γ
]
< +∞ and E

[
sup
n∈N

sup
t∈[0,T ]

|Y nt |γ
]
< +∞.

Proof. (i) For each n ∈ N, recall from (3.3) that Zn is the solution of an ODE with coe�cient Wn(t, z) =

JX;z
0←tψn(UX;z

t←0 − Lt). In view of (3.2) and the fact that ψn ≤ ψn+1, it follows from the comparison theorem

for ODEs that Zn ≤ Zn+1. Besides, the mapping z 7→ UX;z
t←0 is increasing since its derivative is JX;z

t←0 which,
similarly to (3.2), is positive. Hence Y n ≤ Y n+1.

To prove the boundedness of Zn and Y n, de�ne Z̃n as the solution of the following ODE:

Z̃nt = y0 + CX
J

∫ t

0

ψn

(
U

X;Z̃ns
s←0 − Ls

)
ds, t ∈ [0, T ],
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which in view of the bound (3.1) and the comparison principle yields Z̃nt ≥ Znt . Observing that

U
X;Z̃ns
s←0 = UX;y0

s←0 + U
X;Z̃ns
s←0 − U

X;y0
s←0

= UX;y0
s←0 +

∫ Z̃ns

y0

JX;z
s←0dz

≥ UX;y0
s←0 + (CX

J )−1(Z̃ns − y0),

where the last inequality follows from (3.2), it comes that

Z̃nt ≤ y0 + CX
J

∫ t

0

ψn

(
UX;y0
s←0 + (CX

J )−1(Z̃ns − y0)− Ls
)
ds, t ∈ [0, T ].

Note that as the solution of an RDE, UX;y0
s←0 satis�es (see [15, Proposition 8.3]):

‖UX;y0
·←0 ‖β,[0,T ] ≤ C

{(
‖σ‖C2b |||X|||β,[0,T ]

)
∨
(
‖σ‖C2b |||X|||β,[0,T ]

) 1
β

}
, (4.1)

where C depends only on β. Hence, denoting temporarily by Cσ,X,β the right-hand side of the previous
inequality, and since y0 ≥ L0,

Z̃nt ≤ y0 + CX
J

∫ t

0

ψn

(
−Cσ,X,βsβ + (CX

J )−1(Z̃ns − y0)− (Ls − L0)
)
ds, t ∈ [0, T ], (4.2)

so that the process Z
n
which is the solution to the ODE

Z
n

t = −Cσ,X,βtβ +

∫ t

0

ψn

(
Z
n

s − (Ls − L0)
)
ds, t ∈ [0, T ]

satis�es −Cσ,X,βtβ + (CX
J )−1(Z̃nt − y0) ≤ Z

n

t , ∀t ∈ [0, T ] (by the comparison principle of ODEs). By

Lemma 3.3, Z
n
satis�es:

|Znt − (Lt − L0)| ≤
√

26

(
Cσ,X,βt

β + sup
s∈[0,t]

|Ls − L0|

)
,

which then leads to the following bound: there exists C > 0 which depends only on σ, β, T such that

Znt ≤ y0 + C CX
J

(
(|||X|||β,[0,T ] ∨ |||X|||

1
β

β,[0,T ])t
β + sup

s∈[0,t]

|Ls − L0|

)
. (4.3)

Moreover, for any t ≥ 0, Znt ≥ y0, hence supn∈N supt∈[0,T ] |Znt | < +∞. To prove the second part of claim (i),
observe that

|Y nt | = |U
X;Znt
t←0 | = |U

X;y0
t←0 + U

X;Znt
t←0 − U

X;y0
t←0 |

≤ |y0|+ ‖UX;y0
·←0 ‖β,[0,t]tβ + CX

J |Znt − y0|. (4.4)

Claim (i) then follows from (4.1) and (4.3).

(ii) Now if X is a Gaussian process satisfying the assumptions of Theorem 2.13, it su�ces to use the
deterministic estimates (4.1), (4.3) and (4.4), as well as the following probabilistic estimates: for any γ ≥ 1,

E
[
|||X|||γβ,[0,T ]

]
<∞, E

[
(CX

J )γ
]
<∞ and E

[
‖L‖γβ,[0,T ]

]
<∞ (4.5)

where the �rst bound is a classical consequence of Kolmogorov's continuity theorem (which follows from
(HCov) for any β <

1
2r ), the second one is [3, Theorem 6.5] and the third one was an assumption in Theo-

rem 2.13. Then Claim (ii) holds true.

Remark 4.2. Observe that in the previous proof, we carefully avoided to estimate directly the Hölder regu-

larity of t 7→
∫ t

0
σ(U

X;Zns
s←0 )dXs, since any basic a priori estimate would have depended on n. However, we will

be able to treat such questions in the next section.
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4.2 Uniform (in n) continuity of the sequence of penalised processes

So far we only obtained pointwise convergence of the sequences of paths. Now, we obtain uniform convergence
and derive Hölder continuity of the limiting path. This section is organised as follows: Lemmas 4.3 to 4.5
are technical results which will permit to overcome the main di�culty, namely that the negative part of
Y n − L converges to 0 as n → ∞ (Proposition 4.7). Finally, we prove that this implies the desired uniform
convergence of Y n and Zn (Proposition 4.8).

For any p ≥ 1 and any x ≥ 0, recall that φp(x) = x ∨ xp, and de�ne the control functions

∀(s, t) ∈ S[0,T ], κX(s, t) := φp(|||X|||p,[s,t])
p

(note the implicit dependence in p) and

∀(s, t) ∈ S[0,T ], κX,Z(s, t) := κX(s, t) +
(
CX
J (Zt − Zs)

)p
,

κX,Zn(s, t) := κX(s, t) +
(
CX
J (Znt − Zns )

)p
.

Furthermore, let us denote by Kn the penalisation term in (2.8),

Kn
t :=

∫ t

0

ψn(Y ns − Ls)ds, t ∈ [0, T ], (4.6)

and another control function κX,Kn related to the variations of Kn:

∀(s, t) ∈ S[0,T ], κX,Kn(s, t) := κX(s, t) +
(
δKn

s,t

)p
. (4.7)

The p-variations of Kn are controlled by those of Zn and reciprocally:

Lemma 4.3. Consider the continuous process Kn de�ned in (4.6). Then for any n ∈ N and any (s, t) ∈
S[0,T ],

δKn
s,t ≤ CX

J δZ
n
s,t and δZns,t ≤ CX

J δK
n
s,t.

This implies that for any q ≥ 1, ‖Kn‖q,[s,t] ≤ CX
J ‖Zn‖q,[s,t].

Proof. Using the de�nition (3.3) of Zn and the bound (3.1) on J (recall also that J is positive), one has

Kn
t −Kn

s =

∫ t

s

J
X;Znu
u←0 J

X;Znu
0←u ψn(Y nu − Lu)du

≤ CX
J

∫ t

s

J
X;Znu
0←u ψn(Y nu − Lu)du = CX

J (Znt − Zns ) .

The converse statement is obtained similarly.

In the next two lemmas, it is proven that Y n and σ(Y n) are controlled by X. In particular, let us set for
any (s, t) ∈ S[0,T ],

RY
n

s,t := δY ns,t − σ(Y ns )δXs,t, (4.8)

and

R
σ(Y n)
s,t := δσ(Y n)s,t − σ′(Y ns )σ(Y ns )δXs,t. (4.9)

The variations of RY
n

and Rσ(Y n), which are the remainder terms in the sense of De�nition 2.6, are shown
to be bounded.
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Lemma 4.4. The path σ(Y n) is controlled by X and its Gubinelli derivative is σ′(Y n)σ(Y n) (σ′(y) is an
element of L(R,L(Rd,R))). In particular, RY

n ∈ C2β([0, T ],R) and Rσ(Y n) ∈ C2β([0, T ], (Rd)′).

Proof. Recall that Y n is a solution obtained by approximation, i.e. in the sense of De�nition 2.3. The �rst
goal of this proof is to show that Y n can also be understood as a solution in the sense of controlled rough
paths.
We know from Proposition 3.1 that Y n does not blow up in �nite time. Denote M = supt∈[0,T ] |Y nt | and
consider a bounded smooth function ψ

(M)
n equal to ψn on the interval (−2M, 2M). We denote by Y n,M the

solution to (2.8) with ψ
(M)
n instead of ψn. We have Y n,Mt = Y nt for all t ∈ [0, T ].

Now consider the following RDE in the augmented form (i.e. without drift):

dŶ n,Mt = σ̂(Ŷ n,Mt )dX̂t, (4.10)

where:

- for any (y, l) ∈ R2,

σ̂

((
y
l

))
=

(
σ(y) ψ

(M)
n (y − l) 0

0 . . . 0 0 1

)
;

- X̂ is the canonical rough path above X̂t = (XT
t , t, Lt)

T ;

- Ŷ n,Mt = (Y n,Mt , Lt)
T is the solution to the RDE (4.10) in the sense of De�nition 2.3.

Since σ̂ is smooth and bounded, Equation (4.10) can also be solved in the sense of controlled rough paths (see

[15, Theorem 8.4]), and the solution that we denote by Y
n,M

is controlled by X̂ (with Gubinelli derivative

σ̂(Y
n,M

)). Considering that X̂ can be approximated by a sequence ((X̂k, X̂k))k∈N of smooth paths in the

α-Hölder rough path topology, with α < β and X̂k the Riemann-Stieltjes iterated integral of X̂k (see [15,

Proposition 2.5]), we can associate a unique solution Ŷ n,M,k to the equation dŶ n,M,k
t = σ̂(Ŷ n,M,k

t )dX̂k
t , for

each k ∈ N. In view of the continuity of the Itô-Lyons map X ∈ C β 7→ Y ∈ CαX , where Y is the solution in

the controlled rough paths sense ([15, Theorem 8.5]), we obtain that Ŷ n,M,k converges in α-Hölder norm to

Y
n,M

. Since Ŷ n,M,k is in fact a solution in the usual sense of ODEs, it also converges in the uniform topology

to Ŷ n,M . Hence Ŷ n,M = Y
n,M

, and as noticed in the �rst paragraph, Y n,M = Y n, so that the two notions
of solution coincide.

In particular, (Ŷ n,M , σ̂(Ŷ n,M )) ∈ Cβ
X̂
. This immediately yields that

(
Y n, (σ(Y n), ψn(Y n − L))T

)
is

controlled by the paths Xa
t := (XT

t , t)
T , which in other words states that the mapping Qns,t := δY ns,t −

(σ(Y ns ), ψn(Y ns − Ls))δXa
s,t satis�es ‖Qn‖2β,[0,T ] <∞. Hence one deduces that (Y n, σ(Y n)) ∈ CβX : Indeed,

|RY
n

s,t | = |Qns,t + ψn(Y ns − Ls)(t− s)|
≤ |Qns,t|+ ‖ψn(Y n − L)‖∞,[0,T ](t− s) ≤ |Qns,t|+ n‖Y n − L‖∞,[0,T ](t− s).

Thus it follows from the above and Proposition 4.1 that

‖RY
n

‖2β,[0,T ] ≤ C
(
‖Qn‖2β,[0,T ] + n‖Y n − L‖∞,[0,T ]T

1−β) <∞,
and in particular the Gubinelli derivative of Y n is σ(Y n) ∈ Cβ([0, T ]; (Rd)′).

Finally, σ(Y n) is controlled by X with Gubinelli derivative σ′(Y n)σ(Y n) (see [15, Lemma 7.3]).

The previous lemma is now re�ned to get estimates on Y n and Rσ(Y n) which are uniform in n. These
will be crucial in the limiting procedure that leads to the proof of Theorem 2.12.

Lemma 4.5. (i) Under the assumptions of Theorem 2.12, one has the following inequality:

Θ := sup
n∈N

(
‖σ′(Y n)σ(Y n)‖p,[0,T ] + ‖Rσ(Y n)‖ p

2 ,[0,T ]

)
<∞. (4.11)

(ii) If in addition, the assumptions of Theorem 2.13 hold, then E (Θγ) <∞, for any γ ≥ 1.
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Proof. 1st step. By a Taylor expansion,

δσ(Y n)s,t = σ′(Y ns )δY ns,t +

∫ Y nt

Y ns

σ′′(y)(Y nt − y)dy. (4.12)

Hence the combination of (4.8), (4.9) and (4.12) yields

R
σ(Y n)
s,t = σ′(Y ns )RY

n

s,t +

∫ Y nt

Y ns

σ′′(y)(Y nt − y)dy (4.13)

and

|Rσ(Y n)
s,t | ≤ ‖σ′‖∞|RY

n

s,t |+ 1
2‖σ

′′‖∞(Y nt − Y ns )2 ≤ C
(
|RY

n

s,t |+ (Y nt − Y ns )2
)
. (4.14)

2nd step. From Lemma 4.4, the De�nition (4.8) of RY
n

, and inequality (2.10) applied to |
∫ t
s
σ(Y nu )dXu−

σ(Y ns )δXs,t|, one gets

|RY
n

s,t | ≤ δKn
s,t + |σ′(Y ns )σ(Y ns )||Xs,t|+ Cp

(
‖X‖p,[s,t]‖Rσ(Y n)‖ p

2 ,[s,t]
+ ‖σ′(Y n)σ(Y n)‖p,[s,t]‖X‖ p

2 ,[s,t]

)
.

Hence

|RY
n

s,t | ≤ δKn
s,t +M

(
‖X‖ p

2 ,[s,t]
+ ‖X‖p,[s,t](‖RY

n

‖ p
2 ,[s,t]

+ ‖Y n‖2p,[s,t]) + ‖Y n‖p,[s,t]‖X‖ p
2 ,[s,t]

)
, (4.15)

for some M that depends only on p, the uniform norms of σ and its derivatives. Thus for any (s, t) ∈ S[0,T ]

such that |t− s| ≤ δX, where

δX := T ∧ sup
{
δ > 0 : κX(s, t)

1
p ≤ 1

2M
−1, ∀s, t ∈ [0, T ] s.t. |t− s| ≤ δ

}
, (4.16)

one gets

‖RY
n

‖ p
2 ,[s,t]

≤ 2δKn
s,t + 2M‖X‖ p

2 ,[s,t]
+ ‖Y n‖2p,[s,t] + ‖Y n‖p,[s,t]‖X‖

1
2
p
2 ,[s,t]

≤ 2δKn
s,t + (2M + 1)‖X‖ p

2 ,[s,t]
+ 2‖Y n‖2p,[s,t]. (4.17)

3rd step. We will now be able to bound ‖Y n‖p. By the de�nition (4.8) of RY
n

, and using estimate
(4.17),

|δY ns,t| ≤ |RY
n

s,t |+ |σ(Y ns )||δXs,t|
≤ 2δKn

s,t + (2M + 1)‖X‖ p
2 ,[s,t]

+ ‖σ‖∞‖X‖p,[s,t] + 2‖Y n‖2p,[s,t].

Multiplying the equation by 2 and in view of the de�nition (4.7) of κX,Kn , the previous equation reads

2‖Y n‖p,[s,t] ≤ M̃κX,Kn(s, t)
1
p + 4‖Y n‖2p,[s,t],

for some M̃ which depends only on p and σ. Arguing as in [15, p.111-112] (with the notations of [15], ψh ≡
2‖Y n‖p,[s,t] and λh ≡ M̃κX,Kn(s, t)

1
p ) one obtains that for any (s, t) ∈ S[0,T ] such that M̃κX,Kn(s, t)

1
p < 1

4
and

1

2
−
√

1

4
− M̃κX,Kn(s, t)

1
p <

1

6
, (4.18)

then for any such s and t,

‖Y n‖p,[s,t] ≤ M̃κX,Kn(s, t)
1
p . (4.19)
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Observe that (4.18) is ful�lled if and only if κX,Kn(s, t) <
(

5
36M̃

−1
)p
. Hence by a classical argument, one

gets that for any (s, t) ∈ S[0,T ],

‖Y n‖pp,[s,t] ≤ M̃
{

1 ∨
(

2
(

36
5 M̃

)p
κX,Kn(s, t)

)p−1
}
κX,Kn(s, t)

≤ C (κX,Kn(s, t) ∨κX,Kn(s, t)p) , (4.20)

for some C > 0 that depends only on p and σ.
Note that using the Doss-Sussmann representation of Y n, we could have obtained more easily that

∀(s, t) ∈ S[0,T ], ‖Y n‖p,[s,t] ≤ Cφp
(
|||X|||p,[s,t]

)
+ CX

J (Znt − Zns ).

However, this bound is weaker than (4.20) since it can be deduced from it using Lemma 4.3. Most importantly,
it involves CX

J which does not have exponential moments (whenX is a Gaussian rough path satisfying (HCov))
and this would bring issues in Section 5 when Gronwall arguments are to be used.

4th Step. In view of (4.20), it comes from (4.17) that for any (s, t) ∈ S[0,T ] such that |t− s| ≤ δX,

‖RY
n

‖
p
2
p
2 ,[s,t]

≤ C (κX,Kn(s, t) ∨κX,Kn(s, t)p) . (4.21)

Thus (4.14) implies that for any (s, t) ∈ S[0,T ] such that |t− s| ≤ δX,

|Rσ(Y n)
s,t | ≤ C (κX,Kn(s, t) ∨κX,Kn(s, t)p)

2
p . (4.22)

Then for any (s, t) ∈ S[0,T ],

‖Rσ(Y n)‖
p
2
p
2 ,[s,t]

= sup
π=(ti)⊂[s,t]

 ∑
ti+1−ti≤δX

|Rσ(Y n)
ti,ti+1

|
p
2 +

∑
ti+1−ti>δX

|Rσ(Y n)
ti,ti+1

|
p
2


≤ C (κX,Kn(s, t) ∨κX,Kn(s, t)p) + sup

π=(ti)⊂[s,t]

∑
ti+1−ti>δX

|Rσ(Y n)
ti,ti+1

|
p
2 . (4.23)

Hereafter, we assume that t− s > δX. By a simple induction, one can verify that for any s0 < s1 < · · · < sN ,

Rσ(Y n)
s0,sN =

N−1∑
k=0

Rσ(Y n)
sk,sk+1

+

N−1∑
k=1

δRσ(Y n)
s0,sk,sk+1

,

where δR
σ(Y n)
s0,sk,sk+1 = R

σ(Y n)
s0,sk+1−R

σ(Y n)
s0,sk −R

σ(Y n)
sk,sk+1 . In view of (4.9), there is δR

σ(Y n)
s0,sk,sk+1 = −δ(σ′σ(Y n))s0,skδXsk,sk+1

.
Hence

|δRσ(Y n)
s0,sk,sk+1

| ≤ C|δY ns0,sk ||δXsk,sk+1
|

≤ C|δXsk,sk+1
|
k−1∑
j=0

|δY nsj ,sj+1
|. (4.24)

For any index i in (4.23) such that ti+1 − ti > δX, denote Ki = b ti+1−ti
δX
c (≤ T

δX
), ti,k = ti + kδX for any

k = 0 . . .Ki and ti,Ki+1 = ti+1. We obtain

∑
ti+1−ti>δX

|Rσ(Y n)
ti,ti+1

|
p
2 =

∑
ti+1−ti>δX

|
Ki∑
k=0

R
σ(Y n)
ti,k,ti,k+1

+ δR
σ(Y n)
ti,ti,k,ti,k+1

|
p
2

≤
∑

ti+1−ti>δX

(
2
t− s
δX

) p
2−1 Ki∑

k=0

|Rσ(Y n)
ti,k,ti,k+1

|
p
2 + |δRσ(Y n)

ti,ti,k,ti,k+1
|
p
2

≤
(

2
t− s
δX

) p
2−1 ∑

ti+1−ti>δX


Ki∑
k=0

|Rσ(Y n)
ti,k,ti,k+1

|
p
2 + C

(
Ki∑
k=0

|δY nti,k,ti,k+1
|

) p
2 Ki∑
k=0

|δXti,k,ti,k+1
|
p
2

 ,
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using (4.24) in the last inequality. Hence∑
ti+1−ti>δX

|Rσ(Y n)
ti,ti+1

|
p
2

≤ C
(
t− s
δX

) p
2−1 ∑

ti+1−ti>δX

{
Ki∑
k=0

|Rσ(Y n)
ti,k,ti,k+1

|
p
2 +

(
t− s
δX

)p−1 Ki∑
k=0

|δY nti,k,ti,k+1
|p +

t− s
δX

Ki∑
k=0

|δXti,k,ti,k+1
|p
}

≤ C
(
t− s
δX

) p
2−1 ∑

ti+1−ti>δX

Ki∑
k=0

|Rσ(Y n)
ti,k,ti,k+1

|
p
2 + C

(
t− s
δX

) 3p
2 −2 (

‖Y n‖pp,[s,t] + ‖X‖pp,[s,t]
)
,

Now, since ti,k+1−ti,k ≤ δX, we can use (4.22) and the super-additivity of (s, t) 7→ κX,Kn(s, t)∨κX,Kn(s, t)p

to get that

∑
ti+1−ti>δX

Ki∑
k=0

|Rσ(Y n)
ti,k,ti,k+1

|
p
2 ≤ C (κX,Kn(s, t) ∨κX,Kn(s, t)p) .

Eventually, one gets that

∑
ti+1−ti>δX

|Rσ(Y n)
ti,ti+1

|
p
2 ≤ C

(
t− s
δX

) 3p
2 −2 (

κX,Kn(s, t) ∨κX,Kn(s, t)p + ‖Y n‖pp,[s,t] + ‖X‖pp,[s,t]
)
,

so that using again (4.20),

‖Rσ(Y n)‖
p
2
p
2 ,[s,t]

≤ C
(
t− s
δX

) 3p
2 −2

(κX,Kn(s, t) ∨κX,Kn(s, t)p) . (4.25)

In view of Lemma 4.3, κX,Kn(s, t) ≤ (CX
J δZ

n
s,t)

p + ‖X‖pp
2 ,[s,t]

+ ‖X‖pp,[s,t] and since Zn ≤ Zn+1 (and Zn0 =

Zn+1
0 = y0),

‖Rσ(Y n)‖
p
2
p
2 ,[0,T ]

≤ C(δX)2− 3p
2

(
(CX

J ZT )p ∨ (CX
J ZT )p

2

+ φp

(
|||X|||p,[0,T ]

)p)
. (4.26)

Finally, since we assumed that ‖X‖β <∞, it follows that ‖X‖p,[s,t] ≤ ‖X‖β |t− s|β and then (since β = p−1)

that δX ≥ 1
2 (‖X‖βC)−p > 0. This proves (i).

(ii) Based on (4.20) and the observation of the previous paragraph,

‖Y n‖p,[s,t] ≤ C
(

(CX
J ZT )p ∨ (CX

J ZT )p
2

+ φp

(
|||X|||p,[0,T ]

)p)
.

Besides, from the combination of inequalities (4.3) and (4.5), one gets that E
[
supn∈N ‖Y n‖

γ
p,[0,T ]

]
< ∞,

∀γ ≥ 1. Using the regularity of σ, we deduce that E
[
supn∈N ‖σ′(Y n)σ(Y n)‖γp,[0,T ]

]
<∞.

One can verify that δX ≥ T (2M)−
1
pκX(0, T )−1, so that for any γ ≥ 1,

E[δ
(2− 3p

2 )γ

X ] ≤ CE[κX(s, t)( 3p
2 −2)γ ] <∞. (4.27)

In view of (4.26) and the previous inequality, it follows that E
[
supn∈N ‖Rσ(Y n)‖γp,[0,T ]

]
<∞.

Corollary 4.6. Recall that β = 1
p . The rough integral in (2.8) is β-Hölder continuous on [0, T ], uniformly

in n: there exists C > 0 depending only on β, ‖σ‖∞ and ‖σ′‖∞ such that

∀n ∈ N, ∀s, t ∈ [0, T ],
∣∣ ∫ t

s

σ(Y nu )dXu

∣∣ ≤ C(1 + Θ)|||X|||β |t− s|
β ,

where Θ was de�ned (independently of n) in (4.11).
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Proof. In view of Lemmas 4.4 and 4.5, Theorem 2.7 implies that ‖
∫ ·

0
σ(Y nu )dXu‖p,[s,t] is bounded from above

by some control function which is independent of n:

‖
∫ ·

0

σ(Y nu )dXu‖p,[s,t] ≤ ‖σ(Y n)‖∞,[s,t]‖X‖p,[s,t] + ‖σ′(Y n)σ(Y n)‖∞,[s,t]‖X‖ p
2 ,[s,t]

+ Cp

(
‖X‖p,[s,t]‖Rσ(Y n)‖ p

2 ,[s,t]
+ ‖X‖ p

2 ,[s,t]
‖σ′(Y n)σ(Y n)‖p,[s,t]

)
≤ C (1 + Θ)

(
‖X‖p,[s,t] + ‖X‖ p

2 ,[s,t]

)
,

where Θ was de�ned (independently of n) in (4.11). To conclude the proof, it remains to notice that since
(X,X) ∈ C β , ‖X‖p,[s,t] ≤ ‖X‖β |t− s|β and ‖X‖ p

2 ,[s,t]
≤ ‖X‖2β |t− s|2β .

Proposition 4.7. (i) Under the assumptions of Theorem 2.12, there exists C > 0 which depends only on p
and T , such that for any n ∈ N∗,

sup
s∈[0,T ]

(Y ns − Ls)− ≤ C
(

1 + (1 + Θ)|||X|||β + ‖L‖β
)
n−β ,

where Θ was de�ned in (4.11). In particular, lim
n→∞

sup
s∈[0,T ]

(Y ns − Ls)− = 0.

(ii) If in addition, the assumptions of Theorem 2.13 hold, then lim
n→∞

E
[

sup
s∈[0,T ]

|(Y ns − Ls)−|γ
]

= 0, for any

γ ≥ 1.

Proof. (i) Recall that (x)− ≤ 1
nψn(x) + 1

2n . Applying Lemma 3.3(ii) and Corollary 4.6, one gets that

∀n, sup
s∈[0,T ]

(Y ns − Ls)− ≤ C
(

1 + ‖L‖β + ‖
∫ ·

0

σ(Y nu )dXu‖β
)
n−β +

1

2n

≤ C
(

1 + ‖L‖β + (1 + Θ)|||X|||β
)
n−β . (4.28)

which is the desired result.
(ii) Using (4.5) and Lemma 4.5 (ii), one gets that E[((1 + Θ)|||X|||β)γ ] <∞, ∀γ ≥ 1, so the result follows

from (4.28).

Proposition 4.8. (i) Under the assumptions of Theorem 2.12, (Y n)n∈N converges uniformly to some process
{Yt}t∈[0,T ] ∈ Cβ.
(ii) If in addition, the driving noise X is Gaussian and the assumptions of Theorem 2.13 are satis�ed, then
the convergence happens in Lγ

(
Ω; (C0, ‖ · ‖∞,[0,T ])

)
(i.e. as in (2.11)), ∀γ ≥ 1. Besides, Y has a β-Hölder

continuous modi�cation and E[‖Y ‖γβ,[0,T ]] <∞, ∀γ ≥ 1.

Proof. (i) This proof uses estimates which are similar to those in the proof of Proposition 4.1, but this time
a bound on the increment Znt − Zns is needed.

For any s ∈ [0, T ), de�ne {Z̃nt←s}t∈[s,T ] as the solution of the following (random) ODE:

Z̃nt←s = Zns + CX
J

∫ t

s

ψn

(
U

X;Z̃nu←s
u←0 − Lu

)
du, t ∈ [s, T ],

Once again, there is Z̃nt←s ≥ Znt and for Cσ,X,β as in (4.2),

Z̃nt←s ≤ Zns + CX
J

∫ t

s

ψn

(
Y ns − Cσ,X,β(u− s)β + (CX

J )−1(Z̃nu←s − Z̃ns←s)− Lu
)
du, t ∈ [s, T ],

but unlike in (4.2), it is no longer true that the starting point Y ns is larger than Ls. Thus we only get that

Z̃nt←s ≤ Zns + CX
J

∫ t

s

ψn

(
−(Y ns − Ls)− − Cσ,X,β(u− s)β + (CX

J )−1(Z̃nu←s − Z̃ns←s)− (Lu − Ls)
)
ds, t ∈ [s, T ].
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As in (4.3), one can then verify that the previous bound leads to

∀t ∈ [s, T ], Znt ≤ Z̃nt←s ≤ Zns + C CX
J

(
(|||X|||β,[0,T ] ∨ |||X|||

1
β

β,[0,T ])(t− s)
β + sup

u∈[s,t]

|Lu − Ls|+ (Y ns − Ls)−

)
,

where C depends only on σ, β, T (an in particular not in n or s). Now as in (4.4),

|Y nt − Y ns | ≤ sup
y∈R
‖UX;y
·←0‖β,[0,T ](t− s)β + CX

J |Znt − Zns |

≤ C (CX
J )2

(
(|||X|||β,[0,T ] ∨ |||X|||

1
β

β,[0,T ])(t− s)
β + sup

u∈[s,t]

|Lu − Ls|+ (Y ns − Ls)−

)
. (4.29)

Using Proposition 4.7, we can now take the (pointwise) limit as n → ∞ in the two previous inequalities to
get that for any t ∈ [s, T ],

Zt ≤ Zs + C CX
J

(
(|||X|||β,[0,T ] ∨ |||X|||

1
β

β,[0,T ])(t− s)
β + sup

u∈[s,t]

|Lu − Ls|

)

and |Yt − Ys| ≤ C (CX
J )2

(
(|||X|||β,[0,T ] ∨ |||X|||

1
β

β,[0,T ])(t− s)
β + sup

u∈[s,t]

|Lu − Ls|

)
.

Hence Z and Y are (Hölder-)continuous, so arguing with Dini's Theorem, we are now able to conclude that
the convergences are uniform.

(ii) Under the assumptions of Theorem 2.13, one deduces from the previous point that limn→∞ ‖Y n −
Y ‖∞,[0,T ] = 0 almost surely. Moreover, Proposition 4.1 states that (Y n)n∈N is a nondecreasing sequence.
Thus ‖Y n−Y ‖∞,[0,T ] ≤ 2‖Y ‖∞,[0,T ], and since E[‖Y ‖γ∞,[0,T ]] <∞ (by Proposition 4.1 (ii)), the convergence

result is obtained by using Lebesgue's theorem.
The Hölder continuity of Y is a consequence of (4.29) and Proposition 4.7 (ii).

4.3 Proof of Theorems 2.12 and 2.13: Identi�cation of the limit process Y

To achieve the proof of Theorem 2.12, we will show that (Y, σ(Y )) ∈ CβX and deduce that
∫ ·

0
σ(Ys)dXs is the

uniform limit of the sequence {
∫ ·

0
σ(Y ns )dXs}n∈N and that Kn converges uniformly to a non-decreasing path

K. Then, by checking the properties (i), (ii), (iii) and (iv) of De�nition 2.9, we will be able to prove that the
couple (Y,K) so constructed is indeed solution to the Skorokhod problem SP (σ, L).

Step 1: convergence of the rough integral.

Proposition 4.9. The path σ(Y ) is controlled by X, i.e. (σ(Y ), σ′(Y )σ(Y )) ∈ CβX , and the following
convergence happens in C0([0, T ],R):

lim
n→∞

∥∥∥∥∫ ·
0

σ(Y ns )dXs −
∫ ·

0

σ(Ys)dXs

∥∥∥∥
∞,[0,T ]

= 0.

Proof. Our aim is to check that Proposition 2.8 can be applied. First recall that σ(Y n) is controlled by X
and that its Gubinelli derivative is σ′(Y n)σ(Y n) (Lemma 4.4). By Proposition 4.8, σ′(Y n)σ(Y n) converges

uniformly to σ′(Y )σ(Y ). Similarly, R
σ(Y n)
s,t converges uniformly a.s. to R

σ(Y )
s,t := δσ(Y )s,t−σ′(Ys)σ(Ys)δXs,t.

Hence in view of Lemma 4.5, the assumptions of Proposition 2.8 are matched and the desired result follows.

A direct consequence of the previous proposition and of Proposition 4.8 is that Kn converges (uniformly)
to a limit path K so that

∀t ∈ [0, T ], Yt = y0 +

∫ t

0

σ(Ys)dXs +Kt.
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As a limit of non-decreasing paths, K is non-decreasing. Hence the properties (i) and (iii) of De�nition 2.9
are veri�ed.

Step 2: Y ≥ L. This is the result of Proposition 4.7. Thus property (ii) of De�nition 2.9 is satis�ed.

Step 3: points of increase of K. By the uniform convergence of Kn and the non-decreasing property of
Kn and K, it follows that dKn weakly converges towards dK and since Y n converges uniformly to Y ,

0 ≥
∫ t

0

(Y ns − Ls)ψn(Y ns − Ls) ds =

∫ t

0

(Y ns − Ls) dKn
s →

∫ t

0

(Ys − Ls) dKs,

where the last integral exists in the sense of Lebesgue-Stieltjes integrals, since K is a non-decreasing path.
Since Ys−Ls ≥ 0 (by the previous step) and K is non-decreasing, it follows that

∫ t
0
(Ys−Ls) dKs ≥ 0. Hence

for any t ∈ [0, T ],
∫ t

0
(Ys − Ls) dKs = 0, which proves that the point (iv) is satis�ed.

Remark 4.10. In view of the previous Steps 1 to 3, we conclude that (Y,K) is a solution to SP (σ, L), which
achieves the proof of the existence part in Theorem 2.12. In addition, if X is a Gaussian process satisfying
Assumption (HCov), we obtained all along Section 4 the probabilistic estimates to ensure that Theorem 2.13
holds.

4.4 Proof of Theorems 2.12 and 2.13: Uniqueness

Uniqueness is in general the most tricky part in re�ection problems. Here we rely on earlier results in the
literature. In the case β > 1

2 , the uniqueness of the re�ected solution is due to Falkowski and Sªomi«ski [12].
In the case β ≤ 1

2 , the uniqueness of the re�ected RDE has been proven recently by Deya, Gubinelli,
Hofmanová, and Tindel [7]. The di�erence between our work and [7] is that they have a �xed boundary
process L ≡ 0. But their proof of uniqueness can adapt to a moving boundary, as will become clear in
Section 5, where we implement their method to get new results.

5 Rate of convergence of the sequence of penalised processes

5.1 A priori estimate

For each n ∈ N, we introduce the operator δn which acts on functionals of Y and Y n as follows: for any
Φ : C([0, T ];Rd)→ C([0, T ];Rd),

δnΦ(Y ) = Φ(Y )− Φ(Y n).

For instance, we shall write δnYs = Ys − Y ns , δnσ(Y )s = σ(Ys) − σ(Y ns ) and also δ(δnY )s,t = δn(δYs,t) =
Yt − Ys − Y nt + Y ns , etc.
By linearity, δnY has Gubinelli derivative δnσ(Y ), i.e. (δnY, δnσ(Y )) ∈ VpX , and RδnYs,t := δ(δnY )s,t −
δnσ(Y )sδXs,t ∈ V

p
2 . Similarly, δnσ(Y ) has Gubinelli derivative δnσ

′σ(Y ), i.e. (δnσ(Y ), δnσ
′σ(Y )) ∈ VpX , and

R
δnσ(Y )
s,t := δ(δnσ(Y ))s,t − δnσ′σ(Y )sδXs,t ∈ V

p
2 . Note that RδnY = δnR

Y and that Rδnσ(Y ) = δnR
σ(Y ).

We also need the control function associated to (K,Kn). Thus for each n ∈ N, de�ne wn : S[0,T ] → R+

as follows:

wn(s, t) = ‖(K,Kn)‖1-var,[s,t] = δKs,t + δKn
s,t.

It will be enough in the sequel to get bounds on the remainder Rσ(Y n) on the �small� set SX constructed
from the quantity δX de�ned previously (see Equation (4.16)):

SX := {(u, v) ∈ S[0,T ] : v − u ≤ δX}. (5.1)
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Finally, de�ne the control functions κX,wn and κ̃X,wn by

∀(s, t) ∈ S[0,T ], κX,wn(s, t) := φp

(
|||X|||p,[s,t]

)p
+ φp (wn(s, t))

p

κ̃X,wn(s, t) :=

4∑
k=1

κX,wn(s, t)k.
(5.2)

Lemma 5.1. Let the assumptions of Theorem 2.12 hold. Then for any (s, t) ∈ SX,

‖Rδnσ(Y )‖ p
2 ,[s,t]

≤ C
{
wn(s, t) + (wn(s, t) + ‖δnY ‖∞,[s,t])

(
κ̃X,wn(s, t)

1
p ∨ κ̃X,wn(s, t)

)}
.

Proof. 1st step. Having in mind the previous de�nition of Rδnσ(Y ) and RδnY , we deduce from (4.13) that

R
δnσ(Y )
s,t =σ′(Ys)R

Y
s,t + (δYs,t)

2

∫ 1

0

σ′′(Yt − (δYs,t)u)u du− σ′(Y ns )RY
n

s,t − (δY ns,t)
2

∫ 1

0

σ′′(Y nt − (δY ns,t)u)u du

=σ′(Ys)R
δnY
s,t + δnσ

′(Y )sR
Y n

s,t

+ δn(δYs,t)
2

∫ 1

0

σ′′(Yt − (δYs,t)u)u du+ (δY ns,t)
2

∫ 1

0

δnσ
′′(Yt − (δYs,t)u)u du.

Hence

|Rδnσ(Y )
s,t | ≤ C

{
|RδnYs,t |+ |δnYs||RY

n

s,t |+ |δn(δYs,t)
2|+ ‖δnY ‖∞,[s,t](δY ns,t)2

}
. (5.3)

2nd step. We provide now an upper bound on |RδnYs,t | in terms of R
δnσ(Y )
s,t :

|RδnYs,t | = |δ(δnY )s,t − δnσ(Y )sδXs,t|

= |δ(δnK)s,t +

∫ t

s

δnσ(Y )udXu − δnσ(Y )sδXs,t|

≤ wn(s, t) + |δnσ′σ(Y )sXs,t|+ Cp

(
‖Rδnσ(Y )‖ p

2 ,[s,t]
‖X‖p,[s,t] + ‖δnσ′σ(Y )‖p,[s,t]‖X‖ p

2 ,[s,t]

)
. (5.4)

Thus plugging (5.4) into (5.3) yields

|Rδnσ(Y )
s,t | ≤ Cp‖Rδnσ(Y )‖ p

2 ,[s,t]
‖X‖p,[s,t] + C

{
wn(s, t) + |δnYs|(|RY

n

s,t |+ |Xs,t|) + |δn(δYs,t)
2|

+ ‖δnY ‖∞,[s,t](δY ns,t)2 + ‖δnσ′σ(Y )‖p,[s,t]‖X‖ p
2 ,[s,t]

}
. (5.5)

3rd step. Now we provide bounds for |δn(δYs,t)
2| and ‖δnσ′σ(Y )‖p,[s,t]. Recall from (4.20) that

‖Y n‖p,[s,t] ≤ C
(
φp(|||X|||p,[s,t]) + δKn

s,t ∨ (δKn
s,t)

p
)

= C
(
φp(|||X|||p,[s,t]) + φp

(
δKn

s,t

))
. (5.6)

Similarly, one gets ‖Y ‖p,[s,t] ≤ C
(
φp(|||X|||p,[s,t]) + φp (δKs,t)

)
. Recall also that from (4.21) that for any

s < t ∈ [0, T ] such that |t− s| ≤ δX,

|RY
n

s,t | ≤ C
(
φp(|||X|||p,[s,t])

p + φp
(
δKn

s,t

)p) 2
p

. (5.7)

Now, observing that |δn(δYs,t)
2| = |δ(δnY )s,t| |δYs,t + δY ns,t| and using the Cauchy-Schwarz inequality, one

gets that for any subdivision π = (ti) of [s, t],

∑
i

∣∣δn(δYti,ti+1
)2
∣∣ p2 ≤ (∑

i

|δ(δnY )ti,ti+1
|p ×

∑
i

|δYs,t + δY ns,t|p
) 1

2

≤ ‖δnY ‖
p
2

p,[s,t]‖Y + Y n‖
p
2

p,[s,t].
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Thus from (5.6),

sup
π

∑
i

∣∣δn(δYti,ti+1)2
∣∣ p2 ≤ C‖δnY ‖ p2p,[s,t] (φp(|||X|||p,[s,t]) + φp

(
δKn

s,t + δKs,t

)) p2
≤ C‖δnY ‖

p
2

p,[s,t]κX,wn(s, t)
1
2 , (5.8)

for some C > 0 which depends only on p and σ. Eventually, using the smoothness of σ, observe that

|δ(δnσ′σ(Y ))s,t| = |δnYt
∫ 1

0

(σ′σ)′(Y nt + δnYtu)du− δnYs
∫ 1

0

(σ′σ)′(Y ns + δnYsu)du|

≤ |δ(δnY )s,t

∫ 1

0

(σ′σ)′(Y nt + δnYtu)du|+ |δnYs|
∫ 1

0

|(σ′σ)′(Y nt + δnYtu)− (σ′σ)′(Y ns + δnYsu)|du

≤ C
(
|δ(δnY )s,t|+ |δnYs|

(
|δY ns,t|+ |δ(δnY )s,t|

))
≤ C

(
|δ(δnY )s,t|+ |δnYs|

(
|δY ns,t|+ |δYs,t|

))
.

Therefore, using again (5.6),

‖δnσ′σ(Y )‖p,[s,t] ≤ C
(
‖δnY ‖p,[s,t] + ‖δnY ‖∞,[s,t]

(
φp(|||X|||p,[s,t]) + φp (wn(s, t))

))
. (5.9)

4th step. The inequalities (5.6), (5.7), (5.8) and (5.9) plugged into (5.5) now provide that for any
(s, t) ∈ SX,

‖Rδnσ(Y )‖ p
2 ,[s,t]

≤ Cp‖Rδnσ(Y )‖ p
2 ,[s,t]

‖X‖p,[s,t]

+ C

{
wn(s, t) + ‖δnY ‖∞,[s,t]

((
φp

(
|||X|||p,[s,t]

)p
+ φp

(
δKn

s,t

)p) 2
p

+ ‖X‖ p
2 ,[s,t]

)
+ ‖δnY ‖p,[s,t]κX,wn(s, t)

1
p + ‖δnY ‖∞,[s,t]

(
φp

(
|||X|||p,[s,t]

)
+ φp

(
δKn

s,t

))2

+
(
‖δnY ‖p,[s,t] + ‖δnY ‖∞,[s,t]

(
φp(|||X|||p,[s,t]) + φp (wn(s, t))

))
‖X‖ p

2 ,[s,t]

}
.

Recall that κX,wn was de�ned in (5.2), and that δKn
s,t ≤ wn(s, t). Besides, since(

φp(|||X|||p,[s,t]) + φp (wn(s, t))
)
‖X‖ p

2 ,[s,t]
≤ κX,wn(s, t)

2
p ,

we get that for any (s, t) ∈ SX,

‖Rδnσ(Y )‖ p
2 ,[s,t]

≤ Cp‖Rδnσ(Y )‖ p
2 ,[s,t]

‖X‖p,[s,t]

+ C
{
wn(s, t) + ‖δnY ‖∞,[s,t]κX,wn(s, t)

2
p + ‖δnY ‖p,[s,t]κX,wn(s, t)

1
p

}
.

Consider the set SX := {(u, v) ∈ S[0,T ] : v − u ≤ δX}, where

δX = T ∧ sup{δ > 0 : ∀(u, v) ∈ S[0,T ], v − u ≤ δ ⇒ ‖X‖p,[u,v] ≤ (2Cp)
−1}.

Up to rede�ning δX into δX ∧ δX, we can assume without loss of generality that SX ⊆ SX . Thus for any
(s, t) ∈ SX, one gets that

‖Rδnσ(Y )‖ p
2 ,[s,t]

≤ 2C
{
wn(s, t) + ‖δnY ‖∞,[s,t]κX,wn(s, t)

2
p + ‖δnY ‖p,[s,t]κX,wn(s, t)

1
p

}
. (5.10)

5th step. Back to the de�nition of δnY , we obtain

|δ(δnY )s,t| = |δ(δnK)s,t +

∫ t

s

δnσ(Y )udXu|

≤ wn(s, t) + |δnσ(Y )s||δXs,t|+ |δnσ′σ(Y )s||Xs,t|

+ Cp

(
‖Rδnσ(Y )‖ p

2 ,[s,t]
‖X‖p,[s,t] + ‖δnσ′σ(Y )‖p,[s,t]‖X‖ p

2 ,[s,t]

)
.
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The previous bounds (5.9) and (5.10) can now be used as follows: ∀(s, t) ∈ SX,

‖δnY ‖p,[s,t] ≤ C
{
wn(s, t) + ‖δnY ‖∞,[s,t]‖X‖p,[s,t] + ‖δnY ‖∞,[s,t]‖X‖ p

2 ,[s,t]

+ ‖X‖p,[s,t]
(
wn(s, t) + ‖δnY ‖∞,[s,t]κX,wn(s, t)

2
p + ‖δnY ‖p,[s,t]κX,wn(s, t)

1
p

)
+ ‖X‖ p

2 ,[s,t]

(
‖δnY ‖p,[s,t] + ‖δnY ‖∞,[s,t]κX,wn(s, t)

1
p

)}
≤ 1

2
CY ‖δnY ‖p,[s,t]

(
‖X‖p,[s,t]κX,wn(s, t)

1
p + ‖X‖ p

2 ,[s,t]

)
+ Cwn(s, t)

(
1 + ‖X‖p,[s,t]

)
+ C‖δnY ‖∞,[s,t]

(
κX,wn(s, t)

1
p +κX,wn(s, t)

3
p

)
≤ CY ‖δnY ‖p,[s,t]κX,wn(s, t)

2
p + C(wn(s, t) + ‖δnY ‖∞,[s,t])

(
1 +κX,wn(s, t)

1
p +κX,wn(s, t)

3
p

)
,

where CY > 0 depends only on p and σ. Since

(s, t) 7→ C(wn(s, t) + ‖δnY ‖∞,[s,t])p
(

1 +κX,wn(s, t)
1
p +κX,wn(s, t)

3
p

)p
is super-additive, we obtain by a classical argument that ∀(s, t) ∈ S[0,T ],

‖δnY ‖p,[s,t] ≤
(

2(2CY )
p
2

) p−1
p
(

1 ∨κX,wn(s, t)
p−1
p

)
× C(wn(s, t) + ‖δnY ‖∞,[s,t])

3∑
k=0
k 6=2

κX,wn(s, t)
k
p ,

so that ∀(s, t) ∈ S[0,T ],

‖δnY ‖p,[s,t]κX,wn(s, t)
1
p ≤ C(wn(s, t) + ‖δnY ‖∞,[s,t])

(
κX,wn(s, t)

1
p ∨κX,wn(s, t)

) 3∑
k=0
k 6=2

κX,wn(s, t)
k
p

≤ C(wn(s, t) + ‖δnY ‖∞,[s,t])
(
κ̃X,wn(s, t)

1
p ∨ κ̃X,wn(s, t)

)
.

By plugging the above bound into the right-hand side of (5.10), one obtains the desired result. For further
use, note also that the previous bound can be used in (5.9) to get that ∀(s, t) ∈ S[0,T ],

‖δnσ′σ(Y )‖p,[s,t]‖X‖ p
2 ,[s,t]

≤ C
(
‖δnY ‖p,[s,t]κX,wn(s, t)

1
p + ‖δnY ‖∞,[s,t]κX,Kn(s, t)

2
p

)
≤ C(wn(s, t) + ‖δnY ‖∞,[s,t])

(
κ̃X,wn(s, t)

1
p ∨ κ̃X,wn(s, t)

)
. (5.11)

5.2 Proof of Theorems 2.14 and 2.15

In this section, denote by Πt(y) the projection on the epigraph of L, i.e. Πt(y) = y∨Lt. Consider the control
function de�ned by: ∀(s, t) ∈ S[0,T ],

κX,wn(s, t) := (1 + ‖X‖ p
2 ,[s,t]

)p
(
κ̃X,wn(s, t) ∨ κ̃X,wn(s, t)p

)
. (5.12)

Lemma 5.2. Set c = (2e2)
1
p and denote by Θ the quantity C

(
1 + (1 + Θ)|||X|||β + ‖L‖β

)
that appears in

the upper bound of sups∈[0,T ](Y
n
s − Ls)− in Proposition 4.7. For any n ∈ N∗, one has

∀(s, t) ∈ SX, ‖Y −Π·(Y
n)‖∞,[s,t] ≤ 2e

1∨
(
cκX,wn (s,t)

) (
Ys −Πs(Y

n
s ) + Θn−β + 2δKs,t

)
.

24



Proof. Observe that

δ(δnY )s,t + wn(s, t) =

∫ t

s

δnσ(Y )udXu + δ(δnK)s,t + wn(s, t)

=

∫ t

s

δnσ(Y )udXu + 2δKs,t. (5.13)

In view of the following classical inequality

|
∫ t

s

δnσ(Y )udXu| ≤ C
{
δnYs|δXs,t|+ δnYs|Xs,t|+ ‖Rδnσ(Y )‖ p

2 ,[s,t]
‖X‖p,[s,t] + ‖δnσ′σ(Y )‖p,[s,t]‖X‖ p

2 ,[s,t]

}
,

one can apply Lemma 5.1 and Inequality (5.11) to get that for any (s, t) ∈ SX,

|
∫ t

s

δnσ(Y )udXu| ≤ C
(
‖δnY ‖∞,[s,t] + wn(s, t)

){
(1 + ‖X‖ p

2 ,[s,t]
)
(
κ̃X,wn(s, t)

1
p ∨ κ̃X,wn(s, t)

)}
. (5.14)

Now we get from (5.13) and (5.14) that

δ(δnY )s,t + wn(s, t) ≤
(
‖δnY ‖∞,[s,t] + wn(s, t)

)
κX,wn(s, t)

1
p + 2δKs,t.

Hence we are now in a position to apply the rough Gronwall lemma of Deya et al. [8, Lemma 2.11] which
reads

∀(s, t) ∈ SX, ‖δnY ‖∞,[s,t] + wn(s, t) ≤ 2 exp
{

1 ∨
(
cκX,wn(s, t)

)}
(δnYs + 2δKs,t) .

With the current notation, Proposition 4.7 yields Πt(Y
n
t )−Y nt ≤ Θn−β , ∀t ∈ [0, T ]. Since Y −Π·(Y

n) ≤ δnY ,
we obtain

∀(s, t) ∈ SX, ‖Y −Π·(Y
n)‖∞,[s,t] ≤ 2e

1∨
(
cκX,wn (s,t)

)
(Ys −Πs(Y

n
s ) + Πs(Y

n
s )− Y ns + 2δKs,t)

which gives the expected result.

We now have all the ingredients to carry out the proof of the Theorems.

Proof of Theorem 2.14. We will use Lemma 5.2 to obtain

‖Y −Π·(Y
n)‖∞,[0,T ] ≤ exp

{
2Tδ−1

X +
(
cκX,wn(0, T )

)}
(2 + Tδ−1

X Θ)n−β . (5.15)

It is clear that the quantity κX,K(0, T ) := supn∈NκX,wn(0, T ) is �nite (we give more details in the next
proof, where X is a Gaussian rough paths). Hence the Inequality (5.15) yields the desired result since

‖δnY ‖∞,[0,T ] ≤ ‖Y −Π·(Y
n)‖∞,[0,T ] + ‖Π·(Y n)− Y n‖∞,[0,T ]

≤ exp
{

2Tδ−1
X +

(
cκX,K(0, T )

)}
(2 + Θ + Tδ−1

X Θ)n−β , (5.16)

using Proposition 4.7 in the last inequality.
To see that (5.15) holds, consider �rst the case s = 0 and t > 0 such that (0, t) ∈ SX: since Y0 = Π0(Y n0 ) =

y0, one can de�ne

tn0 := T ∧ inf
{
t > 0 : Yt −Πt(Y

n
t ) = 2n−β

}
.

Of course, if tn0 = T then the proof is over. So let us assume that tn0 < T and de�ne

tn1 := T ∧ inf
{
t > tn0 : Yt −Πt(Y

n
t ) = n−β

}
and the mapping ϑ : [0, T )→ [0, T ] associated to SX as follows:

∀t ∈ [0, T ), ϑ(t) = sup {t′ > t : (t, t′) ∈ SX} .
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Notice that for any u ∈ [tn0 , t
n
1 ], Yu lies strictly above the boundary Lu since Yu ≥ n−β + Πu(Y nu ) > Lu.

Hence for any u ∈ [tn0 , t
n
1 ], δKs,t = 0. It follows that for any u ∈ [tn0 , t

n
1 ∧ ϑ(tn0 )],

‖Y −Π·(Y
n)‖∞,[tn0 ,u] ≤ 2e

1∨
(
cκX,wn (tn0 ,t

n
1∧ϑ(tn0 ))

) (
2n−β + Θn−β + 0

)
. (5.17)

Then, we have one of the following possibilities:

1. if tn1 ∧ϑ(tn0 ) = T , then rephrasing (5.17), we get ‖Y −Π·(Y
n)‖∞,[tn0 ,T ] ≤ 2e

1∨
(
cκX,wn (tn0 ,T )

)
(2 + Θ)n−β

and (5.15) is proven (recall that by de�nition, ‖Y −Π·(Y
n)‖∞,[0,tn0 ] ≤ 2n−β);

2. if tn1 ∧ ϑ(tn0 ) = tn1 < T , then (5.17) now reads

‖Y −Π·(Y
n)‖∞,[tn0 ,tn1 ] ≤ 2e

1∨
(
cκX,wn (tn0 ,t

n
1 )
)
(2 + Θ)n−β ,

which is smaller than the right-hand side of inequality (5.15). Then, since Ytn1 − Πtn1
(Y ntn1 ) = n−β , we

can de�ne

tn2 := T ∧ inf
{
t > tn1 : Yt −Πt(Y

n
t ) = 2n−β

}
and if tn2 < T , de�ne also

tn3 := T ∧ inf
{
t > tn2 : Yt −Πt(Y

n
t ) = n−β

}
and move to the next step (iterate);

3. if tn1∧ϑ(tn0 ) = ϑ(tn0 ) < T , then as in (5.17), we get ‖Y −Π·(Y
n)‖∞,[tn0 ,ϑ(tn0 )] ≤ 2e

1∨
(
cκX,wn (tn0 ,ϑ(tn0 ))

)
(2 + Θ)n−β .

But now, we need to consider the times ϑ◦ϑ(tn0 ) ≡ ϑ2(tn0 ), ϑ3(tn0 ), . . . , ϑJ(tn0 ), as long as ϑJ(tn0 ) < T ∧tn1 .
By an immediate induction, we obtain that for such J ,

‖Y −Π·(Y
n)‖∞,[tn0 ,ϑJ (tn0 )] ≤ 2J exp

J ∨
c J−1∑

j=0

κX,wn(ϑjtn0 , ϑ
j+1(tn0 ))

 (2 + JΘ)n−β ,

where we used ϑ0(tn0 ) = tn0 . Note however that ϑJ(tn0 ) = JδX, so that J must be smaller than Tδ−1
X .

Besides, by the super-additivity property of κX,wn , one gets

‖Y −Π·(Y
n)‖∞,[tn0 ,ϑJ (tn0 )] ≤ 2Tδ

−1
X exp

{
Tδ−1

X ∨
(
cκX,wn(tn0 , T )

)}
(2 + Tδ−1

X Θ)n−β ,

which is smaller than the right-hand side of (5.15).

To conclude this step, observe that if ϑJ+1(tn0 ) = T , then we proved (5.15). While if ϑJ+1(tn0 ) = tn1 ,
then one can move to point 2. and iterate.

Following this construction, there exists an increasing sequence (tnk )k∈N ∈ [0, T ]N (possibly taking only
�nitely many di�erent values) such that limk→∞ tnk = T and for any k ≥ 0, ‖Y − Π·(Y

n)‖∞,[tn2k,tn2k+1] is

bounded by the right-hand side of inequality (5.15). This achieves the proof of this theorem.

We will now conclude this section using the previous estimate (5.16) and the probabilistic bound on Θ.

Proof of Theorem 2.15. First, we provide a bound onKT where (Y,K) is a solution of the Skorokhod problem
associated to y0 +

∫ ·
0
σ(Yu)dXu re�ected on L. Similarly, observe that (L, 0) is solution of the Skorokhod

problem associated to L re�ected on L. We call Skorokhod mapping the function that takes any continuous
paths (z, l) and maps it to (y, k), where y = z+k is a path re�ected on l. The Skorokhod mapping is Lipschitz
continuous in the uniform topology (call CS the Lipschitz constant), see for instance Equations (2.1)-(2.2) in
[12]. Thus one gets that

KT = ‖K‖∞,[0,T ] ≤ CS‖y0 +

∫ ·
0

σ(Yu)dXu − L‖∞,[0,T ]

≤ CS
(
C(1 + Θ)|||X|||β + ‖L‖β

)
T β (5.18)
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where we used Corollary 4.6. But Θ depends linearly on CX
J , and as already mentioned, this quantity may

not have exponential moments. Since an exponential of Θ appears in Inequality (5.16), this explains why
we cannot get a simple upper bound for E

(
‖δnY ‖∞,[0,T ]

)
. From Lemma 4.5 and the de�nition of Θ in

Lemma 5.2, recall that ∀γ ≥ 1, E(Θ
γ
) <∞. Moreover, we know from (4.27) that E(δγX) <∞. Finally, since

Kn
T ≤ KT , one gets from (5.2) and (5.12) that

κX,wn(0, T ) ≤ C
(

1 + ‖X‖pp
2 ,[0,T ]

)
×

(
4∑
k=1

(
φp

(
|||X|||p,[0,T ]

)kp
+ φp(KT )kp

)
∨

4∑
k=1

(
φp

(
|||X|||p,[0,T ]

)kp2
+ φp(KT )kp

2

))
.

Hence, in view of the bound (5.18) on KT , there exists a random variable κ such that, for any γ ≥ 1,

E
(

(sup
n∈N
κX,wn(0, T ))γ

)
= E

(
κγ
)
<∞.

Using (5.16), it is now clear that for any γ ≥ 1,

E
[∣∣ sup
n∈N

log
(
nβ‖δnY ‖∞,[0,T ]

)∣∣γ] <∞.

6 Application: existence of a density for the re�ected process

In this last section, we aim at proving Theorem 2.16. Thus let us consider the following simpli�ed problem
(compared to (1.2)), with constant di�usion coe�cient and one-dimensional fractional Brownian noise:

∀t ≥ 0, Yt = y0 +

∫ t

0

b(Yu)du+Kt +Bt,

where B is a fractional Brownian motion with Hurst parameter H ∈ [ 1
2 , 1), y0 ≥ 0, b ∈ C1

b (R) and (Y,K) is
the solution of the Skorokhod problem of re�ection above the constant boundary 0. Note that we added a
drift b compared to previous equations, which in the previous section could have been part of the vector �eld
σ. However it is not necessary here to assume as much as a fourth order bounded derivative in this case, and
one can check that b ∈ C1

b is enough to get existence with the method of Sections 3 and 4.
As in the previous sections, Y is approximated by the non-decreasing sequence of processes (Y n)n∈N:

∀t ≥ 0, Y nt = y0 +

∫ t

0

b(Y nu )du+

∫ t

0

ψn(Y nu )du+Bt. (6.1)

6.1 Malliavin calculus and fractional Brownian motion

Let us brie�y review some fundamental tools and results of Malliavin calculus that permit to prove that some
random variables are absolutely continuous with respect to the Lebesgue measure. In a second paragraph,
we shall give a brief account of Malliavin calculus for the fractional Brownian motion, in a manner that
emphasises the applicability of the general results to the fBm framework.

Let D denote the usual Malliavin derivative on the Cameron-Martin space H = L2([0, T ]). For any p ≥ 1,
let D1,p be the Malliavin-Sobolev space associated to the derivative operator D. We aim at applying the
following result of Bouleau and Hirsch to Yt.

Theorem 6.1 ([25]). Let X ∈ D1,2 be a real-valued random variable. If A ∈ F and ‖DX‖H > 0 a.s. on A,
then the restriction of the law of X to A, i.e. the measure [1AP] ◦X−1, admits a density with respect to the
Lebesgue measure.
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Concerning the Malliavin calculus for fBm, we recall some de�nition and properties borrowed from [25,
Chapter 5] (see also [26, Section 2] for a more detailed introduction than what we present here). One possible
approach to this calculus is to consider the kernel K, de�ned for any H ∈ ( 1

2 , 1) by:

K(t, s) =

{
cHs

1
2−H

∫ t
s
uH−

1
2 (u− s)H− 3

2 du if t > s > 0

0 if t ≤ s,
(6.2)

where cH is a positive constant (see [25, Eq. (5.8)]). Note that for the standard Brownian motion (H = 1
2 ),

K(t, s) = 1[0,t](s). Then if B is a fractional Brownian motion,

DsBt = K(t, s).

Furthermore, one can de�ne an L2([0, T ])-valued linear isometry K∗ as follows: for any simple function ϕ,

K∗ϕ(s) =

∫ T

s

ϕ(u)
∂K

∂u
(u, s)du = cH

∫ T

s

ϕ(u)
(u
s

)H− 1
2

(u− s)H− 3
2 du.

The domain of K∗ is thus a Hilbert space, which we do not need to characterise here, but only recall that
for any H ∈ [ 1

2 , 1), it contains Cb([0, T ]). Besides, if the support of ϕ is contained in [0, t] for some t > 0, one
can verify that

K∗ϕ(s) =

∫ t

s

∂K

∂u
(u, s)ϕ(u)du. (6.3)

Applying the Malliavin derivative on both sides of (6.1), we obtain

∀s, t ≥ 0, DsY
n
t =

∫ t

0

DsY
n
u b
′(Y nu )du+

∫ t

0

DsY
n
u ψ
′
n(Y nu )du+K(t, s).

Since for any �xed s ≥ 0, the previous equality is an ODE in t, solving it yields

∀t ≥ 0, DsY
n
t = K∗

[
1[0,t](·) exp

{∫ t

·
(b′(Y nv ) + ψ′n(Y nv ))dv

}]
(s). (6.4)

For the ease of notations, let us de�ne, for ϕ = b′ + ψ′n or ϕ = b′, the process

Es,t[ϕ] = 1[0,t](s) exp

{∫ t

s

ϕ(Y nv )dv

}
.

6.2 Proof of existence of a density (Theorem 2.16)

Let t > 0. The scheme of proof is very similar to the one used by Tindel [31] for elliptic PDEs perturbed
by an additive white noise. First, notice that the sequence (DY nt )n∈N is bounded in L2(Ω;H). Indeed, the
mapping E·,t[b′+ψ′n] is bounded uniformly in n and s ∈ [0, T ], since ψ′n ≤ 0. Hence it is clear that the same is
true of K∗Y nt (note that this is where things become di�cult if one wants to consider the case H < 1

2 ). Since
Y n converges to Y in L2 (cf Theorem 2.13) and supn∈N E (‖DY nt ‖H) <∞ in view of the preceding discussion,
we deduce that Yt ∈ D1,2 and that (DY nt )n∈N converges weakly to DYt in L

2(Ω;H) (see for instance Lemma
1.2.3 in [25]), i.e. that for any χ ∈ L2(Ω) and any f ∈ H,

lim
n→∞

E [χ〈DY nt , f〉] = E [χ〈DYt, f〉] . (6.5)

In the sequel, we shall apply this convergence to any non-negative χ ∈ L2(Ω), and to any f ∈ H with a
su�ciently small support.

Let Ω0 be a measurable set of measure 1 on which Y n converges (uniformly) (cf Theorem 2.13). In view
of Theorem 6.1, it su�ces to prove that for any a > 0, ‖DYt‖H > 0 a.s. on the event

Ωa = {ω ∈ Ω0 : Yt ≥ 3a}.
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As in [31], we notice that it su�ces to prove that for any k, j ∈ N∗, ‖DYt‖H > 0 a.s. on the following event

Ωa,k,j :=
{
ω ∈ Ωa : Y kt ≥ 2a and Y ks ≥ a, for any s such that |t− s| ≤ j−1

}
,

since
⋃
k,j∈N∗ Ωa,k,j = Ωa.

Hence let now a, k, j be �xed. Since the sequence Y n is non-decreasing, Y ns ≥ a a.s. on Ωa,k,j for all
n ≥ k and all s ∈ [t− j−1, t+ j−1], and thus ψ′n(Y ns ) = 0. Hence on Ωa,k,j and for all n ≥ k, (6.4) now reads

∀s ∈ [t− j−1, t], DsY
n
t = K∗E·,t[b′](s). (6.6)

Based on the de�nitions of the previous section (in particular (6.3)), and for any non-negative f ∈ L2

with support in [t− j−1, t],

〈DY nt , f〉 = cH

∫ t

t−j−1

f(s)

∫ t

s

(u
s

)H− 1
2

(u− s)H− 3
2 Eu,t[b′ + ψ′n] duds. (6.7)

Thus using (6.6) and the boundedness of b′, it follows that 1Ωa,k,jEu,t[b′ + ψn] ≥ 1Ωa,k,je
−(t−u)‖b′‖∞ , hence

one gets

1Ωa,k,j 〈DY nt , f〉 ≥ 1Ωa,k,je
−j−1‖b′‖∞

∫ t

t−j−1

f(s)cH

∫ t

s

(u
s

)H− 1
2

(u− s)H− 3
2 duds

= 1Ωa,k,je
−j−1‖b′‖∞

∫ t

t−j−1

f(s)K(t, s)ds.

Hence the previous inequality and (6.5) yield that for any non-negative χ ∈ L2(Ω) and any non-negative
f ∈ L2 with support in [t− j−1, t]

E
(
1Ωa,k,jχ〈DYt, f〉

)
≥ E

(
1Ωa,k,jχ e

−j−1‖b′‖∞〈K(t, ·), f〉
)
.

It follows that almost surely, 1Ωa,k,jDsYt ≥ 1Ωa,k,je
−j−1‖b′‖∞K(t, s) for almost all s ∈ [t− j−1, t]. Hence the

following inequality holds almost surely on Ωa,k,j :

‖DYt‖H ≥ e−j
−1‖b′‖∞‖K(t, ·)1[t−j−1,t]‖H > 0.

Applying Theorem 6.1 to DYt concludes the proof of Theorem 2.16.

A Appendix

Proof of Proposition 2.11. The local existence of a solution of (2.8) comes from [20], Theorem 3 (see also
[17, Theorem 10.21]). Uniqueness is also granted given the regularity of σ and b. In view of [20, Lemma 1]
(see also [17, Theorem 10.21]), we know that either Y is a global solution on [0, T ], or that there is some
time τ ′ ≤ T such that for any τ ∈ [0, τ ′), {Ys}s∈[0,τ ] is a solution to (2.8) and that limt→τ ′ |Yt| =∞. In the
remaining of this proof, we shall prove that Yt coincides on [0, τ ′) with the solution to (3.3). Since the latter
does not explode, it will follow that Y is a global solution.

Let us turn to the Doss-Sussmann representation. Recall that according to (3.1), JX;·
0←t is Lipschitz

uniformly in t but that due to the unboundedness of b, W (t, ·) is only locally Lipschitz (uniformly in t). This
su�ces to prove existence and uniqueness of a solution to żt = W (t, zt) on a small enough time interval. In

fact, JX;·
0←t is bounded (see (3.1)) and CX

U := supt∈[0,T ] |U
X;0
t←0| <∞. Denote by B(CX

U ) the ball of Re centred
in 0 and with radius CX

U . Thus

|W (t, z)| ≤ |JX;z
0←tb(U

X;0
t←0)|+ |W (t, z)− JX;z

0←tb(U
X;0
t←0)|

≤ CX
J sup
x∈B(CX

U )

|b(x)|+ CX
J |b(U

X;z
t←0)− b(UX;0

t←0)|

≤ CX
J

(
‖b‖∞,B(CX

U ) + ‖∇b‖∞CX
J |z|

)
,
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i.e. W has linear growth. This ensures the stability of the solution Zt to the ODE Żt = W (t, Zt), and

its global existence on any time interval (see e.g. [17, Theorem 3.7]). Thus the process {UX;Zt
t←0 }t∈[0,T ] is

well-de�ned.
Now to prove that {Yt}t∈[0,τ ] and {UX;Zt

t←0 }t∈[0,τ ] coincide, one can follow the scheme of proof of [14,

Proposition 3]: let (Xk)k∈N a sequence of geometric rough paths such that (Xk)k∈N is a sequence of Lipschitz
paths with uniform β-Hölder bound, which converges pointwise to X. Denote by Y k the solution to (2.8)
where Xk replaces X. Then (Y k, Zk) is easily seen to solve (3.3) with X replaced by Xk. As stated in [14],
it su�ces to prove the uniform convergence of Zk to Z to get the result. De�ne

Mk = sup
s∈[0,τ ],z∈Re

|JX;z
0←s − J

Xk;z
0←s | ∨ |U

X;z
s←0 − U

Xk;z
s←0 |

and denote JLip = sups∈[0,T ] ‖J
X;·
s←0‖Lip which is �nite (see the discussion of Section 3.1). Now the main

di�erence with [14] lies again in the unboundedness of b: denote by Z = supt∈[0,T ] |Zt| < ∞ and C
X

U =

supt∈[0,T ],supz∈B(0,Z)
|UX;z
t←0| <∞. Then for t ≤ τ ,

|Zkt − Zt| ≤
∫ t

0

{
|JX;Zs

0←s − J
X;Zks
0←s | |b(U

X;Zs
s←0 )|+ |JX;Zks

0←s − J
Xk;Zks
0←s | |b(U

Xk;Zks
s←0 )|

+ |JX;Zks
0←s ||b(U

Xk;Zks
s←0 )− b(UX;Zs

s←0 )|
}
ds

≤
∫ t

0

{
JLip|Zks − Zs| ‖b‖∞,B(CX

U ) +Mk
(
‖b‖∞,B(C

X
U )

+ ‖∇b‖∞|U
Xk;Zks
s←0 − UX;Zs

s←0 |
)

+ CX
J ‖∇b‖∞|U

Xk;Zks
s←0 − UX;Zs

s←0 |
}
ds

≤
∫ t

0

{
JLip|Zks − Zs| b+Mk b+ ‖∇b‖∞

(
CX
J +Mk

)
|UXk;Zks
s←0 − UX;Zs

s←0 |
}
ds

≤
∫ t

0

{
JLip|Zks − Zs| b+Mk b+ ‖∇b‖∞

(
CX
J +Mk

) (
Mk + CX

J |Zks − Zs|
)}

ds,

where b := max
(
‖b‖∞,B(CX

U ), ‖b‖∞,B(C
X
U )

)
. Then, denoting CZ,1 := b + ‖∇b‖∞CX

J and CZ,2 := bJLip +

‖∇b‖∞(CX
J )2, one gets that

sup
s∈[0,t]

|Zks − Zs| ≤ tCZ,1Mk + t‖∇b‖∞(Mk)2 + CZ,2(1 +Mk)

∫ t

0

sup
u∈[0,s]

|Zku − Zu|ds

≤
(
CZ,1 + ‖∇b‖∞Mk

)
TMk exp

(
CZ,2(1 +Mk)T

)
(A.1)

applying Gronwall's lemma in the last inequality. By the continuity of the mapping (y,X) 7→ UX;y
·←0 (see [15,

Theorem 8.5]), there is Mk → 0 as k → ∞, hence the inequality (A.1) implies that Zk converges uniformly
to Z. Since Y k has the representation (3.3), then so has Y .

Hence {Yt}t∈[0,τ ] and {UX;Zt
t←0 }t∈[0,τ ] do coincide and since the latter does not explode in �nite time, this

implies that there cannot exist τ ′ > τ such that limt→τ ′ |Yt| =∞. Thus Y is de�ned on [0, T ].
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