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Abstract. Snow consists of non-spherical grains of vari-

ous shapes and sizes. Still, in many radiative transfer ap-

plications, single-scattering properties of snow have been

based on the assumption of spherical grains. More recently,

second-generation Koch fractals have been employed. While

they produce a relatively flat phase function typical of de-

formed non-spherical particles, this is still a rather ad hoc

choice. Here, angular scattering measurements for blowing

snow conducted during the CLimate IMpacts of Short-Lived

pollutants In the Polar region (CLIMSLIP) campaign at Ny

Ålesund, Svalbard, are used to construct a reference phase

function for snow. Based on this phase function, an opti-

mized habit combination (OHC) consisting of severely rough

(SR) droxtals, aggregates of SR plates and strongly distorted

Koch fractals is selected. The single-scattering properties of

snow are then computed for the OHC as a function of wave-

length λ and snow grain volume-to-projected area equiva-

lent radius rvp. Parameterization equations are developed for

λ = 0.199–2.7 µm and rvp= 10–2000 µm, which express the

single-scattering co-albedo β, the asymmetry parameter g

and the phase function P11 as functions of the size parameter

and the real and imaginary parts of the refractive index. The

parameterizations are analytic and simple to use in radiative

transfer models. Compared to the reference values computed

for the OHC, the accuracy of the parameterization is very

high for β and g. This is also true for the phase function pa-

rameterization, except for strongly absorbing cases (β > 0.3).

Finally, we consider snow albedo and reflected radiances for

the suggested snow optics parameterization, making compar-

isons to spheres and distorted Koch fractals.

1 Introduction

Snow grains are non-spherical and often irregular in shape.

Still, in many studies, spherical snow grains have been as-

sumed in radiative transfer calculations due to the conve-

nience of using Mie theory. In fact, it has been shown that

the spectral albedo of snow can be fitted by radiative transfer

calculations under the assumption of spherical snow grains,

when the effective snow grain size is considered an ad-

justable parameter (i.e. determined based on albedo rather

than microphysical measurements) (Wiscombe and Warren,

1980; Grenfell et al., 1994; Aoki et al., 2000). Snow albedo

parameterizations used in climate models and numerical

weather prediction models are often semi-empirical and do

not specify the snow grain shape (for some examples, see

Wang and Zeng, 2010). However, in most (if not all) physi-

cally based albedo parameterizations that explicitly link the

albedo to snow grain size, spherical snow grains are assumed

(Flanner and Zender, 2005; Gardner and Sharp, 2010; Aoki

et al., 2011).

It is, however, well known that the single-scattering prop-

erties (SSPs) of non-spherical particles, including the single-

scattering albedo ω, the phase function P11 and the entire

phase matrix P, can differ greatly from those of spheres.1 A

consequence of this is that the assumed shape of snow grains

has a profound effect on the bidirectional reflectance distri-

bution function (BRDF) of snow (Mischenko et al., 1999;

Xie et al., 2006). Furthermore, Aoki et al. (2000) showed

that the modelled BRDF of snow agreed better with observa-

1While symbols and abbreviations are introduced at their first

appearance, they are also listed in Table A1.
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tions when, instead of the actual phase function for spheres,

the Henyey–Greenstein (HG) phase function (Henyey and

Greenstein, 1941) was assumed. The HG phase function is

very smooth, while that of spheres features icebow and glory

peaks not seen for real snow along with very low sideward

scattering. Based on a comparison of a few shape models

with phase function measurements for laboratory-generated

ice crystals (Barkey et al., 2002), Kokhanovsky and Zege

(2004) recommended, instead of spheres, the use of Gaus-

sian random spheres (Muinonen et al., 1996; Nousiainen

and Muinonen, 1999) or Koch fractals (Macke et al., 1996),

which both exhibit a relatively featureless phase function.

Since Gaussian random spheres have several free parame-

ters while Koch fractals have none (except for the degree of

distortion for randomized Koch fractals), Koch fractals were

selected by Kokhanovsky and Zege (2004). Kokhanovsky

et al. (2005, 2011) further demonstrated that the reflectance

patterns computed for Koch fractals agreed reasonably well

with actual measurements for snow. Subsequently, they have

been used in several studies related to remote sensing of snow

grain size and snow albedo (Lyapustin et al., 2009; Negi and

Kokhanovsky, 2011; Kokhanovsky et al., 2011).

Other snow grain shape models have also been considered.

Tanikawa et al. (2006) suggested the use of non-spherical ice

particles with rough surfaces, specifically, cylindrical par-

ticles for new snow and prolate ellipsoids for old granu-

lar snow. These choices improved the agreement with ob-

served angular reflectance patterns compared to the use of

spheres. Jin et al. (2008) compared anisotropic reflectance

factors computed using spheres, hexagonal plates, hexagonal

columns and aggregates of columns with ground-based mea-

surements in Antarctica, finding the best agreement for the

aggregate model and the largest discrepancies for spheres.

Furthermore, Zege et al. (2011) tested, in their retrieval al-

gorithm of snow grain size and soot concentration in snow,

a mixture of hexagonal columns and plates with rough sur-

faces.

Overall, while it is clear that spheres are not an ideal

choice for modelling the SSPs of snow, it is less clear which

non-spherical model should be used. Kokhanovsky and Zege

(2004) noted that the final decision of the shape model

should be made when in situ phase function measurements

for snow become available. The present paper makes a step

towards this direction. We employ angular scattering mea-

surements for blowing snow performed with a polar neph-

elometer (Gayet et al., 1997) during the CLimate IMpacts

of Short-Lived pollutants In the Polar region (CLIMSLIP)

campaign at Ny Ålesund, Svalbard (Guyot et al., 2015), to

construct a reference phase function for snow grains at the

wavelength λ= 0.80 µm. This phase function is used to se-

lect a new shape model for snow, an “optimized habit combi-

nation” (OHC) consisting of severely rough (SR) droxtals,

aggregates of SR plates and strongly distorted Koch frac-

tals. The SSPs for the OHC are then computed as a func-

tion of wavelength and snow grain size, and parameterization

equations are developed for the single-scattering co-albedo

β = 1−ω, the asymmetry parameter g and the phase func-

tion P11. Such parameterizations are of substantial practical

significance, as they greatly facilitate the use of the OHC in

radiative transfer applications. We are not aware of any such

previous parameterizations for representing the snow SSPs.

The outline of this paper is as follows. First, in Sect. 2, the

models used to compute the SSPs of Koch fractals, Gaussian

spheres and spheres are introduced along with the database

of Yang et al. (2013) used for several other shapes. In Sect. 3,

the reference phase function for snow is constructed. In

Sect. 4, several shape models are compared in terms of their

ability to reproduce the reference phase function, and the

OHC is selected. In Sect. 5, the SSPs for the OHC are com-

puted as a function of wavelength and snow grain size, and in

Sect. 6 parameterization equations are developed. In Sect. 7,

the snow SSP parameterization is applied to radiative trans-

fer computations, and comparisons are made to spheres and

Koch fractals. Finally, a summary is given in Sect. 8.

2 Shape models and single-scattering data

Here, several shape models are considered as candidates for

representing the SSPs of snow. These include (1) second-

generation Koch fractals, (2) Gaussian random spheres,

(3) nine different crystal habits in the Yang et al. (2013)

single-scattering database and, for comparison, (4) spheres.

The snow grains are assumed to consist of pure ice (i.e. no

impurities such as black carbon are included). The ice refrac-

tive index of Warren and Brandt (2008) is employed.

The SSPs (extinction cross section, single-scattering

albedo, phase function and asymmetry parameter) of Koch

fractals are simulated using the geometric optics code of

Macke (1993) (see also Macke et al., 1996). Both regular

and distorted Koch fractals are considered. A regular second-

generation Koch fractal has 144 equilateral triangular surface

elements. Distortion is simulated using a statistical approach,

in which for each refraction–reflection event the normal of

the crystal surface is tilted randomly around its original di-

rection (Macke et al., 1996). The zenith (azimuth) tilt angle

is chosen randomly with equal distribution between [0, θmax]

([0, 360◦]), where θmax is defined using a distortion param-

eter t = θmax/90◦. Values of t = 0 (regular), t = 0.18 (dis-

torted) and t = 0.50 (strongly distorted) are considered. The

geometric optics solution consists of ray tracing and diffrac-

tion parts, which are combined as in Macke et al. (1996). For

diffraction, the Fraunhofer (far-field) approximation is em-

ployed. Either 3 million (in Sect. 4) or 1 million (in Sect. 5)

rays per case (i.e. crystal size, wavelength and degree of

distortion) are used for the ray tracing part. Up to p= 12

ray–surface interactions per initial ray are considered (see

Sect. 3A in Macke, 1993).

The SSPs of Gaussian random spheres are computed with

the geometric optics code of Muinonen et al. (1996). Details

The Cryosphere, 9, 1277–1301, 2015 www.the-cryosphere.net/9/1277/2015/
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of the Gaussian random sphere shape model are discussed

e.g. in Nousiainen and McFarquhar (2004). The shape of the

particles is described in terms of three parameters: the rela-

tive SD of radius σ , the power-law index ν in the Legendre

polynomial expansion of the correlation function of radius

(the weight of the nth degree Legendre polynomial Pn being

cn∝ n
−ν), and the degree of truncation nmax for this poly-

nomial expansion. In broad terms, increasing σ increases the

large-scale non-sphericity of the particle, while decreasing ν

and increasing nmax adds small-scale structure to the particle

shape. Four values were considered for σ (0.15, 0.20, 0.25

and 0.30), four for ν (1.5, 2.0, 2.5 and 3.0) and three for nmax

(15, 25 and 35), which yields 48 parameter combinations.

A total of 1 million rays with 1000 realizations of particle

shape per case were employed in the ray tracing computa-

tions. Diffraction was computed by applying the Fraunhofer

approximation to equivalent cross-section spheres.

Recently, Yang et al. (2013) published a comprehensive li-

brary of SSPs of non-spherical ice crystals, for wavelengths

ranging from the ultraviolet to the far infrared, and for parti-

cle maximum dimensions dmax ranging from 2 to 10 000 µm.

The library is based on the Amsterdam discrete dipole ap-

proximation (Yurkin et al., 2007) for small particles (size pa-

rameter smaller than about 20) and improved geometric op-

tics (Yang and Liou, 1998; Bi et al., 2009) for large particles.

Here, single-scattering properties for nine ice particle habits

in the Yang et al. (2013) database are used: droxtals, solid and

hollow hexagonal columns, aggregates of 8 columns, plates,

aggregates of 5 and 10 plates, and solid and hollow bullet

rosettes. For each habit, the SSPs are provided for three de-

grees of particle surface roughness: completely smooth (CS),

moderately rough (MR) and severely rough. The effect of

roughness is simulated in a way that closely resembles the

treatment of distortion for Koch fractals: the surface slope

is distorted randomly for each incident ray, assuming a nor-

mal distribution of local slope variations with a SD of 0, 0.03

and 0.50 for the CS, MR and SR particles respectively in

Eq. (1) of Yang et al. (2013). In fact, this approach does not

represent any specific roughness characteristics but attempts

instead to mimic the effects on SSPs due to non-pristine crys-

tal characteristics in general (both roughness effects and ir-

regularities).

For comparison, results are also shown for spheres. The

SSPs of spheres are computed using a Lorenz–Mie code (de

Rooij and van der Stap, 1984; Mischenko et al., 1999).

3 Observation-based phase function for blowing snow

We employ as a reference an observation-based phase func-

tion for blowing snow. The reference phase function was

derived from ground-based measurements conducted dur-

ing the CLIMSLIP field campaign at Ny Ålesund, Svalbard

(Guyot et al., 2015), on 23 and 31 March 2012. The blow-

ing snow case on 23 March was preceded by heavy snow-

fall on 22 March, ending during the night of 23 March. The

last snowfall before 31 March blowing snow case occurred

on 29 March. Consequently, the case of 23 March repre-

sents essentially new snow, while on 31 March some snow

metamorphism had occurred, and the snowpack was prob-

ably denser (although snow density was not measured). The

near-surface air temperature ranged from−5 to−9 ◦C during

the 23 March case and from−18 to−20 ◦C during 31 March.

Correspondingly, the wind speeds ranged from 1 to 9 m s−1

on 23 March (median value 4 m s−1) and from 5 to 8 m s−1

on 23 March (median value 7 m s−1). Mainly cloudy con-

ditions prevailed on 23 March, while 31 March was cloud

free. The phase functions discussed below are averages over

the entire blowing snow events, which lasted for approxi-

mately 10 h (8–18 UTC) on 23 March and 12 h (12–24 UTC)

on 31 March.

The angular scattering coefficient 9(θs) [µm−1 sr−1] of

blowing snow was measured with a polar nephelometer

(PN; Gayet et al., 1997; Crépel et al., 1997) on 23 and

31 March 2012 at 31 scattering angles in the 15◦≤ θs≤ 162◦

range at a nominal wavelength of λ= 0.80 µm. The corre-

sponding phase function P11(θs) was obtained by normaliz-

ing 9(θs) by the volume extinction coefficient σext:

P11 (θs)= 4π
9 (θs)

σext

. (1)

Here σext was estimated from the PN data following Gayet

et al. (2002), with a quoted accuracy of 25 %.

The derived phase functions are shown in Fig. 1a. There

are only minor differences between the 23 and 31 March

cases. In both cases P11 decreases sharply from 15 to 50◦,

then more gradually until 127◦. At larger scattering angles

P11 increases slightly with a local maximum around 145◦

(discussed below). Hereafter, the average over the two cases

is used as a reference for the modelled phase functions:

P ref
11 = 0.5 ·

(
P 23 March

11 +P 31 March
11

)
. (2)

In Fig. 1b, P ref
11 is compared with three other phase func-

tions: a non-precipitating cirrus case over Southern France in

the CIRRUS’98 experiment (Durand et al., 1998) (discussed

in Jourdan et al., 2003) and two phase functions for glaciated

parts of nimbostratus over Svalbard in the ASTAR 2004 ex-

periment, corresponding to clusters 6 and 7 in Jourdan et al.

(2010). These phase functions were derived from raw PN

data using a statistical inversion scheme (Jourdan et al., 2003,

2010). Perhaps as expected, the blowing snow phase function

P ref
11 is generally closer to the glaciated nimbostratus phase

functions than to the cirrus phase function. In particular, at

sideward angles between roughly 55 and 135◦, P ref
11 falls

mostly between the two nimbostratus phase functions, while

the cirrus phase function exhibits somewhat smaller values.

The smallest P11 in the cirrus and nimbostratus cases occurs

at θs= 120◦, as compared with θs= 127◦ for P ref
11 . All four

www.the-cryosphere.net/9/1277/2015/ The Cryosphere, 9, 1277–1301, 2015
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Figure 1. (a) Phase function of blowing snow as derived from the CLIMSLIP data on 23 March 2012 (red) and on 31 March 2012 (blue). The

reference phase function P ref
11

(grey) was defined as the average of the 23 and 31 March cases. (b) Comparison of P ref
11

with phase functions

for non-precipitating cirrus (CIRRUS’98, black line) and glaciated Arctic nimbostratus (ASTAR clusters 6 and 7, red and blue lines).

phase functions then increase until θs≈ 140◦, after which the

nimbostratus and cirrus phase functions become quite flat. In

contrast, P ref
11 shows a local maximum around θs≈ 145◦.

The origin of the maximum at θs≈ 145◦ is not clear. While

it may, in principle, be caused by scattering by snow grains,

this feature is neither captured by any of the particle shapes

considered in this study nor present in phase functions mea-

sured for laboratory-generated ice crystals in Barkey et al.

(2002) and Smith et al. (2015). Rather, it falls between the

icebow peak for spherical ice particles near 135◦ and a max-

imum seen for many pristine hexagonal shapes at 150–155◦

(see Fig. 3). Curiously, this feature coincides with the scat-

tering maximum of small water droplets with a ∼ 10 µm di-

ameter at 140–145◦. However, water droplets seem like an

implausible explanation, since the conditions at the measure-

ment site were subsaturated with respect to liquid water (the

relative humidity being roughly 92–95 % on 23 March and

79–87 % on 31 March), and especially the 31 March case was

quite cold. Yet the 145◦ feature is clearly visible in the mea-

sured phase function in both cases. Finally, we cannot dis-

count the possibility that inaccuracy in the PN angular scat-

tering measurements influences this feature. Shcherbakov

et al. (2006) report relative accuracy of scattered intensities

of 3–5 % between 15 and 141◦, but degrading to 30 % for

162◦, for an experimental setup with low extinction. Thus

the phase function derived from the PN measurements is,

overall, less reliable near the backscattering direction than

in near-forward and side-scattering directions.

Whether the phase function feature at 145◦ is an artifact

or a real feature caused by scattering by snow should be re-

solved through further measurements, preferably using some

alternative technique. However, in either case, it has only a

small impact on the snow SSP parameterizations derived in

this paper. This detail cannot be captured by any of the shape

models considered, so it is not present in the parameterized

phase functions. Its influence on the asymmetry parameter is

also modest. Even a complete elimination of the maximum

by linear interpolation of P ref
11 between the minima at 127 and

155◦ would increase g by only ≈ 0.007.

The size distribution of blowing snow was measured with

the Cloud Particle Imager (CPI) instrument (Lawson et al.,

2001). The CPI registers particle images on a solid state,

one million pixel digital charge-coupled device (CCD) cam-

era by freezing the motion of the particle using a 40 ns

pulsed, high power laser diode. Each pixel in the CCD cam-

era array has an equivalent size in the sample area of 2.3 µm.

In the present study, the minimum size for the CPI’s region of

interest is set up to 10 pixels. Therefore particles with sizes

ranging approximately from 25 µm to 2 mm are imaged.

Figure 2a shows examples of particles imaged by the CPI

on 31 March 2012. While some needle-shaped crystals can

be spotted, many of the particles are irregular, which also ap-

plies to the 23 March 2012 case. It is also noted that many

of the particles show rounded edges, possibly related to sub-

limation during snow metamorphosis. Size distributions de-

rived from the CPI data are shown in Fig. 2b. A lognormal

distribution was fitted to the data (averaged over the 23 and

31 March cases):

n
(
dp

)
=

1
√

2π lnσgdp

exp

[
−

(
lndp− lndp,0

)2
2ln2σg

]
. (3)

Here, dp is the projected-area equivalent diameter of the par-

ticles, dp,0= 187 µm is the median diameter and σg= 1.62

the geometric SD. This size distribution was used for all

shape models when comparing the modelled phase functions

with P ref
11 . Since absorption is weak at λ= 0.80 µm and the

particles are much larger than the wavelength, the modelled

P11 is only weakly sensitive to the size distribution employed

The Cryosphere, 9, 1277–1301, 2015 www.the-cryosphere.net/9/1277/2015/
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Figure 2. (a) Examples of snow grains imaged by the CPI instrument on 31 March 2012 and (b) size distributions for both the 23 and

31 March cases.

if the shape of the snow grains is independent of size. This

holds true for spheres, Gaussian spheres, Koch fractals, drox-

tals and the three aggregate habits in the Yang et al. (2013)

database. However, for solid and hollow hexagonal columns,

plates as well as solid and hollow bullet rosettes, the crystal

geometry is a function of size, with some influence on P11

(see end of Sect. 4 for more discussion).

4 Selecting a shape model for snow optics

The purpose of this section is to select a shape model of snow

for use in Sects. 5 to 7. The phase function for blowing snow

from the CLIMSLIP campaign, as defined by Eq. (2), is used

as a reference. It is emphasized that the approach is delib-

erately pragmatic: we do not attempt to model the scatter-

ing based on the shapes of the observed snow grains; rather

we try to develop an equivalent microphysical model for

representing the SSPs. Previously, the choice of Koch frac-

tals for approximating the scattering by snow (Kokhanovsky

and Zege, 2004) was likewise based on phase function data

only. Furthermore, our approach is conceptually analogous

to the widely used practice of modelling the SSPs of irreg-

ular dust particles. Instead of considering the actual dust

particle shapes, shape distributions of spheroids are used

operationally in a variety of applications (Dubovik et al.,

2006, 2011; Levy et al., 2007), as they have been found

to reasonably mimic scattering by dust. In contrast, current

state-of-the-art models for ice cloud SSPs include ice crys-

tal habit distributions parameterized as a function of crys-

tal size, based on in situ microphysical observations (Baum

et al., 2005, 2011; Hong et al., 2009). In principle, it would be

desirable to use this approach also for snow to provide a more

direct link between the actual snow grain shapes and those

assumed in the parameterization and to account for changes

in snow grain shape with size, which we currently neglect.

This would require, first, the analysis and subsequent param-

eterization of snow grain shape distributions as a function

of size and, second, the computation and parameterization

of the respective SSPs. The main reason why we have not

attempted this approach in the current work is that a very

large fraction of the particles in blowing snow (and snow on

ground) are irregular, more than 80 % according to manual

classification of CPI images (Guyot et al., 2015) (see also

Fig. 2a), and cannot be unambiguously associated with habits

considered e.g. in the database of Yang et al. (2013).

To provide a quantitative measure for the agreement be-

tween the modelled and reference phase functions (Pmodel
11

and P ref
11 respectively) we define a cost function as the root-

mean-square (rms) error of the logarithm of phase function:

cost=

√√√√√√√√√
162◦∫
15◦

(
lnPmodel

11 − lnP ref
11

)2
sinθsdθs

162◦∫
15◦

sinθsdθs

. (4)

To start with, the phase function for single crystal shapes

is compared with P ref
11 in Fig. 3. To be consistent with the

CLIMSLIP observations, the phase function is computed at

λ= 0.80 µm, and it is integrated over the size distribution de-

fined by Eq. (3). Several points can be noted.

First, unsurprisingly, the phase function for spheres agrees

poorly with the observations (Fig. 3a). In particular, sideward

scattering is underestimated drastically, and there is a strong

icebow peak at θs= 134◦, which is not seen in P ref
11 .

Second, for second-generation Koch fractals (Fig. 3b), the

agreement with P ref
11 is considerably better than for spheres.

The main features of the phase function are similar for reg-

ular and distorted Koch fractals. However, the regular Koch

fractal’s phase function exhibits several sharp features spe-

cific to the tetrahedral geometry which are not observed in

P ref
11 . The distorted Koch fractals’ versions are more consis-

tent with the measurements even though marked deviations

from P ref
11 are still present. Scattering is underestimated be-

tween 15 and 30◦ and overestimated between 45 and 100◦.

www.the-cryosphere.net/9/1277/2015/ The Cryosphere, 9, 1277–1301, 2015
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Figure 3. Comparison of phase function for various shape models with the reference phase function derived from CLIMSLIP data (P ref
11

shown with grey dots in each panel). (a) Spheres, (b) regular and distorted second-generation Koch fractals (with distortion parameters

t = 0.18 and t = 0.50), (c) four realizations of Gaussian spheres and (d–l) nine habits in the Yang et al. (2013) database. For each habit, the

phase function was averaged over the size distribution defined by Eq. (3). In the figure legends, the two numbers in parentheses give the

asymmetry parameter and the cost function defined by Eq. (4) respectively. For the Gaussian spheres in (c), the notation indicates the shape

parameters (e.g. for 0.15_3.0, σ = 0.15 and ν= 3.0; nmax was fixed at 15). For the Yang et al. (2013) habits in (d–l), CS, MR and SR refer

to particles with completely smooth surface, moderate surface roughness and severe surface roughness respectively.

Also, the gradient of P11 in the backscattering hemisphere is

consistently negative, while P ref
11 rather increases slightly be-

tween 127 and 162◦. Overestimated sideward scattering by

Koch fractals has been previously noted in the context of cir-

rus clouds (Francis et al., 1999) and in a comparison with

a measured phase function for laboratory-generated ice crys-

tals (Fig. 3 in Kokhanovsky and Zege, 2004).

Third, for Gaussian spheres, the level of agreement with

P ref
11 depends on the shape parameters chosen. Four cases

out of the 48 considered are shown in Fig. 3c (for all of

these nmax= 15, but the general features for nmax= 25 and

nmax= 35 are similar). For example, for the parameter val-

ues σ = 0.15 and ν= 3.0, which are close to those estimated

from shape analysis of small quasi-spherical ice crystals

in cirrus clouds in Nousiainen et al. (2011), the deviations

The Cryosphere, 9, 1277–1301, 2015 www.the-cryosphere.net/9/1277/2015/
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Figure 4. Comparison of modelled phase functions with the reference phase function (P ref
11

shown with grey dots in a–c). (a) Selected single-

habit cases: 1= distorted Koch fractals with t = 0.18; 2=Gaussian spheres with σ = 0.30, ν= 1.5 and nmax= 15; and 3= aggregates of

eight severely rough (SR) columns. (b) Best combinations of two habits: 4= aggregates of eight SR columns and SR hollow bullet rosettes

(weights 0.61 and 0.39); 5= aggregates of eight SR columns and aggregates of five SR plates (weights 0.61 and 0.39); and 6= aggregates

of eight SR columns and SR hollow columns (weights 0.68 and 0.32). (c) Best combinations of three habits: 7=SR droxtals, SR hollow

columns and distorted Koch fractals (t = 0.50) (weights 0.32, 0.30 and 0.38); 8=SR droxtals, SR hollow bullet rosettes and distorted Koch

fractals (t = 0.50) (weights 0.26, 0.36 and 0.38); and 9=SR droxtals, aggregates of 10 SR plates and distorted Koch fractals (t = 0.50)

(weights 0.36, 0.26 and 0.38). In the legends in (a–c), the two numbers in parentheses give the asymmetry parameter and the cost function

defined by Eq. (4) respectively. (d–f) show the corresponding differences from P ref
11

.

from P ref
11 are substantial. The phase function features unde-

sirable large-scale oscillations and, in particular, scattering

at θs≈ 45–75◦ is underestimated substantially. Best agree-

ment with P ref
11 is obtained in the case σ = 0.30, ν= 0.15,

which features both pronounced large-scale non-sphericity

and small-scale structure in the particle shape. The sideward

scattering is overestimated (mainly between 70 and 100◦),

but the cost function (0.163) is clearly smaller than that for

distorted Koch fractals (0.284) and is, in fact, the smallest

among all single-habit shape models considered.

Fourth, regarding the habits in the Yang et al. (2013)

database (Fig. 3d–l), both visual inspection and the cost func-

tion values indicate that the agreement with P ref
11 improves

with increasing particle surface roughness. While completely

smooth and, in many cases, moderately rough particles ex-

hibit halo peaks, for severely rough particles the phase func-

tion is quite smooth and featureless, as is P ref
11 . It is further

seen that, in general, increasing the roughness increases side-

ward scattering and reduces the asymmetry parameter. While

none of the habits considered provides perfect agreement

with P ref
11 , the cost function is smallest for the aggregate of

eight columns (0.172).

Since none of the individual shape models agrees fully sat-

isfactorily with P ref
11 , we considered combinations of two or

three shapes. We thus use

Pmodel
11 =

n∑
j=1

wjP
j

11, (5)

where n= 2 or n= 3 is the number of shapes in a combina-

tion and P
j

11 is the phase function for shape j , integrated over

the size distribution (Eq. 3) for each shape separately. Thus,

the potential dependence of snow grain shapes on their size is

not considered here. For each combination of shapes consid-

ered, the optimal weight factors wj were searched by min-

imizing the cost function (Eq. 4), subject to the conditions

that all wj are non-negative and their sum equals 1. Since

pristine particles and even moderately rough particles feature

halo peaks (or an icebow peak in the case of spheres), which

are absent in P ref
11 , the following groups of habits are consid-

ered: distorted Koch fractals, Gaussian spheres and severely

rough particles in the Yang et al. (2013) database.

Figure 4 illustrates a comparison with P ref
11 for three single-

habit cases (Fig. 4a and d) (the best Koch fractal case, the

best Gaussian sphere case and the best case with Yang et al.
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Table 1. List of best three-habit combinations. w1, w2 and w3 are the weights (i.e. fractional contributions to projected area) of each habit,

“cost” is the cost function, g the asymmetry parameter and ξ a non-dimensional absorption parameter defined by Eq. (8). SR refers to

severely rough particles, and t is the distortion parameter for second-generation Koch fractals. The “optimized habit combination” (OHC) is

highlighted with italic font.

w1 habit1 w2 habit2 w3 habit3 cost g ξ

0.38 fractal (t = 0.50) 0.32 SR droxtal 0.30 SR hollow column 0.084 0.777 1.64

0.38 fractal (t = 0.50) 0.26 SR droxtal 0.36 SR hollow bullet rosette 0.085 0.777 1.65

0.38 fractal (t = 0.50) 0.36 SR droxtal 0.26 aggregate (10 SR plates) 0.086 0.778 1.62

0.30 fractal (t = 0.50) 0.34 SR droxtal 0.36 aggregate (5 SR plates) 0.086 0.778 1.60

0.46 fractal (t = 0.50) 0.36 SR droxtal 0.18 SR plate 0.087 0.778 1.66

0.38 fractal (t = 0.50) 0.28 SR droxtal 0.34 SR solid column 0.090 0.776 1.63

0.42 fractal (t = 0.18) 0.26 SR droxtal 0.32 SR hollow bullet rosette 0.095 0.779 1.66

0.42 fractal (t = 0.18) 0.32 SR droxtal 0.26 SR hollow column 0.095 0.778 1.65

0.34 fractal (t = 0.18) 0.32 SR droxtal 0.34 aggregate (5 SR plates) 0.096 0.779 1.61

0.42 fractal (t = 0.18) 0.34 SR droxtal 0.24 aggregate (10 SR plates) 0.098 0.780 1.63

(2013) particles), the best three two-habit cases (Fig. 4b

and e) and the best three three-habit cases (Fig. 4c and f) as

defined in terms of the cost function. As expected, the agree-

ment of Pmodel
11 with P ref

11 improves with increasing num-

ber of shapes in the combination. The best three-habit cases

follow P ref
11 quite faithfully, though slightly underestimating

P ref
11 in near-forward directions and not capturing the de-

tails of P ref
11 near θs= 145◦. Furthermore, it is seen that the

best three-habit combinations produce nearly identical P11,

agreeing even better with each other than with P ref
11 .

The relationship between the asymmetry parameter g and

the cost function is considered in Fig. 5, where all single-

habit cases and combinations of two or three habits are in-

cluded. While high values of cost function can occur at any

g, the lowest values (< 0.10) always occur for three-habit

combinations with 0.775<g< 0.78. This supports a best es-

timate of g≈ 0.78 for snow at λ= 0.80 µm, of course subject

to the assumption that the measurements for blowing snow

used to construct P ref
11 are also representative of snow on the

ground.

The three-habit combinations with cost function below 0.1

are listed in Table 1. All of them include SR droxtals and ei-

ther strongly distorted (t = 0.50) or distorted (t = 0.18) Koch

fractals, but the third habit included in the combinations

varies from case to case. The differences in cost function

and asymmetry parameter between the best habit combina-

tions are very small, which makes the choice of a single

“best” habit combination for representing the SSPs of snow

somewhat arbitrary. For further use in representing the SSPs

as a function of wavelength and size, we select the follow-

ing habit combination: 36 % of SR droxtals, 26 % of aggre-

gates of 10 SR plates and 38 % strongly distorted second-

generation Koch fractals (t = 0.50), where the weights refer

to fractional contributions to the projected area. This habit

combination is represented with a blue line in Fig. 4c and f

and is marked with an arrow in Fig. 5. Hereafter, this habit

combination will be referred to as the “optimized habit com-

Figure 5. A scatter plot of asymmetry parameter vs. cost function

(Eq. 4) for single habits (black dots), combinations of two habits

(red dots) and combinations of three habits (blue dots). The “op-

timized habit combination” selected for parameterization of snow

single-scattering properties is marked with an arrow. Note that some

single-habit cases fall outside the range plotted here. These include

spheres for which cost= 1.90 and g= 0.892.

bination”. The primary reason why we selected this OHC

rather than either of the first two habit combinations in Ta-

ble 1, which have a marginally lower cost function, is that

these habit combinations include either hollow columns or

The Cryosphere, 9, 1277–1301, 2015 www.the-cryosphere.net/9/1277/2015/



P. Räisänen et al.: Parameterization of single-scattering properties of snow 1285

bullet rosettes. For these habits (unlike aggregates of plates),

the particle geometry assumed in the Yang et al. (2013)

database depends on particle size, with the aspect ratio of the

crystals increasing with their length. However, due to snow

metamorphosis on ground, size–shape relationships based on

crystal growth in ice clouds are most likely not valid for

snow. Therefore, we considered it better to use a crystal ge-

ometry that is independent of size. This also helps to keep

the SSP parameterization simpler.

5 Snow single-scattering properties as a function of

size and wavelength

The SSPs, including the extinction efficiency Qext, single-

scattering co-albedo β, asymmetry parameter g and scatter-

ing phase function P11(θs) were determined for the OHC for

140 wavelengths between 0.199 and 3 µm and for 48 particle

sizes between 10 and 2000 µm. Here, the size is defined as the

volume-to-projected area equivalent radius rvp= 0.75V/P .

As stated above, the OHC consists of SR droxtals, aggre-

gates of 10 SR plates and strongly distorted Koch fractals.

The SSPs for droxtals and aggregates of plates were taken

from the Yang et al. (2013) database (interpolated to fixed

values of rvp) while those of Koch fractals were computed us-

ing the geometric optics code of Macke (1993), as explained

in Sect. 2. Four caveats should be noted:

1. Due to problems associated with the truncation of nu-

merical results to a finite number of digits (P. Yang,

personal communication, 2013), the values of β in the

Yang et al. (2013) database are unreliable in cases of

very weak absorption. To circumvent this issue, it was

assumed that in cases of weak absorption (β < 0.001 for

Koch fractals), the values for droxtals and aggregates of

plates may be approximated as

βdroxtal

(
λ,rvp

)
= 0.943βfractal

(
λ,rvp

)
, (6)

βaggregate

(
λ,rvp

)
= 0.932βfractal

(
λ,rvp

)
. (7)

Here the scaling factors were determined as

βdroxtal/βfractal and βaggregate/βfractal, where the

overbar refers to averages over the cases in which

0.001<βfractal< 0.01 and the size parameter

x= 2π rvp/λ> 100.

2. While the largest maximum dimension for particles

in the Yang et al. (2013) database is 10 000 µm for

all habits, the corresponding maximum values of rvp

are smaller and depend on the habit. For droxtals,

rvp,max= 4218 µm, while for the aggregates of 10 plates,

it is only rvp,max= 653 µm. Thus, to extend the SSPs for

the OHC to sizes up to rvp= 2000 µm, we extrapolated

the SSPs for the aggregates of plates based on how the

SSPs depend on size for Koch fractals. See Appendix A

for details.

3. The SSPs for Koch fractals were computed using a ge-

ometric optics code, which means that the accuracy de-

teriorates somewhat in cases with smaller size parame-

ters (typically for x < 100). This issue pertains mainly

to small snow grains at near-IR wavelengths (e.g. for

λ= 2.5 µm, x= 100 corresponds to rvp≈ 40 µm).

4. Lastly but importantly, since the OHC was se-

lected based on measurements at a single wavelength

λ= 0.80 µm for only two cases, there is no guarantee

that it represents the snow SSPs equally well at other

wavelengths, or for all snow grain sizes.

Figure 6 compares wavelength-dependent SSPs for the

OHC with those for two shape assumptions previously

used in modelling snow optics: spheres and Koch frac-

tals (distorted Koch fractals with t = 0.18 were selected for

this comparison; this is close though not identical to the

shape assumption used by Kokhanovsky et al., 2011). Two

monodisperse cases are considered, with rvp= 50 µm and

rvp= 1000 µm. For all three habits, the asymmetry parame-

ter g (Fig. 6a) and the single-scattering co-albedo β (Fig. 6b)

show well-known dependencies on particle size and wave-

length. Thus, g is largely independent of both λ and rvp in the

visible region where β is very small. In the near-IR region,

β increases with increasing imaginary part mi of the refrac-

tive index and with increasing particle size. With increasing

β, the fractional contribution of diffraction to the phase func-

tion increases, which results in larger values of g (e.g. Macke

et al., 1996). The most striking differences between the three

shape assumptions occur for the asymmetry parameter, es-

pecially in the visible region, where g≈ 0.89 for spheres,

g≈ 0.74 for distorted Koch fractals and g≈ 0.77–0.78 for

the OHC. The values of β for the OHC are also intermedi-

ate between the two single-shape cases: larger than those for

spheres (except for rvp= 1000 µm at the strongly absorbing

wavelengths λ> 1.4 µm) but slightly smaller than those for

distorted Koch fractals. The implications of these differences

for snow albedo are considered in Sect. 7.

While the co-albedo values in Fig. 6b are strongly wave-

length dependent through mi, the effects of shape on absorp-

tion can be distinguished more clearly by considering the

non-dimensional absorption parameter (Kokhanovsky and

Zege, 2004; Kokhanovsky, 2013)

ξ =
Cabs

γV
=
QextPβ

γV
, (8)

where Cabs is the absorption cross section, Qext the ex-

tinction efficiency, P the projected area and V the particle

volume, and γ = 4π mi/λ, where mi is the imaginary part

of ice refractive index. Figure 6c displays ξ at the wave-

lengths λ= 0.199–1.4 µm, where absorption by snow is rel-

atively weak. Consistent with the co-albedo values (Fig. 6b)

and previous studies (e.g. Kokhanovsky and Nauss, 2005),

Fig. 6c indicates that absorption is generally stronger for non-
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Figure 6. Comparison of single-scattering properties for spheres (black lines), distorted Koch fractals with t = 0.18 (red) and the optimized

habit combination (blue), for rvp= 50 µm (solid lines) and rvp= 1000 µm (dashed lines), for a monodisperse size distribution. (a) Asymmetry

parameter g; (b) single-scattering co-albedo β = 1−ω; (c) non-dimensional absorption parameter ξ (Eq. 8); and (d) ξ divided by the real

part of refractive index squared. In (c and d), the grey line represents Eq. (9).

spherical than spherical particles for the same rvp. The differ-

ence is particularly clear in the visible region, where ξ ≤ 1.3

for spheres (except for some spikes that occur in the Mie so-

lution especially for rvp= 50 µm),≈ 1.7 for the Koch fractals

and slightly over 1.6 for the OHC.

At wavelengths beyond λ= 1.0 µm, ξ tends to decrease es-

pecially for the larger particle size rvp= 1000 µm considered,

as absorption no longer increases linearly with mi. Further-

more, in the UV region, Koch fractals and the OHC show

a distinct increase in ξ with decreasing wavelength. This is

related to the corresponding increase of the real part of the

refractive index mr. Interestingly, it is found that for these

shape assumptions, absorption scales linearly with m2
r ; fur-

thermore, for Koch fractals ξ/m2
r ≈ 1 when absorption is

weak (Fig. 6d). For spheres, the dependence of ξ on mr is

weaker. Equation (4) in Bohren and Nevitt (1983) provides

the absorption efficiency of weakly absorbing spheres in the

limit of geometric optics, which can be rewritten in terms of

ξ as

ξ =
m3

r −
(
m2

r − 1
)3/2

mr

=m2
r −

(
m2

r − 1
)3/2

mr

. (9)

For rvp= 1000 µm, ξ for spheres follows this approximation

closely until λ≈ 1.0 µm (Fig. 6c and d). However, it appears

that for Koch fractals, only the first term should be included.

It should be noted that ξ for the OHC is not independent

of that for Koch fractals (due to the scaling of co-albedo

in Eqs. (6) and (7)). However, we found that ξ also scales

linearly with m2
r for Gaussian spheres (this was tested for

σ = 0.17, ν= 2.9, nmax= 15), suggesting that this might ap-

ply more generally to complex non-spherical particles.

Finally, it should be recalled that our choice of the OHC

was based on phase function observations at the wavelength

λ= 0.80 µm. At this wavelength, absorption is so weak that

it has very little impact on the phase function. Therefore,

these observations cannot be used to constrain absorption

by snow. In spite of this, we think it is worth providing

a co-albedo parameterization based on the OHC (Eq. 11

in Sect. 6.2). The reason for this is that snow grains are

distinctly non-spherical, and for non-spherical particles, ξ
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and β are, in general, systematically larger than those for

spheres, as demonstrated by Fig. 6. In fact, considering the

wavelength λ= 0.80 µm, the values of ξ integrated over the

size distribution defined by Eq. (3) are, for the large ma-

jority of the non-spherical shapes considered, between 1.55

and 1.75, the value for the OHC being ξ = 1.62 (Table 1).

The corresponding value for spheres is substantially lower:

ξ = 1 .29. Thus, while we cannot constrain ξ or β precisely,

it is very likely that the actual values for snow exceed those

for spheres.

6 Parameterizations for the single-scattering

properties of snow

In this section, parameterization equations are provided for

the computation of snow SSPs (extinction efficiency Qext,

single-scattering co-albedo β, asymmetry parameter g and

scattering phase function P11(θs)) for the OHC discussed

above. The parameterizations are provided for the size range

rvp= 10–2000 µm and wavelength range λ= 0.199–2.70 µm.

They are expressed in terms of the size parameter x and real

and imaginary parts of refractive index (mr and mi). Here,

the size parameter defined with respect to the volume-to-

projected area equivalent radius is used:

x = xvp = 2π
rvp

λ
. (10)

For the OHC, the size parameter defined with respect to the

projected area is xp≈ 1.535 xvp.

6.1 Extinction efficiency

The extinction efficiency Qext for the OHC is displayed in

Fig. 7. For most of the wavelength and size region consid-

ered, Qext is within 1 % of the asymptotic value Qext= 2 for

particles that are large compared to the wavelength. Note that

the deviations from Qext= 2 are probably somewhat under-

estimated because the OHC includes Koch fractals, for which

Qext≡ 2 due to the use of geometric optics. For simplic-

ity, we assume this value in our parameterization, while ac-

knowledging that the actual value tends to be slightly higher

especially for small snow grains in the near-IR region.

6.2 Single-scattering co-albedo

The single-scattering co-albedo is parameterized as

β = 0.470
{

1− exp
[
−2.69xabs

(
1− 0.31min(xabs,2)

0.67
)]}

, (11)

where the size parameter for absorption is defined as

xabs =
2πrvp

λ
mim

2
r . (12)

Figure 7. Extinction efficiencyQext for the optimized habit combi-

nation as a function of wavelength (λ) and volume-to-projected area

equivalent radius (rvp).

The general form of this parameterization was inspired by

the ice crystal optics parameterization of van Diedenhoven

et al. (2014); however, our definition of xabs differs from

theirs in that the factor m2
r is included based on the find-

ings of Fig. 6c and d. The performance of this parameteri-

zation is evaluated in Fig. 8a and c. In Fig. 8a, the parame-

terized values (shown with contours) follow extremely well

the reference values computed for the OHC (shading). The

relative errors 1β/β are mostly below 1 %; errors larger

than 3 % (and locally even > 10 %) occur only for small

snow grains (rvp< 50 µm) at wavelengths λ> 1.2 µm. The

rms value of the relative errors (computed over 125 values

of λ∈ [0.199, 2.7 µm] and 48 roughly logarithmically spaced

values of rvp ∈ [10, 2000 µm]) is 1.4 %.

6.3 Asymmetry parameter

The asymmetry parameter is parameterized as

g = 1− 1.146[mr− 1]0.8
[0.52−β]1.05

[
1+ 8x−1.5

vp

]
, (13)

where the parameter values were determined by trial and

error, with the aim of minimizing the rms error in g. The

form of this parameterization reflects how g decreases with

increasing mr, increases with increasing absorption (i.e. in-

creasing co-albedo β) and increases slightly with increas-

ing size parameter xvp even at non-absorbing wavelengths,

in part because the diffraction peak becomes narrower. In

practice, the co-albedo β plays the most important role (cf.

van Diedenhoven et al., 2014), which explains the gen-

eral increase of g with increasing rvp in the near-IR region

(Fig. 8b). The parameterized values of g (shown with con-

tours in Fig. 8b) follow the reference values (shading) very

well. Note that when producing these results, parameterized

rather than exact β was used in Eq. (13). The differences

from the reference are mostly below 0.001 at the weakly ab-
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Figure 8. Comparison of (a) parameterized single-scattering co-albedo β (contours) with the reference values computed for the OHC (shad-

ing) and (b) parameterized asymmetry parameter g (contours) with the reference values (shading). (c) Relative errors (%) in the parameterized

co-albedo. (d) Absolute errors in the parameterized asymmetry parameter.

sorbing wavelengths up to λ= 1.4 µm, and while larger dif-

ferences up to |g| = 0.007 occur at the strongly absorbing

wavelengths (Fig. 8d), the overall rms error is only 0.0019.

6.4 Phase function

The phase function parameterization consists of three terms,

P11 (θs)= wdiffPdiff (θs)+wrayPray (θs)+Presid (θs) , (14)

which represent contributions due to diffraction, due to the

ray tracing part and a residual that corrects for errors made

in approximating the former two parts. The weight factors

for diffraction wdiff and ray tracing wray are given by

wdiff =
1

Qextω
≈

1

2ω
, (15)

wray =
Qextω− 1

Qextω
≈

2ω− 1

2ω
, (16)

where the latter form assumes Qext= 2 (e.g. Macke et al.,

1996).

It should be noted that in practice, the division of the phase

function expressed by Eq. (14) is conceptual rather than rig-

orous. The fitting was based on the total phase function rather

than the diffraction and ray tracing parts separately, as these

two parts are not separated in the Yang et al. (2013) database.

The general aim of the fitting was to minimize the rms errors

in ln P11.

For diffraction, the HG phase function (Henyey and

Greenstein, 1941) is used:

Pdiff (θs)= PHG (gdiff,θs) . (17)

The HG phase function is given by

PHG (g,θs)=
1− g2[

1+ g2− 2g cosθs

]3/2 , (18)

and the asymmetry parameter gdiff is approximated as

gdiff = 1− 0.60/xvp = 1− 0.921/xp, (19)

where we have utilized the relation xp≈ 1.535 xvp specific to

the OHC. Compared to the parameterization derived by van

Diedenhoven et al. (2014), Eq. (19) yields somewhat lower

values of gdiff, which to some extent compensates for the fact

that the actual shape of the diffraction peak deviates from the

HG phase function. Overall, this treatment of diffraction is
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a rough approximation and clearly not ideal for studies of

very near-forward scattering, but it serves well the current

purpose. On one hand, it improves the accuracy compared to

the assumption of a delta spike, and on the other hand, the

HG phase function has a very simple Legendre expansion

PHG (g,θs)=

∞∑
n=0

(2n+ 1)gnPn (cosθs) , (20)

where Pn denotes the nth order Legendre polynomial. This

facilitates greatly the use of PHG in radiative transfer models

such as DISORT (Stamnes et al., 1988).

The phase function for the ray tracing part is approximated

as

Pray (θs)= w1PHG (g1,θs)+ (1−w1) , (21)

where the latter term 1−w1 is intended to emulate the nearly

flat behaviour of P11 in the near-backward scattering direc-

tions. The weight factor for the HG part is parameterized as

w1 = 1− 1.53 ·max
(
0.77− gray,0

)1.2
, (22)

where gray is the asymmetry parameter for the ray tracing

(i.e. non-diffraction) part. It is derived from the condition

g=wdiff gdiff+wray gray, which yields

gray =
g−wdiffgdiff

wray

. (23)

The total asymmetry parameter g is computed using Eq. (13)

above. Finally, the asymmetry parameter g1 needed in

Eq. (21) is

g1 = gray/w1. (24)

While the sum of the first two terms of Eq. (14) already

provides a reasonably good approximation of the phase func-

tion (see below), the fit can be further improved by introduc-

ing the residual Presid, which is represented as a Legendre

series. It turns out that, except for cases with strong absorp-

tion, a series including terms only up to n= 6 yields very

good results

Presid (θs)=

6∑
n=0

(2n+ 1)anPn (cosθs) , (25)

provided that δ-M scaling (Wiscombe, 1977) is applied, with

a truncated fraction f = a6. Thus,

Presid (θs)≈ P
∗

resid (θs)

= 2f δ (1− cosθs)+ (1− f )

5∑
n=0

(2n+ 1)
an− f

1− f
Pn (cosθs)

= 2a6δ (1− cosθs)+

5∑
n=0

(2n+ 1)(an− a6)Pn (cosθs) , (26)

where δ is Dirac’s delta function. What remains to be pa-

rameterized, then, are the coefficients a0 . . . a6. A rough but

useful approximation is to express them as a simple function

of the co-albedo β and the asymmetry parameter g:

an = c1n+ c2nβ + c3ng+ c4nβg. (27)

The parameterization coefficients cmn were determined by

minimizing the rms errors of an with the LAPACK subrou-

tine DGELS, and they are given in Table 2. Note specifically

that the coefficients cm0 and cm1 are all 0. The formulation of

Pdiff and Pray ensures that the phase function (Eq. 14) is cor-

rectly normalized and that its asymmetry parameter is con-

sistent with Eq. (13) even without considering Presid; there-

fore a0= a1= 0. Equivalently, the Legendre expansion may

be replaced by an ordinary polynomial. This yields

Presid (θs)≈ P
∗

resid (θs)= 2a6δ (1− cosθs)

+

5∑
n=0

bn(cosθs)
n, (28)

where

bn = d1n+ d2nβ + d3ng+ d4nβg. (29)

Here, the coefficients dmn were obtained directly based on

the coefficients cmn in Eq. (27) by writing out the Legendre

polynomials in Eq. (26). Their numerical values are given

in Table 3. In summary, the phase function parameterization

reads

P11 (θs)= wdiffPHG (gdiff,θs)+wrayw1PHG (g1,θs)

+wray (1−w1)+Presid (θs) , (30)

where Presid(θs) is given by Eq. (26) or, equivalently, by

Eq. (28).

Finally, it is worth noting how this parameterization can

be used in DISORT, when applying a “δ-NSTR-stream” ap-

proximation for radiative transfer, NSTR being the number

of streams. In this case, DISORT assumes by default a trun-

cation factor f = aNSTR. If NSTR> 6, the Legendre expan-

sion for Presid in Eq. (26) should be formally extended to

n=NSTR, with an= a6 for n= 7 . . . NSTR. Thus the Leg-

endre coefficients input to DISORT become

pn =


1, for n= 0
wdiffg

n
diff+wrayw1g

n
1 + an, for 1≤ n≤ 6

wdiffg
n
diff+wrayw1g

n
1 + a6, for 7≤ n≤ NSTR

, (31)

where we have utilized the Legendre expansion of the HG

phase function in Eq. (20).

To provide a compact view of how the phase function pa-

rameterization performs, we define, analogously to Eq. (4),

a cost function as the rms error of the natural logarithm of

the phase function,

cost=

√√√√√√√√√
180◦∫
0◦

(
lnP

param

11 − lnPOHC
11

)2
sinθsdθs

180◦∫
0◦

sinθsdθs

, (32)
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Figure 9. Cost function for the phase function parameterization as defined by Eq. (32) for (a) the full parameterization (Eq. 14) and (b) with-

out the term Presid. The black solid line indicates, for reference, a co-albedo value of β = 0.3, which approximately corresponds to a spherical

albedo of 0.03 for an optically thick snow layer.

Table 2. Parameterization coefficients appearing in Eq. (27).

c1n c2n c3n c4n

n= 0 0.00000 0.00000 0.00000 0.00000

n= 1 0.00000 0.00000 0.00000 0.00000

n= 2 −0.01400 −0.10367 0.02144 0.08903

n= 3 −0.13184 −0.01741 0.16890 −0.06365

n= 4 −0.20878 −0.03438 0.27353 −0.10418

n= 5 −0.29763 −0.06931 0.38501 −0.11329

n= 6 −0.32153 −0.10691 0.41282 −0.07934

where P
param

11 is the parameterized phase function and POHC
11

is the reference value, defined here as the “exact” phase func-

tion computed for the OHC. Figure 9a shows the cost func-

tion for the full phase function parameterization, and Fig. 9b

shows that for a simpler parameterization that includes only

the first two terms of Eq. (14) (i.e. Presid is excluded). Note

that the parameterized phase function is computed here using

parameterized (rather than exact) values of Qext, β and g.

Most importantly, Fig. 9a shows that in a large part of the

wavelength and size domain, the accuracy of the full parame-

terization is very high, with cost function values≤ 0.03. This

corresponds to a typical relative accuracy of 3 % in the com-

puted phase function, as compared with the reference val-

ues for the OHC. The primary exception is that substantially

larger errors occur for large snow grains at the strongly ab-

sorbing wavelengths in the near-IR region. In broad terms,

the accuracy starts to degrade appreciably when β > 0.3, that

is, in cases in which snow reflectance is quite low (β = 0.3

corresponds roughly to a spherical albedo of 0.03 for an op-

tically thick snow layer). At the largest wavelengths consid-

ered (λ> 2.5 µm), somewhat larger values of the cost func-

tion also occur for smaller values of rvp and β. The cost

function for the simplified parameterization (Fig. 9b) shows

mainly the same qualitative features as the full parameter-

Table 3. Parameterization coefficients appearing in Eq. (29).

d1n d2n d3n d4n

n= 0 −0.06679 0.34357 0.09553 −0.42542

n= 1 −0.53413 0.15642 0.74905 −0.62700

n= 2 −1.49866 −2.42334 1.76580 2.10118

n= 3 1.01884 −2.05239 −1.59160 3.54237

n= 4 4.43936 2.85558 −5.48475 −0.97817

n= 5 2.07065 3.25673 −2.40933 −2.94094

ization in Fig. 9a; however, the cost function values in the

weakly absorbing cases are ≈ 0.07, in contrast to the values

of ≈ 0.03 for the full parameterization.

Figure 10 displays examples of phase function for nine

combinations of λ and rvp. In the weakly absorbing cases

in Fig. 10a–c, and also at the more strongly absorbing

wavelength λ= 1.50 µm for rvp= 10 µm and rvp= 100 µm

(Fig. 10d and e), the full parameterization follows extremely

well the reference phase function computed for the OHC, to

the extent that the curves are almost indistinguishable from

each other. Even at λ= 2.00 µm, the deviations from the ref-

erence are generally small in the cases with relatively small

snow grains (rvp= 10 µm and rvp= 100 µm; Fig. 10g and h),

although backward scattering is slightly overestimated in the

latter case. In contrast, in cases with very strong absorp-

tion and large snow grains (rvp= 1000 µm for λ= 1.50 µm

and λ= 2.00 µm in Fig. 10f and i) there are more substan-

tial deviations from the reference. Here, the parameterized

phase function is generally underestimated in the backscat-

tering hemisphere and overestimated at θs< 30◦ especially

for λ= 2.00 µm, rvp= 1000 µm. Furthermore, the Legendre

expansion in Presid leads to oscillations in the backscattering

hemisphere which do not occur in the reference phase func-

tion. Again, it should be noted that the largest errors occur
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Figure 10. Examples of the reference phase function computed for the OHC (black lines) and of the parameterized phase function for the full

parameterization (red lines), the simplified parameterization without the term Presid in Eq. (14) (blue lines) and the Henyey–Greenstein phase

function with asymmetry parameter defined by Eq. (13) (dashed green lines) for nine combinations of wavelength λ and volume-to-projected

area equivalent radius rvp. For reference, the values of single-scattering co-albedo β, asymmetry parameter g and cost functions for the full

parameterization (cost1), for the simplified parameterization (cost2) and for the Henyey–Greenstein phase function (cost3) are listed in each

panel.

in cases in which snow is very “dark”: the spherical albedo

corresponding to the cases in Fig. 10f and i is only ∼ 0.005.

In many respects, the simplified parameterization

(i.e. without Presid) produces quite similar phase functions

as the full parameterization. Two differences can be noted.

First, the simplified parameterization does not capture

the slight increase in phase function at angles larger than

θs≈ 120–130◦, which is present in the reference and full

parameterization phase functions and was also suggested

by the CLIMSLIP data for blowing snow at λ= 0.80 µm,

along with the other phase functions in Fig. 1b. Second, in

the cases with very strong absorption (Fig. 10f and i) the

simplified phase function avoids the oscillations seen in the

full parameterization.

The utility of providing a phase function parameterization

is further demonstrated by showing in Fig. 10, for compar-

ison, the HG phase function computed using the asymme-

try parameter from Eq. (13). The differences from the ref-

erence phase function are systematic. The scattering in the

diffraction peak is underestimated (although this is not prop-

erly seen from Fig. 10), but otherwise forward scattering is

overestimated until a scattering angle of ≈ 35–80◦, depend-

ing on the case. Conversely, at sideward and backscattering

angles, scattering is underestimated. Consequently, the cost

function values for the HG phase function given in Fig. 10
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Figure 11. Albedo of a semi-infinite snow layer for direct incident radiation with the cosine of zenith angle µ0= 0.5. (a) Reference values

computed for the OHC (shading) and values for the full snow optics parameterization (contours). The difference (b) between the parameter-

ization and the reference, (c) between distorted Koch fractals (t = 0.18) and the reference and (d) between spheres and the reference. Note

that the colour scale differs between the figure panels.

substantially exceed those for both the full and simplified

phase function parameterizations.

7 Radiative transfer applications

In this section, we consider the impact of snow optics as-

sumptions on snow spectral albedo A and reflected radi-

ances L↑.The purpose is, on one hand, to evaluate the ac-

curacy of the proposed snow SSP parameterization and, on

the other hand, to compare the results obtained with three

shape assumptions: spheres, second-generation Koch frac-

tals (distorted with t = 0.18) and the OHC proposed here.

Throughout this section, the results for the OHC are used

as the reference, although it is clear that they cannot be con-

sidered an absolute benchmark for scattering by snow. The

radiative transfer computations were performed with DIS-

ORT (with 32 streams, δ-M scaling included), assuming an

optically thick (i.e. semi-infinite) layer of pure snow with a

monodisperse size distribution.

Like most other solar radiative transfer studies involving

snow, close-packed effects are ignored in the calculations. It

has been shown by Kokhanovsky (1998) that, at least as a

first approximation, they do not have a pronounced impact

on the snow reflectance.

First, snow albedo as a function of λ and rvp is considered

in Fig. 11. Direct incident radiation with a cosine of zenith

angle µ0= cos θ0= 0.5 is assumed. Figure 11a demonstrates

the well-known features of snow albedo: the values are very

high in the UV and visible region and decrease with increas-

ing particle size in the near-IR. The results computed using

the parameterized snow optical propertiesQext, β, g and P11

are almost indistinguishable from those obtained using the

“exact” optical properties for the OHC. The differences be-

tween these two are mostly within 0.002 (Fig. 11b), although

larger differences up to 0.02 occur for very small snow grains

(rvp≈ 10–20 µm) at wavelengths with strong absorption by

snow (λ> 1.4 µm). These results are only weakly sensitive

to the assumed direction of incident radiation. Furthermore,

while the parameterized albedo values were computed using

the full phase function parameterization, the values for the

simplified parameterization (without Presid in Eq. (14)) dif-

fered very little from them, mostly by less than 0.001.

For distorted Koch fractals, the albedo values are higher

than those for the OHC, but the difference is rather small,
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at most 0.017 (Fig. 11c). Conversely, for spheres the albedo

values are lower, with largest negative differences of −0.08

from the reference (Fig. 11d). This stems from the higher

asymmetry parameter of spheres, which is only partly com-

pensated by their lower co-albedo (Fig. 6). To put it another

way, for a given albedo A in the near-IR region, a smaller

(slightly larger) particle size is required for spheres (for dis-

torted Koch fractals) than for the OHC.

To compare the simulated radiance distributions to the ref-

erence, we next consider the root-mean-square error in the

logarithm of reflected radiances integrated over the hemi-

sphere:

LOGRMSE=√√√√√ 1

2π

2π∫
0

π/2∫
0

[
lnL↑(θ,φ)− lnL

↑

OHC(θ,φ)
]2

sinθdθdφ, (33)

where θ and φ denote the zenith angle and azimuth an-

gle respectively and L
↑

OHC is the radiance in the refer-

ence computations for the OHC. Figure 12a–c show LO-

GRMSE as a function of particle size and wavelength for

the full parameterization for three directions of incident ra-

diation (µ0= 0.8, µ0= 0.4 and µ0= 0.1, corresponding to

θ0= 36.9◦, θ0= 66.4◦ and θ0= 84.3◦). For weakly absorb-

ing wavelengths up to λ= 1.4 µm, the performance of the

parameterization is extremely good for all particle sizes, with

values of LOGRMSE< 0.01 for µ0= 0.8 and µ0= 0.4 and

between 0.01 and 0.02 for µ0= 0.1. LOGRMSE∼ 0.01 im-

plies a typical relative accuracy of ∼ 1 % in the reflected

radiances. The accuracy in radiances at weakly absorbing

wavelengths is even higher than that in the phase function

(Fig. 9a) because strong multiple scattering diminishes the

effect of phase function errors. At wavelengths λ> 1.4 µm,

LOGRMSE increases, not only due to larger phase function

errors but also because multiple scattering is reduced due to

stronger absorption. Even here, LOGRMSE stays mainly be-

low 0.05 for relatively small snow grains (rvp< 100 µm), but

substantially larger errors occur in the cases with large and

strongly absorbing grains, consistent with the modest accu-

racy of the phase function parameterization in these cases

(Fig. 9a). These errors depend only weakly on µ0. It should

be noted that the largest relative errors occur in cases where

the reflected radiances and radiance errors are small in an

absolute sense and probably matter little for practical appli-

cations.

Values of LOGRMSE obtained using the simplified phase

function parameterization are shown in Fig. 12d–f. Consis-

tent with the phase function errors (cf. Fig. 9a vs. b), the

simplified parameterization is slightly less accurate in sim-

ulating reflected radiances than the full parameterization ex-

cept for the most strongly absorbing cases. Nevertheless, the

accuracy is quite high for the weakly absorbing cases; LO-

GRMSE ranging from ∼ 0.01 (or even less) for µ0= 0.8 to

∼ 0.03 for µ0= 0.1.

For comparison, Fig. 12g and h show LOGRMSE com-

puted for distorted Koch fractals and spheres (for µ0= 0.4

only). Unsurprisingly, LOGRMSE is generally smaller for

Koch fractals than for spheres (e.g. 0.05–0.10 in weakly ab-

sorbing cases compared to∼ 0.20 for spheres). In both cases,

again excepting large particles at strongly absorbing wave-

lengths, the values of LOGRMSE are substantially larger

than those associated with the snow SSP parameterization.

This indicates that in general, numerical fitting errors in the

parameterization are a minor issue in comparison with the

radiance differences associated with different shape assump-

tions.

Examples of the angular distribution of reflected radiances

are given in Figs. 13 and 14. Here, only a single particle

size rvp= 200 µm is considered, and the azimuth angle for

incident radiation is φ0= 0◦. In Fig. 13, results are shown

for three zenith angles of incident radiation, corresponding

to µ0= 0.8, µ0= 0.4 and µ0= 0.1, for a single wavelength

λ= 0.80 µm. In Fig. 14, three wavelengths are considered

(λ= 0.30, 1.40 and 2.20 µm) but for µ0= 0.4 only. In each

figure, panels a–c display the distribution of reflected radi-

ances in the reference calculations for the OHC, while the

remaining panels show the relative differences from the ref-

erence for distorted Koch fractals with t = 0.18 (panels d–f),

for spheres (g–i), for the Henyey–Greenstein phase function

(j–l), for the full snow SSP parameterization (m–o) and for

the simpler parameterization without Presid in Eq. (14) (p–r).

For brevity, only some main points are discussed.

First, it is seen, consistent with Fig. 12, that in general the

radiance distribution for spheres differs more from the ref-

erence than the distribution for Koch fractals does. For ex-

ample, for λ= 0.80 µm and µ0= 0.4 both positive and nega-

tive differences larger than 50 % occur for spheres (Fig. 13h),

while for Koch fractals the differences exceed 10 % only lo-

cally (Fig. 13e). Furthermore, in the same case, the radiance

errors are < 1 % almost throughout the (θ , φ) domain for the

full parameterization (Fig. 13n) and mostly < 2 % even for

the simplified parameterization (Fig. 13q). In contrast, when

the HG phase function is employed in the calculations, the

differences from the reference reach locally 30 and −40 %

(Fig. 13k).

Second, while the results noted above for λ= 0.80 µm and

µ0= 0.4 are also mostly valid for µ0= 0.8 and µ0= 0.1 and

for λ= 0.30, 1.40 and 2.20 µm, some quantitative differences

can be noted. When µ0 decreases from 0.8 to 0.1, the pattern

of reflected radiances becomes increasingly non-uniform and

more sensitive to both the assumed particle shape and the

errors in phase function parameterization. This occurs be-

cause the relative role of first-order scattering increases (e.g.

Mischenko et al., 1999). For the same reason, the sensitiv-

ity of the radiance pattern to the phase function increases

with increasing absorption. Thus, while the qualitative fea-

tures are mostly similar at all wavelengths considered here,

the relative differences are generally larger at λ= 1.40 µm

and λ= 2.20 µm than at λ= 0.30 µm and λ= 0.80 µm. Espe-
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Figure 12. Root-mean-square errors in ln(radiance) (Eq. 33) for (a)–(c) the full parameterization and (d)–(f) the simpler parameterization

without the term Presid in the phase function, as compared with reference calculations for the OHC, for three directions of incident radiation

(cosine of zenith angle µ0= 0.8, µ0= 0.4 and µ0= 0.1). (g) and (h) show the respective differences from the reference calculations for

distorted Koch fractals (t = 0.18) and spheres (for µ0= 0.4 only).

cially at the wavelength λ= 2.20 µm, at which snow absorp-

tion is quite strong and the albedo for the OHC is only 0.11,

the radiance pattern is dominated by first-order scattering and

is thus very sensitive to the details of the phase function. In

a relative (though not absolute) sense, the errors in parame-

terized radiances are also somewhat larger than at the other

wavelengths considered (Fig. 14o and r).

Third, even at weakly absorbing wavelengths, the role of

first-order scattering is clearly discernible: many differences

in the pattern of reflected radiances can be traced directly

to phase function differences. For example, considering the

results for λ= 0.80 µm for both µ0= 0.4 and µ0= 0.1, we

note the following.

– Three regions appear in the radiance differences be-

tween distorted Koch fractals and the OHC in Fig. 13e

and f. Going from left to right, negative radiance differ-

ences occur at large values of θ and small values of φ

(roughly for θ > 65◦ and φ < 20◦), followed by a region

of positive differences and another region of negative

differences (roughly for θ > 40◦, φ > 140◦). These re-

gions occur because the phase function for Koch fractals

is larger than that for the OHC at intermediate scattering
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Figure 13. (a)–(c) Angular distribution of reflected radiances for the OHC for a single wavelength λ= 0.80 µm and a single particle size

rvp= 200 µm. The yellow sphere indicates the cosine of zenith angle for the incident radiation (µ0= 0.8, µ0= 0.4 and µ0= 0.1 for (a)–(c)

respectively). The azimuth angle for the incident radiation is φ0= 0◦. (d)–(f) and (g)–(i) show the fractional differences in reflected radiances

(in %) from the OHC for distorted Koch fractals with t = 0.18 and for ice spheres respectively. (j)–(l) show the differences from the OHC for

the Henyey–Greenstein phase function (with g computed using Eq. 13 and β using Eq. 11), (m)–(o) for the full snow optics parameterization

and (p)–(r) for the simpler parameterization without Presid in Eq. (14). Note that the colour scale in (m)–(r) differs from that in (d)–(l).

angles (29◦≤ θs≤ 134◦) but smaller in the near-forward

and near-backward directions.

– For spheres in Fig. 13h and i, the reflected radiances

greatly exceed those for the OHC for roughly θ > 60◦,

φ < 40◦ because the phase function for spheres is gen-

erally larger than that for the OHC for θs< 54◦. Con-

versely, at larger θs the phase function for spheres is

(mostly) considerably smaller than that for the OHC.

This results in generally smaller reflected radiances for
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Figure 14. As Fig. 13 but for three wavelengths λ= 0.30, 1.40 and 2.20 µm for a single value of the cosine of zenith angle for incident

radiation µ0= 0.4 and a single particle size rvp= 200 µm.

spheres in most of the (θ , φ) domain with φ > 50◦. As

an exception, the icebow feature for spheres at θs≈ 135◦

results in an arc with larger radiances for spheres than

for the OHC.

– For the HG phase function, the pattern of overestimated

radiances up to φ∼ 60◦ and underestimated radiances

at larger azimuth angles (Fig. 13k and l) arises because

the HG phase function exceeds that for the OHC for

θs< 80◦ and falls below it at larger scattering angles

(see also Fig. 10).

8 Summary

In this work, measurements of angular distribution of scatter-

ing by blowing snow made during the CLIMSLIP campaign

in Svalbard were used to select a shape model for represent-
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ing the single-scattering properties of snow. An optimized

habit combination consisting of SR droxtals, aggregates of

SR plates and strongly distorted Koch fractals was selected.

The SSPs (extinction efficiency Qext, single-scattering co-

albedo β, asymmetry parameter g and phase function P11)

were then computed for the OHC as a function of wavelength

and snow grain size. Furthermore, parameterization equa-

tions were developed for the SSPs for the wavelength range

λ= 0.199–2.7 µm and for snow grain volume-to-projected

area equivalent radii rvp= 10–2000 µm. The parameteriza-

tions are expressed in terms of the size parameter and real and

imaginary parts of refractive index. The relative accuracy of

the parameterization, as compared with the reference calcu-

lations for the OHC, is very high for the single-scattering co-

albedo and the asymmetry parameter. This is also true for the

phase function parameterization in weakly and moderately

absorbing cases, while in strongly absorbing cases (mainly

for β > 0.3) the accuracy deteriorates. Such strongly absorb-

ing cases are, however, associated with small values of snow

albedo and reflected radiances.

The SSPs and the resulting snow albedo and reflected ra-

diances for the OHC were compared with two previously

used shape assumptions for snow grains, spheres and second-

generation Koch fractals. The asymmetry parameter for the

OHC is distinctly smaller than that for spheres but slightly

higher than that for Koch fractals. Consistent with this, snow

albedo for the OHC is generally substantially higher (slightly

lower) than that for spheres (Koch fractals) for a given snow

grain size rvp. Also for the distribution of reflected radiances,

spheres differ more from the OHC than Koch fractals do.

The main limitation of the current work is that the SSP pa-

rameterization is based on a rather limited observational data

set. The OHC was selected using scattering measurements

at a single wavelength λ= 0.80 µm for only two cases with

blowing snow. This raises several potential issues:

– The choice of the OHC based on scattering measure-

ments only implies that it most probably does not rep-

resent properly the actual distribution of snow grain

shapes in blowing snow (or snow on ground). It also

neglects the potential dependence of snow grain shapes

on their size. Therefore, there is no guarantee that it rep-

resents the snow SSPs equally well at other wavelengths

or for all snow grain sizes.

– Since absorption is very weak at λ= 0.80 µm, the obser-

vations do not constrain properly absorption by snow.

Therefore, we cannot expect that our parameterization

of β (Eq. 11) predicts precisely the actual values for

snow. However, we do expect that it captures reason-

ably the systematic difference between non-spherical

snow grains and spheres: in general β is larger for non-

spherical particles.

– It is also possible that the snow grain shapes, and there-

fore the SSPs of snow on ground, might differ from

those of blowing snow, and they might well vary from

case to case, depending on how much metamorphosis

the snow has experienced.

All these issues point to the need for validation of the de-

rived parameterization against actual snow reflectance mea-

surements in future work.

In spite of the concerns mentioned above, it seems reason-

able to assume that the OHC selected here provides a sub-

stantially better basis for representing the SSPs of snow than

spheres do. Moreover, the parameterization equations pro-

vided in this paper are analytic and simple to use. A Fortran

implementation of the snow SSP parameterizations is avail-

able at https://github.com/praisanen/snow_ssp.

To conclude, this paper describes a first-of-its-kind pa-

rameterization for representing the SSPs of snow in the so-

lar spectral region. The parameterization is provided in hope

that it will be useful, especially to those researchers that still

use spherical particles for computing the radiative effects of

snow. Nevertheless, it should definitely not be viewed as the

“final solution” to the treatment of SSPs of snow. We hope

that the present work will inspire the future development of

snow SSP parameterizations based on more comprehensive

data sets. Furthermore, at least in principle, it would be de-

sirable to replace the current approach (where the shape dis-

tribution of snow grains is selected based on scattering mea-

surements only) with an approach that more directly links

the snow grain shapes to those actually observed. This would

require, first, the parameterization of the size–shape distribu-

tion of snow grains based on observations and, second, the

computation and parameterization of their SSPs. The main

challenge in such an approach is the treatment of irregular

grains, which are very common in snow.
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Appendix A: Extrapolation of single-scattering

properties

The largest value of volume-to-projected area equiva-

lent radius for which the SSPs are defined for aggre-

gates of 10 plates in the Yang et al. (2013) database

is rvp,max= 653 µm, which falls below the upper limit of

2000 µm considered for the OHC. Thus, to extend the SSPs

for the OHC to sizes up to rvp= 2000 µm, we extrapolated

the SSPs for the aggregates of plates based on how the SSPs

depend on size for Koch fractals:

Qext,aggregate

(
rvp

)
= 2+

[
Qext,aggregate

(
rvp,lim

)
− 2

]
·
rvp,lim

rvp

, (A1)

βaggregate

(
rvp

)
= βaggregate

(
rvp,lim

)
·
βfractal

(
rvp

)
βfractal

(
rvp,lim

) , (A2)

gaggregate

(
rvp

)
= 1−

[
1− gaggregate

(
rvp,lim

)]
·

1− gfractal

(
rvp

)
1− gfractal

(
rvp,lim

) , (A3)

P11,aggregate

(
rvp,θs

)
= P11,aggregate

(
rvp,lim,θs

)
·
P11,fractal

(
rvp,θs

)
P11,fractal

(
rvp,lim,θs

) . (A4)

Here, rvp,lim= 650 µm. While this is an ad hoc approach, the

resulting uncertainty in the SSPs for the OHC (in which the

aggregates of plates have a weight of 26 %) is most likely

small. When the extrapolation was based on droxtals in-

stead of Koch fractals, this changed the values of g by at

most 0.0025 and β by at most 0.006 (or 1.4 % in relative

terms).
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Table A1. List of abbreviations and symbols.

CLIMSLIP CLimate IMpacts of Short-Lived pollutants In the Polar region

CPI cloud particle imager

CS completely smooth particles (Yang et al., 2013)

DISORT Discrete Ordinates Radiative Transfer Program for a Multi-Layered Plane-Parallel Medium (Stamnes et al., 1988)

HG Henyey–Greenstein (Henyey and Greenstein, 1941)

LAPACK Linear Algebra Package

LOGRMSE root-mean-square error in the logarithm of reflected radiances

MR moderately rough particles (Yang et al., 2013)

OHC optimized habit combination

PN polar nephelometer

SSPs single-scattering properties

SR severely rough particles (Yang et al., 2013)

β single-scattering co-albedo= 1− single-scattering albedo

δ Dirac’s delta function

θ zenith angle

θ0 zenith angle for incident radiation

θs scattering angle

λ wavelength

µ0 cosine of zenith angle for incident radiation

ν power-law index in the Legendre polynomial expansion of the correlation function of radius for Gaussian random spheres

ξ non-dimensional absorption parameter (Eq. 8)

σ relative SD of radius for Gaussian random spheres

φ azimuth angle

ω single-scattering albedo

f truncated fraction of phase function in δ-M scaling (Wiscombe, 1977)

g asymmetry parameter

g1 asymmetry parameter for the Henyey–Greenstein part in Eq. (21), defined by Eq. (24)

gdiff asymmetry parameter for diffraction (Eq. 19)

gray asymmetry parameter for the ray-tracing part (Eq. 23)

mi imaginary part of refractive index

mr real part of refractive index

nmax degree of truncation of the Legendre polynomial expansion of the correlation function of radius for Gaussian random spheres

P projected area

P11 phase function

P ref
11

reference phase function constructed from CLIMSLIP data (Eq. 2)

POHC
11

phase function for the optimized habit combination

PHG Henyey–Greenstein phase function (Eqs. 18, 20)

Pdiff parameterized phase function for diffraction (Eq. 17)

Pray parameterized phase function for the ray tracing part (Eq. 21)

Presid residual in the phase function parameterization (Eq. 25)

P ∗
resid

residual in the phase function parameterization, truncated for δ-M scaling (Eqs. 26, 28)

Pn nth order Legendre polynomial

Qext extinction efficiency

rvp volume-to-projected area equivalent radius

t degree of distortion for Koch fractals

V volume

w1 weight factor for the Henyey–Greenstein part in Eq. (21), defined by Eq. (22)

wdiff weight factor for the diffraction part in the parameterized phase function (Eqs. 14, 30), defined by Eq. (15)

wray weight factor for the ray tracing part in the parameterized phase function (Eqs. 14, 30), defined by Eq. (16)

x size parameter

xabs size parameter for absorption (Eq. 12)

xp size parameter defined with respect to the projected area equivalent radius

xvp size parameter defined with respect to the volume-to-projected area equivalent radius (Eq. 10)
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