Modeling hygrothermal recovery of wood in relation with locked-in strains during tree life
Sandrine Bardet, Joseph Gril

To cite this version:
Sandrine Bardet, Joseph Gril. Modeling hygrothermal recovery of wood in relation with locked-in strains during tree life. 8th Plant Biomechanics International Conference, Nov 2015, Nagoya, Japan. hal-01982483

HAL Id: hal-01982483
https://hal.archives-ouvertes.fr/hal-01982483
Submitted on 15 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Experimental study

Species: Hinoki (Chamaecyparis obtusa)

- TMA with compression attachment,
- slight initial compression stress (equivalent to Tg)
- sample immersed into water; temperature is increased to 90–95°C during 2 hours, then specimen is cooled down
- dimensions of the sample are recorded with an accuracy of 0.01 μm.

Modeling

Where do locked-in strains come from?

1. Cell maturation process
 - longitudinal tension and tangential compression
 - last step of the genesis of a wood cell
 - increase of rigidity
 - tendency to shrink along the fibre and expand transversally
 - deformations are prevented by previously formed layers

> pre-stress level of the wood in the tree depends on the direction and the age of wood

2. Loading history during tree life
 - formation of layers: redistribution of tangential stresses
 - successive disposition of concentric layers
 - growth stress depends on radial position
 - inversion of stress (T: compression near the bark, tension near the pith)

How to release locked-in strains?

1. Elastic part = short-term viscous strains
 - tree heating
 - growth stress indicator on periphery
 - radial HTR against tangential HTR from literature

Separating HTR from reversible deformation

Evolution of tangential deformation against time

Evolution of tangential deformation against temperature: radial strain, thermal recoverable part, corrected irreversible part

HTR in T and R direction in the literature:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Material</th>
<th>Age (years)</th>
<th>Temperature (°C)</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bardet et al., 1993</td>
<td>100</td>
<td>30-35</td>
<td>Pine, larch, oak</td>
<td>Sunset, Picea, Pinus, abies, larch, poplar, birch, . . .</td>
</tr>
<tr>
<td>Yano et al., 1989</td>
<td>100</td>
<td>30-90</td>
<td>Beech</td>
<td>Beech</td>
</tr>
<tr>
<td>Tani and Tsuruta, 1989</td>
<td>100</td>
<td>30-90</td>
<td>Scots pine</td>
<td>Scots pine</td>
</tr>
<tr>
<td>Newby and Jackson, 1993</td>
<td>30-90</td>
<td>90</td>
<td></td>
<td>Tagi</td>
</tr>
<tr>
<td>van der Linden et al., 1993</td>
<td>100</td>
<td>30-90</td>
<td></td>
<td>Isla, free</td>
</tr>
</tbody>
</table>

The results are not consistent with the growth stress profile which is usually proposed. In T direction, we expect the older wood (near the pith) to be under tension!

Growth stress profile for old and recent wood: inversion of stress with the age of wood

Different steps to simulate the mechanical loading of wood during tree life

Hypothesis: rheological similarity between maturation and HTR

\[
\sigma = \sigma_1 = \ldots = \sigma_f,
\]

\[
\varepsilon = \varepsilon_f + \ldots + \varepsilon_i,
\]

\[
\alpha_i = E_i (\varepsilon_i - \chi_i)
\]

\[
\frac{dx}{dt} = \varepsilon_i - \chi_i
\]

pre-stressed model: \(\chi_i > 0 \) for \(i > 0 \)

Work in progress:
- Calculation of the strain in each viscous branch
- Simulation of a thermal treatment to simulate HTR

This work is an HTR in the framework of an application for a JSPS/CNRS fellowship and a JSPS/CNRS fellowship for a scientific mission at Ritsuryo University in 2016.