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Abstract  

Organophosphate triesters (PEFRs) are used increasingly as flame retardants and plasticizers in a 

variety of applications, such as building materials, textiles, and electric and electronic equipment. 

They have been proposed as alternatives to brominated flame retardants. This updated review shows 

that biomonitoring has gained incrementally greater importance in evaluating human exposure to 

PEFRs, and it holds the advantage of taking into account the multiple potential sources and various 

intake pathways of PEFRs. Simultaneous and extensive internal exposure to a broad range of PEFRs 

has been reported worldwide. Their metabolites, mainly dialkyl or diaryl diesters, have been used as 

biomarkers of exposure and have been ubiquitously detected in the urine of adults and children in the 

general population. Concentrations and profiles of PEFR urinary metabolites are seen to be variable 

and are highly dependent on individual and environmental factors, including age, country regulation of 

flame retardants, and types and quantities of emissions in microenvironments, as well as analytical 

procedures. Additional large biomonitoring studies, using a broad range of urinary diesters and 

hydroxylated metabolites, would be useful to improve the validity of the biomarkers and to refine 

assessments of human exposure to PEFRs.  
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Introduction 

Organophosphorous flame retardants are one of the most common groups of flame retardants 

(FRs). They primarily consist of organophosphate triesters (PEFRs). The total global consumption of 

organophosphorous compounds used as FRs was estimated to be about 207 000 tons in 2004. In 2006, 

chlorinated phosphate and non-chlorinated organophosphorous FRs represented 11 and 10 % of FR 

consumption in Europe, respectively (NEG, 2009; Arcadis EBRC, 2011; EFRA, 2007). Since the early 

2000s, brominated flame retardants such as certain polybrominated diphenyl ethers (PBDE), have 

been progressively phased out or seen their use restricted in many regions of the world (e.g., North 

America, Japan, and Europe), because of their bioaccumulation, persistence, and potential health 

effects. The halogen-free PEFRs are considered as possible alternatives to PBDE, and their production 

and use have been increasing over the past few years. PEFRs are also applied as plasticizers in 

polymers such as PVC (e.g., aryl phosphates), cellulosic fibers, polyurethane foams (e.g., chlorinated 

phosphate), and engineering plastics (e.g., polycarbonate/acrylonitrile butadiene styrene-PC/ABS, and 

polyphenylene oxide/high impact polystyrene-PPO/HIPS). Other applications of phosphate esters are 

as anti-foam agents, additives in hydraulic fluids, and lubricants. PEFRs have a broad application field 

and are extensively used alone or in combination with other FRs in a variety of industries, including 

plastics, furniture, textiles, construction, electrical engineering and electronics, transportation (e.g., 

road and rail vehicles), and the petroleum industry (NEG, 2009; ATSDR, 2012). Triphenyl phosphate 

(THPP) is also present in personal care products such as nail polish (Mendelsohn et al., 2016). 

PEFRs are frequently applied as chemical additives and they are not chemically bound to the 

polymers (i.e. unlike reactive FRs). They can be released from treated industrial and commercial 

products by abrasion, leaching and/or volatilization during their lifetime. They have been detected in a 

wide range of environmental samples around the world (e.g., indoor dust) and concern about human 

exposure to PEFRs is increasing. In addition, some recent epidemiological studies have suggested that 

certain PEFRs may have possible health effects, such as interference with endocrine and reproduction 

functions. Tris(2-chloroethyl) phosphate (TCEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), 

and tris(2,3-dibromopropyl)phosphate (TDBPP) are listed as carcinogenic substances under 

California’s proposition 65 (OEHHA, 2017). In Europe, several PEFRs have been classified as 

substances suspected of causing cancer (e.g., TCEP, TDCIPP, tributyl phosphate - TNBP) and/or that 

may damage fertility (e.g., TCEP, tri-ortho-cresyl phosphate-ToCP) (ECHA, 2018).   

While the occurrence of PEFRs in indoor dust has been extensively described across the 

world, less is known about internal exposure to PEFRs in humans. Several human studies have used 

urinary biomarkers of PEFRs to monitor exposure to these FRs among workers and the general 

population.  

This short review compiles the available data on PEFRs in human urine published from 2011 

to May 2018. A comprehensive search was performed in the Pubmed database using the search terms 

“organophosphate flame retardant” and “exposure”, or “flame retardant” and “urine”. Only full text 

articles were reviewed. Studies were included if the PEFRs were measured in a biological matrix (e.g., 

urine, hair, milk). There were no restrictions on the size and age of the study population, geographical 

region, or study design (e.g., pooled data).   

Environmental occurrence and routes of exposure 

PEFRs have been found worldwide in diverse outdoor environments, including river water, 

groundwater, and wastewater, with individual concentrations ranging from several ng/l to tens of µg/l 

(Van der Veen et al., 2012; Wei et al., 2015; Ali et al., 2017). They have been ubiquitously detected in 
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floor and surface dust from various indoor environments, including private houses, vehicles, and 

various public and work places (e.g., offices, daycare centers, electronic equipment stores and 

recycling plants, and hospitals). PEFRs concentrations in floor and surface dust were in the range of 

0.02 ng/g to tens of µg/g. The concentrations of PEFRs measured in indoor air were generally around 

tens to hundreds of ng/m3. Higher PEFR levels in indoor air or dust have occasionally been reported in 

occupational settings (e.g., recycling of electronics) or microenvironments (e.g., cars) (Wu et al., 

2016; Ali et al., 2017; Zhou et al., 2017; Bello et al., 2018; Björnsdotter et al., 2018). Concentrations 

in outdoor air are approximately 1 to 4 orders of magnitude less than in indoor air (Wei et al., 2015). 

The ubiquity of PEFRs in the environment indicates that the general population is likely to be exposed 

to several of these chemicals, through multiple sources, on a daily basis.   

PEFRs can enter the human body via several routes. Recent studies have shown that dermal 

absorption may contribute substantially to the total body burden of PEFRs (Abdallah et al., 2016; 

Mendelsohn et al., 2016; Liu et al., 2017; Bello et al., 2018; Frederiksen et al., 2018). Ingestion of dust  

and dermal exposure to dust and treated materials (e.g., clothes and furniture) are considered primary 

sources of exposure to PEFRs. For volatile or semi-volatile PEFRs (e.g., TCEP, tris(1-chloro-2-

propyl) phosphate - TCIPP), air and suspended particles inhalation may be a significant intake 

pathway (Schreder et al., 2016; Xu et al., 2016; He et al., 2018c). Ingestion of contaminated food (e.g., 

by migration from plastic packaging) may contribute to oral intake of PEFRs, but its contribution 

appears to vary substantially between compounds, as well as between and within populations (Zhang 

et al., 2016; Zheng et al., 2016; Xu et al., 2017; Poma et al., 2017, 2018). 

Human health effects 

The toxicological profiles of halogenated and non-halogenated PEFRs have been reviewed by 

several (environmental) agencies, in particular to evaluate their suitability as alternatives for PBDE 

FRs (NEG, 2009; ATSDR, 2012; Van den Eede et al., 2012; US EPA, 2015; Ministry of Environment 

and Food of Denmark, 2016). Assessments almost entirely relied on experimental studies. Critical 

effects were found to differ from one compound to another. A few PEFRs were identified as being 

toxic to the male reproductive system (i.e. TCEP, TDCIPP, ToCP), potentially carcinogenic (i.e.TCEP 

and TDCIPP), and/or toxic to specific organs (i.e. kidney for TCEP). Because of their toxic potential, 

the chlorinated PEFRs TCEP and TDCIPP are presently subject to regulations in several countries 

(mainly Northern America, Europe, Japan) (OEHHA, 2017; Canada Safety Consumer Act, 2018; 

ECHA, 2018). The US EPA has established an oral reference dose of 0.01 mg/kg/day for TCIPP, 

TEHP and TNBP; 0.02 mg/kg/day for TmCP and TDCIPP; and 0.007 mg/kg/day for TCEP (US EPA, 

2017). 

Despite the increasing use of a wide range of PEFRs and the ubiquitous exposure to PEFRs 

among the general population, human data on the potential health effects of PEFRs are still limited, 

especially regarding long term exposure and the risks for children. The epidemiological studies 

published since 2010 mainly addressed respiratory outcomes (asthma, rhinitis), and endocrine and 

reproductive effects (Table 1). Results of a few studies have raised concern about the possible 

association between exposure to some PEFRs, and alteration of thyroid hormone regulation and male 

reproduction (e.g., sperm quality) (Meeker et al., 2010; Meeker et al., 2013a; Hoffman et al., 2017c; 

Preston et al. 2017; Soubry et al., 2017; Carignan et al., 2018a). However, at present, there is not 

enough consistent information from which to draw firm conclusions about the adverse health effects of 

PEFRs (as a class or specific) in humans.  
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The isomer ToCP has proven to be neurotoxic and to inhibit both cholinesterase and 

neuropathy target esterase (NTE) activity (NEG, 2009; ATSDR, 2012; Van den Eede et al., 2012; US 

EPA, 2015; Ministry of Environment and Food of Denmark, 2016). Worldwide, it has been associated 

with numerous cases of delayed neuropathy and paralysis of the extremities in humans (Petroianu et 

al., 2016). Consequently, there has been a significant reduction in the commercial use of ToCP, e.g., in 

aircraft engine oil.   

Biomarkers of exposure 

Cholinesterase activity 

The neurotoxic properties of ToCP have mainly been attributed to its metabolite cresyl 

saligenin phosphate. This reactive intermediate binds covalently to a serine moiety of 

butyrylcholinesterase in blood. The resulting adducts can be determined by mass-spectrometry and 

have been proposed as a biomarker for measuring exposure to ToCP (Schopfer et al., 2014; Tacal et 

al., 2014; Johnson et al., 2015). In addition, the American Conference of Governmental Industrial 

Hygienists (ACGIH) recommended erythrocyte cholinesterase activity as a biological exposure index 

(BEI) for ToCP. However this biomarker is not specific and can be inhibited by other OPs, such as 

organophosphorous pesticides (NEG, 2009; ATSDR, 2012). 

Urinary biomonitoring 

Urinary PEFRs or their metabolites appear to be the preferred non-invasive biomarkers for 

identifying and quantifying human exposure to PEFRs. They provide integrated information on total 

body burden, covering all types of sources and exposure pathways (i.e. inhalation, dermal absorption, 

and oral uptake), and they can be used to quantify an individual’s exposure. 

Diester metabolites  

Information on the metabolism of PEFRs in humans is still limited and there are differences in 

the information available for different compounds. A common metabolic pathway has been proposed 

for the three types of PEFR triesters, i.e. trialkyl, triaryl, and trihaloalkyl/aryl phosphate esters. This 

was mainly based on in vivo studies in rodents and in vitro studies using human hepatocytes or liver 

fractions (Ballesteros-Gomez et al., 2015a and b; Hou et al., 2016; Van den Eede et al., 2013a, 2015a, 

2016a, b and c). The first steps in the biotransformation of these triesters lead to the rapid formation of 

diesters or monoesters by hydrolysis of one or two ether bonds between the phosphate group and the 

substituent, and to a variety of hydroxylated metabolites that undergo glucuronide and sulfate 

conjugation. Indeed, several dialkyl or diaryl phosphates have been detected in human urine, including 

bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCIPP), bis(1,3-dichloro-2-

propyl) phosphate (BDCIPP), dibutyl phosphate (BNBP), and diphenyl phosphate (DPHP) (Table 1). 

These diesters are expected to be important and stable metabolites of TCEP, TCIPP, TDCIPP, TNBP, 

and triphenyl phosphate (TPHP), respectively (Table 2). Hence, most biomonitoring studies have 

focused on the determination of dialkyl or diaryl phosphate metabolites in urine to quantify human 

exposure levels to PEFRs.  

However, there have been concerns regarding the use of urinary DPHP as a biomarker of 

exposure levels of the parent TPHP. DPHP may lack specificity since other aryl organophosphate 

esters containing at least two phenyl substituents [e.g., bisphenol A bis(diphenyl phosphate) and 

resorcinol bis(diphenyl) phosphate] have the potential to form DPHP after being hydrolysed and may 

contribute to DPHP urinary levels (Ballesteros-Gomez et al., 2015b; He et al., 2018a). In addition, 
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DPHP itself is currently a commercially available product (e.g., as catalyst for resin manufacturing). 

Therefore, Van den Eede et al. (2016b) recommended using DPHP as a biomarker of aryl-PFRs rather 

than of TPHP only. In contrast with TPHP, the production of DPHP from 2-ethylhexyl diphenyl 

phosphate by human serum hydroxylase in vitro was found to be minor and thus it was not considered 

to be likely confounding factor (Van den Eede et al, 2016b).  

Other metabolites 

A few hydroxylated metabolites of PEFRs have recently been identified in urine samples from 

adults and children (Dodson et al., 2014; Van den Eede et al., 2015b; Hammel et al., 2016; Kosarac et 

al., 2016; Su et al., 2016; Bui et al., 2017; He et al., 2018a; Hoffman et al., 2017a, 2018; Phillips et al., 

2018; Völkel et al., 2018). Urinary bis(2-butoxyethyl)-(2-hydroxyethyl) phosphate (BBOEHEP) was 

used to monitor exposure to tris(2-butoxyethyl) phosphate (TBOEP) (Van den Eede et al, 2015b; He et 

al., 2018a; Völkel et al., 2018). Hydroxylated metabolites of TPHP (i.e. 4-hydroxyphenyl diphenyl 

phosphate, 4-hydroxyphenyl phenyl phosphate), have been considered as potential specific urinary 

biomarkers of TPHP exposure (Van den Eede et al., 2013a, 2015b; Dodson et al., 2014; Su et al., 

2016). However, they were only occasionally detected, and at very low levels, in human urine samples 

(glucuronide and sulfate conjugates, or the sum of free form and conjugates) (Van den Eede et al., 

2015b, 2016b; Su et al., 2016). In several studies, the hydroxylated metabolite of TCIPP, bis(1-chloro-

2-propyl) 1-hydroxy-2-propyl phosphate (BCIPHPP), appeared to be a major urinary metabolite and 

therefore a candidate biomarker of human exposure to this PEFR (Van den Eede et al., 2015b; Butt et 

al., 2016; Hammel et al., 2016; Hoffman et al., 2017a; Bello et al., 2018; He et al., 2018a; Phillips et 

al., 2018). Total hydroxylated metabolite (i.e. the sum of free and conjugated forms) was usually 

measured after enzymatic de-conjugation treatment of the urine samples with sulfatase and -

glucuronidase. The free form of BCIHPP was reported to be barely detectable (Kosarac et al., 2016).  

Unmetabolized PEFRs 

The parent compounds have also been tested as potential urinary biomarkers of exposure to 

the OP triester FRs. Considering their notable presence in urine, monitoring of the unchanged TCPE 

and TEHP along with their corresponding diester metabolites was considered useful for better 

estimation of the actual exposure (Dodson et al., 2014; He et al., 2018a). With the exception of TCEP 

and TEHP, unchanged PEFRs were detected in lower frequencies and concentrations than their related 

diester metabolites, suggesting that they were less suitable biomarkers (Van den Eede et al., 2015b; He 

el al., 2018a). Furthermore, additive PEFRs can leach from treated rubber and plastic storage materials 

and possible background contamination of collected samples must therefore be considered.  

Chemical analysis 

Sensitive methods are being developed to improve the limits of detection and concurrently 

quantify a broad number of chlorinated and non-chlorinated diester and/or selected hydroxylated OP 

metabolites in human urine samples. Typical analytical techniques, including gas chromatography-

tandem mass spectrometry (GC-MS/MS) (Schindler et al. 2009a,b), high or ultra-performance liquid 

chromatography-tandem mass spectrometry (HPLC-MS/MS or UPLC-MS/MS), with electrospray or 

atmospheric pressure chemical ionization (ESI or APCI) have been used successfully in numerous 

biomonitoring studies (Cooper et al., 2011; Reemtsma et al., 2011; Van den Eede et al., 2013b; Su et 

al., 2015; Kosarac et al., 2016; Petropoulou et al., 2016; Jayatilaka et al., 2017), as has high resolution 

mass spectrometry (UPLC-HRMS) (Cequier et al., 2014). These same sensitive methods are also 

being developed for use with other non-invasive matrices such as hair, nails and human milk 

(Sundkvist et al., 2010; Lu et al., 2014; Kucharska et al. 2014; Liu et al., 2015; Alves et al., 2017). 
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Occurrence of PEFRs metabolites in human urine 

General population 

Metabolites of PEFRs, essentially the diesters, were omnipresent in the urine samples 

collected from the general population across different countries, and there was simultaneous exposure 

to several PEFRs (Table 3). Reported occurrences and concentrations varied substantially between 

individual PEFR compounds.  

BDCIPP and DPHP were the most commonly detected diester metabolites in the urine of 

children, mothers, and the general population, and were also the most frequently analyzed (Table 3). 

Median levels of BDCIPP and DPHP were generally in the range of µg/l (about 0.1-3 µg/l), but values 

of hundreds of µg/l were reported in urine samples of a few individuals from various geographic areas. 

Within each of the different studies, concentrations were highly variable between individuals and 

could differ by two orders of magnitude. DPHP was consistently found at high frequencies (in most 

cases >90 %) in the general population in Europe, the United States and China, suggesting ubiquitous 

exposure to DPHP or its parent compounds (e.g., TPHP or other aryl-PEFRs such as 2-ethylhexyl 

diphenyl phosphate) around the world. 

Highly variable detection frequencies were reported for BCIPP, BNBP, and BBOEP. In 

general, their median levels were around, or less than, 0.3 µg/l. 

Information on the occurrence of BCEP and isopropylphenyl phenyl phosphate (ipPP) is more 

limited. These were detected in more than half of the urine samples in the large majority of studies that 

monitored these metabolites. In most studies, their median concentrations were in the range of 

0.2-2 µg/l. 

In almost all available studies, di-ortho-cresyl phosphate (DoCP) and/or di-para-cresyl 

phosphate (DpCP) (determined alone or together) were detected only occasionally, and/or at relatively 

low levels (i.e. median levels <0.02 µg/l) in recent studies in China and USA, suggesting limited 

exposure to the precursors of these metabolites in these general populations (Schindler et al., 2013; 

Fromme et al., 2014; Kosarac et al., 2016; Lu et al., 2017; Romano et al., 2017; Chen et al., 2018; 

Ospina et al., 2018). However, higher frequencies were reported in some occupationally exposed 

populations (Jayatilaka et al., 2017, Tao et al., 2018). DpCP was more abundant than di-meta-cresyl 

phosphate (DmCP) and DoCP. The synthesis and commercial compositions of TCP have in fact 

changed over time. Because of its neurotoxic properties, efforts have been made to minimize the 

amount of the ortho isomer present in commercial products containing TCP (NEG, 2009; ATSDR, 

2012; US EPA, 2015).  

Other PEFRs metabolites were more rarely analyzed. Tert-butyl phenyl phenyl phosphate (tb-

PPP) and bis(2-ethylhexyl) phosphate (BEHP) were detected infrequently (Su et al., 2015; Butt et al., 

2016; Castorina et al., 2017b; Hoffman et al., 2017a; Soubri et al., 2017; Carignan et al., 2018a and b; 

Deziel et al., 2018; He et al., 2018a; Hoffman et al., 2018; Ingle et al., 2018; Sun et al., 2018). 

Dibenzyl phosphate (DBzP) was not detected in urine samples collected in the U.S.A. (Romano et al., 

2017; Jayatilaka et al., 2017; Ospina et al., 2018). 
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Workers 

In addition to the general population, urinary biomarkers have been used to assess exposure to 

PEFRs in a number of workplaces (Table 4). There are some indications that internal exposure may be 

higher than the background exposure of the general population during several types of occupational 

activity. For exemple, a recent study conducted in Australia showed that urinary levels of BCIPHPP 

among spray polyurethane foam applicators were approximately fifty times higher than urinary levels 

found in the general population (Bello et al., 2018). Numerous other worker groups are expected to be 

more heavily exposed than the general population, especially when workers are in direct contact with 

large volumes of PEFRs as pure chemicals or at high concentrations in technical formulations at 

industrial sites and in manufacturing (e.g., at electronics dismantling facilities or electronic goods 

recycling areas). Measurements of PEFRs in air and dust in various occupational settings have also 

shown that the work environment may noticeably contribute to external exposure to PEFRs (Makinen 

et al., 2009; Ali et al., 2014; Wei et al., 2015; Zheng et al., 2017; Zhou et al., 2017; Muenhor et al., 

2017; Bello et al., 2018; Ceballos et al., 2018; Shen et al., 2018). Nevertheless, information on the 

nature and extent of occupational exposures to PEFRs, especially in terms of measurements of an 

individual’s internal exposure, is still limited and warrants further investigations (characterization, 

quantification, and contribution to total PEFR burden). 

Possible bias, limitations and strengths of the reviewed studies 

The available biomonitoring data should be analyzed in the context of several influencing 

factors that have already been identified in a number of studies on the evaluation of human internal 

exposure to PEFRs. 

Concentrations of urinary PEFR metabolites varied greatly both between the populations 

studied and from individual to individual within cohorts (Hoffman et al., 2017a; Preston et al., 2017). 

Except for BDCIPP and DPHP which were typical worldwide contaminants, there was no strong 

common pattern for the compositional profile of urinary PEFR metabolites. This may be explained by 

differences in FR regulations, dietary habits, lifestyle, and use of PEFRs in household products and 

indoor environments (e.g., building material), between the various countries and/or study locations 

(Carignan et al., 2013; Butt et al., 2016; Lu et al., 2017; Chen et al., 2018; He et al., 2018b). Other 

factors were reported to have an impact on urinary PEFR metabolite concentrations, including timing 

(e.g., season of collection) (Hoffman et al., 2017a and b; Deziel et al., 2018; Ingle et al., 2018; Phillips 

et al., 2018), sex (e.g., women tend to have higher levels of DPHP than men, Hoffman et al., 2015b; 

Preston et al., 2017; He et al., 2018a; Ospina et al., 2018), behavior and activity patterns (e.g., hand 

washing and cleaning routines, nail painting) (Abdallah et al., 2016; Mendelsohn et al., 2016; He et 

al., 2018b) and age (Van den Eede et al., 2015b; Lu et al., 2017; He et al., 2018a; Ospina et al., 2018; 

Sun et al., 2018). Urinary concentrations of the main PEFR metabolites were generally higher in 

toddlers than in adults (Butt et al., 2014 and 2016; Cequier et al., 2015; Hoffman et al., 2015a; Van 

den Eede et al., 2015b; Chen et al., 2018; He et al., 2018a and b; Ospina et al., 2018). This is an 

international trend, generally attributed to the tendency of young children to crawl on the floor and to 

their elevated hand-to-mouth contact behavior, both of which result in increased oral and dermal 

contact with indoor settled dust and with products containing these chemicals (e.g., plastic toys). 

Differences in pharmacokinetics with age cannot be excluded.  

Long-term temporal trends in the urinary levels of some PEFR metabolites have been reported 

among adults and/or children in the United States. Concentrations of BDCIPP in urine samples 

collected in 2014-2015 were 16.5 times higher than those collected in 2002-2003, while 
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concentrations of DPHP increased at much lower rates until 2011 (Hoffman et al., 2017b). This may 

be related to changes in the use of specific PEFRs to meet the more stringent regulation of certain FRs, 

and improvements in the fire safety standards required for finished consumer products (e.g., furniture 

and textiles). For example, TCEP and TDCPP have recently been restricted or banned in children’s 

products in several states in the USA (Vermont General Assembly, 2013; US EPA, 2015; Council of 

Columbia, 2016, Department of Ecology State of Washington, 2016).  

In addition to the studied populations and the sources of PEFR emissions, sampling strategies 

may affect the study results. Human observations (Carignan et al., 2016) and in vitro and in vivo rat 

studies suggest that PEFRs are rapidly metabolized and eliminated in urine. PEFR half-lives in 

humans are generally estimated to be on the order of a few hours. The use of single spot urine samples 

in most studies may not represent metabolite concentration over time and may contribute to the 

variability in the metabolite concentrations. However, a slower urinary elimination of some 

metabolites (i.e. BBOEP) was recently observed in volunteers following an oral administration of 

TBOEP (Völkel et al., 2018). Several studies collected multiple samples over one day or the course of 

the study to limit within-subject variability (Meeker et al., 2013b; Hoffman et al., 2015b; Cequier et 

al., 2015; Su et al., 2015; Carignan et al., 2016; Hammel et al., 2016; Preston et al., 2017; He et al., 

2018b; Phillips et al., 2018).  

Analytical treatment of the biological samples may be critical for the measurement of PEFR 

urinary metabolites, e.g., conditions of urine collection and storage (Petropoulou et al., 2016; Carignan 

et al., 2017). Differences in the detection and quantification limits of the analytical methods employed 

to quantify urinary metabolites may also account for the broad range of detection rates of some 

metabolites within and/or across studies. Van den Eede et al. (2013b) showed that improvement of the 

LOQ method resulted in a higher detection frequency of BCEP and BDCIPP. In several studies, the 

method limit of detection (MLOD) of the hydroxylated metabolite of TCIPP, BCIPHPP, was much 

lower than that of the diester, BCIPP (at least ten folds - Butt et al., 2016; Hammel et al., 2016; 

Hoffman et al., 2017a; He et al., 2018a). BCIPHPP was in fact found at a higher incidence than BCIPP 

in recent biomonitoring studies that measured both metabolites in urine samples from the general 

population (Butt et al., 2016; Hammel et al., 2016; Hoffman et al., 2017a and 2018).  

The biotransformation of PEFRs has not been extensively investigated in animals and humans 

and their potential metabolic pathways are principally based on qualitative in vitro analyses. In vivo, 

the triesters may undergo very little transformation, and/or several major metabolites other than 

diesters may be formed (Hou et al., 2016; Völkel et al., 2018). In addition, urine may not be the sole 

excretion pathway for certain PEFRs. Diester metabolites were the main metabolites targeted in urine 

for all PEFRs. However, there may be qualitative and quantitative metabolic differences between the 

compounds and/or between the metabolite kinetics. If the measured metabolite was not the best 

urinary biomarker of exposure, this would lead to underestimation of exposure for some PEFRs. For 

example, the diester metabolites of TBOEP and TCIPP were not always the main metabolites formed 

in vitro by human liver preparations. Several potential hydroxylated derivatives have been considered 

for urinary monitoring of certain PEFRs (e.g., BBOEHEP for TBOEP and BCIPHPP for TCIPP) (Van 

den Eede et al., 2015b; Butt et al., 2016; Hammel et al., 2016; Hoffman et al., 2017a and 2018; Bello 

et al., 2018; He et al., 2018a and b; Phillips et al., 2018). In fact, BBOEP and BBOEHEP were 

detected in 80 % of urine samples from volunteers orally administered a single dose of TBOEP (20 

µg/kg b.w.), with comparable median values (0.16 and 0.18 µg/l, respectively) (Völkel et al., 2018). 

However, the maximum concentration of BBOEHEP was much higher than that of BBOEP (3700 and 

69 pmol/kg b.w., respectively) and was reached within 1-2 hours. In contrast, BBOEP showed some 

maxima within 25 hours, before a smooth decline.  
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Several biomonitoring studies with large cohort size provide robust information on general 

population exposures to PEFRs. They related to a representative sample of the U.S. general population 

(Ospina et al., 2018), adults in China (Lu et al., 2017) and the United States (Carignan et al., 2018a 

and b), children in China (Chen et al., 2018) and Germany (Fromme et al., 2014), and pregnant 

women in the United States (Castorina et al., 2017; Hoffman et al., 2017a).  

No consistent and/or uniform correlation could be established between urinary levels of some 

PEFR metabolites (mainly diesters) and the concentrations of the corresponding parent compounds in 

hand wipes or in indoor dust samples from various microenvironments (Carignan et al., 2013; Meeker 

et al., 2013b; Dodson et al., 2014; Fromme et al., 2014; Cequier et al., 2015; Hoffman et al., 2015b, 

Hammel et al., 2016; Castorina et al., 2017b; Larsson et al., 2018; Phillips et al., 2018; Tao et al., 

2018; Völkel et al., 2018). Associations were generally specific to the PEFR. Some weak or positive 

correlations were reported, but inconstantly, for the pairs TCEP/BCEP, TDCIPP/BCIPP, 

TPHP/DPHP, and/or TBOEP/BBOEP. Urinary biomarkers are indicators of integrated personal 

exposure. Each PEFR may have several different sources and pathways of exposure, and dust sampled 

from specific indoor microenvironments may not be the sole and/or the primary contributor to the 

body burden.  

Occurrence of PEFRs in other human samples 

Most human biomonitoring studies have used urine as biological matrix to evaluate exposure 

to PEFRs. Less is known about the possibility of using PEFR levels in segments of hair and/or nails as 

retrospective non-invasive biomarkers for PEFR monitoring. The main PEFRs (unchanged 

compounds) were detected in most of the hair samples collected in various countries (e.g., TCIPP, 

TDCIPP, TPHP) (Table 5). Levels measured in hair were highly variable between individuals, with 

concentrations ranging from ng/g to high concentrations of several µg/g within the study populations 

(e.g., TDCIPP and TPHP, Kurcharska et al., 2015a; Liu et al., 2016). It was suggested that PEFR 

levels in the hair are derived from a combination of both external exposure from air and dust and 

internal exposure. PEFRs in hair reflect long term exposure while the occurrence of PEFR metabolites 

in urine most likely corresponds to recent exposure (Kurcharska et al., 2015b; Alves et al., 2017).  

A number of studies have reported the presence of PEFRs in other human tissues and body 

fluids. PEFRs were frequently detected in placenta (Ding et al., 2016; Zhao et al., 2017) and breast 

milk (Sunddkvist et al., 2010; Kim et al., 2014; He et al., 2018a). The median concentration of total 

PEFRs was around 10-100 ng/g of lipids in breast milk from Sweden and several Asian countries, 

indicating that substantial exposure occurs at a young age via breastfeeding (Sunddkvist et al., 2010; 

Kim et al., 2014). The parent compounds (Liu et al., 2016; Zhao et al., 2016; Li et al., 2017; Ma et al., 

2017; Qiao et al. 2017) and their metabolites (Bui et al., 2017) were found in human serum and blood 

in a few studies. The metabolism of parent PEFRs tends to occur rapidly and the measurement of 

metabolites concentrations in urine is generally preferred to the invasive measurement of the non-

metabolized chemicals in serum for exposure assessment. 

Conclusion 

This short review shows that the use of urinary levels of PEFRS metabolites for monitoring 

internal human exposure to these emerging pollutants is widespread and has gained increasing 

attention over the past few years. The biomonitoring studies confirm ubiquitous exposure of the 

general population to PEFRS all over the world, and potentially higher exposures in children and 

among a number of occupational populations. The levels and compositional patterns of urinary 

metabolites varied as a function of factors, such as the location and time of sampling. Further 
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information on the toxicokinetics of PEFRs in humans and the continued development and validation 

of bioanalytical methods will allow refinement of the current biomarkers of exposure to these 

chemicals. Additional biomonitoring data on PEFRs are still needed in order to reduce the uncertainty 

in estimating human exposure, to identify the populations at risk and any possible associations with 

adverse health effects, to follow exposure trends, and to evaluate governmental prevention strategies 

and programs.  
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Table 1. A summary of recent epidemiological studies on the potential health effects of PEFRs 

 

Author, location Subjects and study period Sampling Exposure assessment a Health effects related to PEFRs exposure 

Hormonal and reproductive effects 

 

Carignan et al., 2018a 

USA 

201 couples from the 

Environment and 

Reproductive Health 

(EARTH) prospective cohort 

study a  

2005-2015 

One or two spot urine 

samples per in vitro 

fertilization cycle  

Urinary metabolites in 

males: BCIP, BDCIPP, 

DPHP, ip-PPP, tert 

butyl-phenylphenyl 

phosphate (tb-PPP) 

Paternal exposure and partner’s pregnancy outcome 

Association between paternal preconception BDCIPP levels and 

reduced probability of oocyte fertilization. 

 

No association between PFR metabolites and the proportion of 

cycles resulting in implantation, clinical pregnancy and live birth. 

Carignan et al., 2018b 

USA 

211 women from the 

Environment and 

Reproductive Health 

(EARTH) prospective cohort 

study a 

2005-2015 

One or two spot urine 

samples per in vitro 

fertilization cycle 

Urinary metabolites in 

females: BCIP, 

BDCIPP, DPHP, ip-

PPP, tb-PPP 

Maternal exposure and pregnancy outcome 

Association between the levels of two individual metabolites (i.e. 

DPHP and tb-PPP) and of total metabolites, and reduced 

probability of successful fertilization, implantation, clinical 

pregnancy, and live birth. 

Ingle et al., 2018 

USA 

220 men from the 

Environment and 

Reproductive Health 

(EARTH) cohort study a  

2005-2015 

One to five urine and 

sperm samples  

Urinary metabolites in 

males: BCIP, BDCIPP, 

DPHP, ip-PPP, tb-PPP 

Exposure in men and semen parameters 

No consistent association between individual metabolites and 

semen parameters. 

Preston et al., 2017 

USA 

26 men and 25 women  

as a part of the Flame 

Retardant Exposure Study 

(FlaRE)  

2010-2011 

Spot urine and blood 

samples at 1, 6 and 12 

months 

Urinary DPHP Adult exposure to TPHP and circulating thyroid hormones 

No association between DPHP levels and thyroxine (free T4), 

triiodothyroxine (free and total T3) or thyroid stimulating hormone 

(TSH) concentrations in serum. 

 

Association between DPHP levels and increased total T4, 

especially in women.  

Soubry et al., 2017 

USA 

 

67 men as a part of the 

Gametic Epigenetic 

Reprogramming (TIEGER) 

cross-sectional study 

2012-2013 

Spot urine and sperm 

samples on the same day 

Urinary metabolites: 

BCIP, BDCIPP, DPHP, 

ip-PPP, tb-PPP 

Exposure in men and DNA methylation at imprinted genes in sperm 

Association between PEFRs metabolites (i.e.BDCIPP, DPHP, ip-

PPP) and small methylation differences (hyper- or hypo-

methylation of different genes specific to the metabolites). 

Meeker et al., 2013a 

USA 

33 men from couples who 

were infertile due to a male 

factor, a female factor, or 

both 

One urine, blood, and 

semen sample 

 

Urinary BDCIPP and 

DPHP 

Exposure in men, and semen parameter, and reproductive and 

thyroid hormones 

Association between BDCIPP levels and decreases in sperm quality 

parameters, and concentrations of total T3 and FSH in serum. 
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(Subset of a parent study: 

Meeker et al., 2007) 

2003-2004 

 

Association between DPHP levels and decreased sperm 

concentration (no significant changes in hormones, e.g., prolactin).  

Meeker et al., 2010 

(Meeker et al., 2007) 

USA 

50 men from couples who 

were infertile due to a male 

factor, a female factor, or 

both 

(Subset of a parent study: 

Meeker et al., 2007) 

 

Dust collected at the 

homes of men who 

participated in the parent 

study in 2002-2007. 

One blood and semen 

sample (38 samples for 

semen) 

TDCPP and TPHP in 

dust 

Exposure in men and semen parameters and reproductive and 

thyroid hormones 

Association between TDCPP levels and changes in serum 

concentrations of hormones (decrease in free T4 and increase in 

prolactin). 

 

Association between TPHP and increased prolactin and decreased 

sperm concentration.  

Effects at birth and in childhood 

 

Hoffman et al., 2018 

USA 

349 mothers and their child 

from the cohort of the 

Pregnancy Infection and 

Nutrition study (PIN) 

2002-2005 

Single spot urine samples 

from the mothers during 

late-second or early-third 

trimester (24-30 weeks 

of pregnancy) 

 

Urinary metabolites: 

BCIP, BDCIPP, DPHP, 

ip-PPP, tb-PPP, 1-

hydroxy-2-propyl 

phosphate (BCIPH-

IPP) 

Maternal exposure and birth outcomes  

Higher levels of BDCIPP and ip-PPP associated with decreased 

gestational duration and increased preterm births (<37 weeks 

gestation) among female infants. 

 

Castorina et al., 2017a,  

USA 

310 mothers and their 7-

year-old children from a 

longitudinal birth cohort 

study (Center for the Health 

Assessment of Mothers and 

Children of Salinas-

CHAMACOS) 

1999-2000 

Single spot urine samples 

from the mothers at 26 

weeks of pregnancy 

 

Urinary metabolites: 

BCIP, BDCIPP, DPHP, 

ip-PPP, tb-PP 

(Castorina et al., 

2017b) 

In utero exposure and neurodevelopmental outcome 

(associations analyzed: total PEFR metabolites, TDCIPP, TPHP, 

ip-PPP) 

Association between DPHP and total PEFR metabolites levels, and 

decreased cognitive function (full scale IQ and working memory).  

 

No association between prenatal BDCIPP and ip-PPP levels and 

neurobehavioral development. 

Lipscom et al., 2017 

USA 

72 children (aged 3-5 years) 

2012-2013 

Passive wristband 

samplers worn 

continuously for 7 days 

FRs in wristbands, 

including brominated 

diphenyl ethers (BDEs) 

and total PEFRs  

Child exposure and social behavior 

Cross-sectional association between total PEFRs levels and poorer 

social skills in a few domains (e.g., externalizing behavior).  

Respiratory outcomes and immunotoxicity 

 

Sun et al., 2018 

China 

180 participants (130 adults, 

27 students, and 33 children) 

2016-2017 

 

Single spot urine sample 9 urinary metabolites 

including BCEP, 

BCIPP, BDCIPP, 

DNBP, DPHP, 

BBOEP, BEHP 

Indoor exposure and allergy 

Association between DNBP levels and self-reported symptoms of 

allergy. 

Canbaz et al., 2016 110 children who developed Dust collected from the PBDEs and PEFRs in FRs in mother’s mattress dust and the development of childhood 
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Sweeden asthma at 4 or at 8 years, 

matched with 110 controls 

from a large prospective 

study 

1994-1996 

mother’s mattress two 

months after child birth f  

dust, including TECP, 

TCIP, TDCIPP, TPHP, 

TBOEP, EHDPHP, 

mmp-TCP  

asthma 

No association between higher concentrations of PEFRs and the 

development of childhood asthma. 

 

Araki et al., 2014 

Japan 

516 inhabitants (adults and 

children) in 156 different 

homes 

Cross-sectional study. 

2004-2006 

Indoor floor and multi-

surface dust collected in 

each family’s home in 

2004, 2005, and 2006 

11 PEFRS such as 

TBOEP, TCIPP, 

TDCIPP, TPHP (most 

frequently detected) in 

dust 

Indoor exposure and asthma and allergy 

Association between TNBP levels and an inhabitant’s medical 

treatment for asthma and allergic rhinitis. 

  

Association between TCIPP and TDCIPP levels and recent medical 

treatment of an inhabitant for atopic dermatitis. 

Bergh et al., 2011 

Sweden 

Adults (men and women). 

Part of a larger study, the 

Healthy Sustainable Houses 

study in Stockholm (3H). 

Frequency of SHS studied in 

481 multi-family buildings 

with 10506 dwellings 

(Engvall et al., 2010). 

2006 

Indoor air from 169 

apartments in buildings 

with a high incidence of 

reported SHS (2-4 

apartment/building) 

 

Phthalates and 15 

organophosphorous 

flame retardants  

Indoor exposure and sick house syndrome (SHS) (i.e. irritation of 

the eyes, nose, throat, skin and coughing) 

 

No association between PEFR levels and reported SHS symptoms, 

compared to buildings with low prevalence of SHS. 

 

Kanazawa et al., 2010 

Japan 

134 inhabitants (64 men and 

70 women) of 41 dwellings 

Cross-sectional study 

2006-2007 

Indoor air and dust 

(surface, floor) from the 

dwelling  

Semi-volatile organic 

compounds including 

11 PEFRs 

Indoor exposure and sick house syndrome (SHS) 

Association between TBNP levels (floor dust) and reported 

mucosal symptoms of SHS. 

 

Inverse association between TBEP concentrations (floor dust) and 

reported mucosal symptoms of SHS. 

Others 

 

Deziel et al., 2018 

USA 

100 cases and 100 controls  

Cases: Patients newly 

diagnosed with papillary 

thyroid cancer (PTC) 

(women) 

2010-2013 

Single spot urine samples 6 urinary metabolites: 

BCIPP, BCIHPP, 

BDCIPP, ip-PPP, 

DPHP and tert-butyl 

phenyl phenyl 

phosphate (tb-PPP) 

Adult exposure and PTC 

No association between urinary PEFR metabolites concentrations 

measured at the time of diagnosis and risk of PTC. 

Tb-PPP was only detected in 6% of samples and was therefore 

excluded for analysis. 

Hoffman et al., 2017c 

USA 

70 cases and 70 controls  

Cases: Patients newly 

diagnosed with papillary 

thyroid cancer (PTC) (men 

and women) 

Dust collected at each 

participant’s home 

FRs in household dust, 

including BDEs, 

TCEP, TCIPP, 

TDCIPP and TPHP 

Adult exposure and PTC 

Higher levels of TCEP associated with increased odds of PTC, 

especially larger and more aggressive tumors. 



24 
 

2014-2016 

Lu et al., 2017 

China 

221 adults and children 

2014 

Single spot urine samples 8 urinary metabolites: Adult exposure and oxidative stress (8-OHdG in urine) 

Association between PEFR metabolite levels (i.e. DCEP, DNBP, 

DPHP) and a higher concentration of 8-OHdG, in e-waste 

dismantling sites. 

Zhao et al., 2016 

China 

154 men and 101 women 

2012 

  

One blood sample TCIPP, TBOEP, 

TPHP, TEP, TNBP, 

EHDPP in blood 

Adult exposure and changes in sphingolipid homeostasis 

Association between levels of the six PEFRs and increased 

sphingomyelin concentration. 

 

Negative association between EHDPP, TPHP, and TNBP levels 

and sphingosine 1-phosphate concentration. 
a Participants originated from couples whose infertility diagnosis was either male factor, female factor, or a combination of both.  
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Table 2 Parent compounds and metabolites 

Parent PEFR PEFR metabolite 

Full name (CAS number) Abbreviation Full name Abbreviation 

Halogenated organophosphorous 

compounds  

   

Tris(2-chloroethyl) phosphate 

(115-96-8) 

TCEP Bis(2-chloroethyl) phosphate BCEP 

Tris(1-chloro-2-propyl) phosphate 

(13674-84-5) 

TCIPP Bis(1-chloro-2-propyl) phosphate 

 

Bis(1-chloro-2-propyl) 1-

hydroxy-2-propyl phosphate 

BCIPP 

 

BCIPHPP 

Tris(1,3-dichloro-2-propyl) phosphate 

(or isopropyl) (13674-87-8) 

TDCIPP Bis(1,3-dichloro-2-propyl) 

phosphate 

BDCIPP 

 

Non-halogenated organophosphorous 

compounds 

   

Tri-n-butyl phosphate (126-73-8) TNBP Di-n-butyl phosphate DNBP 

Tris(2-ethylhexyl) phosphate (78-42-2) TEHP Bis(2-ethylhexyl) phosphate BEHP 

Mono-substituted isopropyl triphenyl 

phosphate (Isopropylphenyl diphenyl 

phosphate) 

(several isomers : 55864-04-5, 69515-

46-4, 64532-94-1) 

Mono-ITP Isopropylphenyl phenyl phosphate ip-PPP 

Tris(2-butoxyethyl) phosphate (78-51-3) TBOEP 

 

 

Bis(2-butoxyethyl) phosphate 

 

Bis(2-butoxyethyl)-(2-

hydroxyethyl) phosphate 

BBOEP 

 

BBOEHEP 

Triphenyl phosphate (115-86-6) TPHP Diphenyl phosphate DPHP 

Tricresyl phosphate (1330-78-5) 

Ortho, meta, and para isomers (78-30-8, 

563-04-2, 78-32-0, respectively) 

TCP 

ToCP, TmCP, 

TpCP 

Dicresyl phosphate DCP 

2-ethylhexyl diphenyl phosphate 

(1241-94-7) 

EHDPP 5-hydroxy-2-ethylhexyl diphenyl 

phosphate  

5-OH-

EHDPHP 

Chemical structures of PEFR metabolites are given in Supplementary material S1 

The commercial mixtures TCP, TCIPP, and triisopropylated phenyl phosphate contain varying amounts of their 

isomers, e.g., the most abundant isomer in commercial products of TCIPP is generally the completely branched 

isomer, CAS: 13674-84-5.  
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Table 3. Urinary concentrations of the principal metabolites of PEFRs in general populations (g/l).  

50th percentile (max) % ≥ limit of detection (LOD)  

Author, location Sampli

ng year 

N (population) BCEP BCIPP 

 

BCIPHPP BDCIPP DNBP ip-PPP BBOEP DPHP 

Australia           

He et al., 2018a 
 

2014-
2015 

Children (0-5 years) 
Pooled urine samples 

(20 children/pool, 20 pools)  

Not adjusted for specific gravity  

<0.01a (0.036) 

15 

 

0.85a (3.2) 100 
 

0.43a.(2.1) 100 
 

2.6a (19) 100 
 

0.18a (0.55) 100 
 

- 0.32a (0.78) 100 
 

25a (58) 100 
. 

He et al., 2018b 

 

2015-

2016 

51 children (3-29 months, average 

13 months). 

Two urine samples from two 
consecutive days. 

Not adjusted for specific gravity 

<0.01 (n.r.) 33 

 

<0.68 (n.r.) 86 

 

0.93 (n.r.) 96 3.3 (n.r.) 100   0.10 (n.r.) 75 1 (n.r.) 94 

Van den Eede et 
al., 2015b 

2010-
2011 

Adults and children 
Pooled urine samples 

Not adjusted for specific gravity  

Campaign 1: 28 pools of 7 
individuals and 44 pools of 7 

individuals 

- - n.r. (9.43)100 
 

n.r. (8.90)92 
 

n.r. (2.15)18 
 

- n.r. (0.53)6 
 

n.r. (727) 97 

 

 2012-

2013 

Campaign 2: 23 pools of 100 

individuals  

- - n.r. (7.17) 100 

 

n.r. (3.41) 96 

 

n.r (0.94)4 

 

- n.a. 0 

 

n.r. (225) 100 

 

Asia           

Chen et al., 2018 

China 

2015 411 children (212 aged 8-12 years 

and 199 aged 6-14 years) 

First morning void 
Specific gravity adjusted 

1.04 (86.9) 91 

 

0.15 (3.11) 66 

 

- 0.05 (4.73) 29 

 

0.12 (2.67) 77 

 
-. 0.05 (0.37) 84 

 

0.28 (6.18) 99 

 

Sun et al., 2018 

China, Shanghai 

2016-

2017 

180 participants (130 adults, 27 

students, and 33 children) 

First morning void 
 Not adjusted for specific gravity 

n.r. (22.60) 5 n.r. (8.83) 16.7  n.r. (2.09) 21.1 0.008 (1.48) 

51.7 

 0.097 (2.19) 

68.3 

0.066 (4.0) 67.8 

Feng et al., 2017 

China, Shanghai 

2015 23 pregnant women 

Spot urine 
Specific gravity adjusted  

- - - 1.58 (2.2) 17 

 

- - - 0.83 (7.3) 100 

 

Lu et al., 2017 

China 

2014 221 adults and children 

First morning void 

Not adjusted for specific gravity  

1.1 (57) 71 

 

0.097(23) 56 

 

- 0.11 (4.5) 76 

 

0.15 (7.8) 99 

 
- 0.071 (2.1) 93 

 

0.53 (36) 100 

 

Yoshida T et al., 

2012 

Japan 

n.r. 5 individuals (16-48 years) 

Spot urine 

Not adjusted for specific gravity 

- - - - <LOQ (<LOQ) 

40 

- - n.a. (9.8) 20 

Europe           



27 
 

Larsson et al. 
2018 

Sweden 

2015 113 children (4 years) 
First morning void 

       1.8 (35) 100 

Völkel et al., 
2018 

Germany 

2011-
2012 

Children (20-80 months) 
54 urine samples 

Spot urine 

Not adjusted for specific gravity 

      0.16 (n.r.) 80   

Cequier et al., 
2015 

Norway 

2012 48 mothers 
2 to 8 samples over a period of 

24h (244 samples) 

Specific gravity adjusted 
Same population as Cequier et al., 

2014 

- - - 0.08 (2.1) 52 
 

<MDL (0.35) 8 
 

- <MDL (0.27) 

<1 

 

0.63 (60) 97 
 

  54 paired children (6-12 years, 
median 10 years) 

2 or 3 samples over a period of 

24h (112 samples) 
Specific gravity adjusted 

- - - 0.23 (3.3) 61 
 

<MDL (1.0) 15 
 

- <MDL (1.0) 32 
 

1.0 (129) 97 
 

Cequier et al., 

2014 

n.r. 42 mothers 

Spot urine 

Specific gravity adjusted 

- - - <LOQ (n.r.) 57 

 

<LOQ (n.r.) 5 - n.a. 0 n.r. (n.r.) 100 

  42 paired children  

Spot urine 

Specific gravity adjusted 

- - - n.r. (n.r.) 79 <LOQ (n.r.) 14 - <LOQ (n.r) 33 n.r. (37) 100  

Fromme et al., 
2014 

Germany 

2011-
2012 

312 children (22-80 months, mean 
54 months) 

Spot urine 

Not adjusted for specific gravity 

0.2 (13.1) 65 
 

<0.2 (8.4) 21 
 

- - 0.2 (6.6) 71 
 

- 2.0 (24.9) 90 

 

0.8 (23.2) 91 
 

Van den Eede et 

al., 2013b 

 Belgium 

n.r. 59 adults (23 men and 36 women) 

Spot urine 

Not adjusted for specific gravity  

n.r.(9.5) 27 

 

n.r (6.2) 3 

 

- n.r (3.5) 25 

 

n.r (3.5) 5 

 

- n.r (7.0) 31 

 

n.r (13) 93 

 

Reemstma et al., 

2011 

Germany 

n.r. 19 urine samples from males and 

females (14-85 years) 

Spot urine 
Not adjusted for specific gravity 

- - - - - - - 1.3 (n.r) n.r. 

 

North America            

Carignan et al., 

2018a 
USA 

Massachusetts 

2005 to 

2015 

201 men (whose partners were 

undergoing in vitro fertilization) 
Spot urine (1 sample) 

Specific gravity adjusted  

- n.a. 0 

 

- 0.46 (12.39) 84 

 

- 0.21 (3.60) 76 - 0.57 (8.54) 87 

 

Carignan et al., 
2018b 

USA 

Massachusetts 

2005 to 
2015 

211 women undergoing in vitro 
fertilization 

Spot urine (1 or 2 samples) 

Specific gravity adjusted 

- n.a. 0 
 

- 0.69 (63.4) 87 

 

-  - 0.75 (616) 94 

 

Deziel et al., 2018 
USA 

Connecticut 

2010-
2013 

200 women (100 population-
based controls and 100 women 

diagnosed with thyroid cancer in a 

- n.r. (n.r.) 44 0.19 (n.r.) 99 0.65 (n.r.) 97 - 2.35 (n.r.) 100 - 0.82 (n.r.) 97 
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case-control study)  
Specific gravity adjusted 

Hoffman et al., 

2018 
North Carolina 

2002-

2005 

349 pregnant women (24- 

30 weeks) 
Spot urine 

Specific gravity adjusted 

 n.r. (6.1) 49 0.42 (98.0) 98 1.85 (140) 93  7.06 (69.0) 99  1.31 (112) 84 

Ingle et al., 2018 2005-

2015 

220 men 

Spot urine (1 to 5 samples/man) 
(255 samples) 

Specific gravity adjusted 

 

   0.61 (20.24) 85  <MDL. (4.08) 

67 

 0.70 (15.55) 86 

Ospina et al., 

2018 

National Survey 
US population 

2013-

2014 

2666 spot urine samples, a 

random 1/3 sample of participants 

from the NHANES 2013-2014 
Not adjusted for specific  

Age group: 6 year old and older 

0.39 (110) 89 

 

0.16 (46.7) 61 

 

- 0.88 (169) 92 

 

0.25 (70.3) 81 

 

- - 0.82 (193) 92 

 

  Age group: 6-11 years (n=421) 0.66 (n.r.) n.r. 0.25 (n.r.) n.r.  2.31 (n.r.) n.r. 0.34 (n.r.) n.r. - - 1.70 (n.r.) n.r. 

  Age group: 12-19 years (n=427) 0.57 (n.r.) n.r. 0.16 (n.r.) n.r.  1.43 (n.r.) n.r. 0.27 (n.r.) n.r. - - 1.44 (n.r.) n.r. 

  Age group: 20-59 years (n=1266) 0.37 (n.r.) n.r. 0.16 (n.r.) n.r.  0.85 (n.r.) n.r. 0.22 (n.r.) n.r. - - 0.73 (n.r.) n.r. 

  Age group: 60 years and older 

(n=552) 
0.30 (n.r.) n.r. 0.13 (n.r.) n.r.  0.43 (n.r.) n.r. 0.28 (n.r.) n.r. - - 0.65 (n.r.) n.r. 

Phillips et al., 
2018 

2014-
2016 

203 children (38-73 months) 
Three spot urine samples 

collected over a 48-h period 

Specific gravity adjusted 
 

 n.r. (31.9) 80 n.r. (19.2) 97 n.r. (80.7) 100  n.r. (61.5) 100  n.r. (50.9) 99 

Castorina et al., 

2017b 
USA California 

1999-

2000 
310 pregnant women (262.4 

weeks) 
Spot urine  

Specific gravity adjusted 

- n.a. 0 

 

 0.41 (53.1) 77.7 

 

- 0.34 (5.47) 71.6 

 

- 0.93 (54.1) 79.4 

 

Hoffman et al., 

2017a 

USA North 

Carolina 

2001-

2006 

349 pregnant women (24-30 

weeks) 

Spot urine  

Specific gravity adjusted  

- 0.7 (6.1) 48.7 

 

0.4 (98) 98.3 

 

1.9 (140) 92.8 

 

- 7.1 (69) 99.4 

 

- 1.3 (112) 83.7 

 

Preston et al. 

2017 

USA 
Massachusetts 

2010-

2011 

51 adults (office workers, 26 men 

and 25 women)  

Spot urine, three sampling rounds, 
interval 6 months  

      n.r. 

(0.17-142) 

n.r. 
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 135 samples 
Specific gravity adjusted 

Romano et al., 

2017 
USA Rhode 

Island 

2014 58 pregnant women (spot urine 

samples collected at 12, 28 and/or 
35 weeks of gestation) 

Specific gravity adjusted 

0.31 (n.r).74 

 

n.r (n.r.) 53 

 

- 1.18 (n.r) 93 

 

n.r.(n.r.) 33 

 

- - 0.93 (n.r.) 95 

 

Thomas et al., 

2017 
USA Washington 

2012-

2014 

41 children (15-18 months) 

Spot urine  
Specific gravity adjusted 

Lab 1 

N=21 

- - - 5.47 (64.66) 95 

 

- 0.48 (2.68) 81 

 

- 2.71 (16.56) 100 

 

  Lab 2 

N=20 
- - - 2.01 (202.4) 85 

 
- - - 7.72 (26.93) 100 

Butt et al., 2016 

USA California 

2015 28 mothers 

Spot urine 
Specific gravity adjusted 

-  n.a. (4.0) 11 

 

2.4 (104) 100 

 

2.8 (14.3) 100 

 

- 2.0 (14.8) 100 

 

- 1.2 (3.5) 100 

 

  33 paired children (2-70 months, 

mean 44 months) 

Spot urine 
Specific gravity adjusted 

-  n.a. (3.4) 9 

 

2.0 (23.2) 100 

 

7.4 (798) 100 

 
- 2.1 (8.5) 100 

 

- 2.5 (82.0) 100 

 

Carignan et al., 

2016 
Eastern United 

States 

2012 11 female gymnasts (older than 

15 years in age) 
Several samplings on practice day 

Specific gravity adjusted 

- - - 0.76 (3.99) 100 

 

- - - 8.71 (58.4) 100 

 

Hammel et al.,  

2016 
USA North 

Carolina 

2015 40 adults (15 men and 25 women) 

First morning void on 3 separate 
days 

Specific gravity adjusted 

-  n.a.(0.57) 18 1.12 (16.99) 100 

 

2.06 (21.21) 100 

. 

 

- - - 1.16 (26.77) 100 

 

Kosarac et al., 
2016 

Canada 

 

2010-
2012 

20 pregnant women (second and 
third trimester of pregnancy) and 

4 post-partum women 

Spot urine 
Not adjusted for specific gravity  

0.46 (1.25) 37 
 

0.46 (2.41) 54 

 

n.a. (0.53) 4 
(free form, 

without 

enzymatic 
deconjugation) 

0.26 (1.77) 29 

 

- - <0.08 (1.02) 17 

 

2.94 (25.7) 92 

 

Petropoulou et al., 

2016 
USA California 

n.r. 13 adults (8 women and 5 men) 

Spot urine 
Not adjusted for specific gravity 

1.3 (15.0) 100 

 

0.3 (3.5) 100 

 

- 2.4 (7.3) 100 

 

- - - 1.5 (5.6) 100 

 

Hoffman et al., 

2015a 

USA North 
Carolina 

2014-

2015 

43 children (2-18 months, mean 

7.9 months) 

Spot urine 
Specific gravity adjusted 

 n.r. (7.5) 19 

 

 n.r. (541) 100 

 

 n.r. (6.1) 35 

 

 n.r. (26.5) 93 

 

Hoffman et al., 

2015b 
USA North 

Carolina 

2012 

 

53 adults (26 men and 27 women) 

Spot urine 
Specific gravity adjusted  

- - - n.r. (4.46) 83 

 

- - - n.r. (9.09) 91 

 

Su et al., 2015 

Canada 

2014 12 urine samples from 4 

individuals 
Spot urine, 3 consecutive days 

Not adjusted for specific gravity  

n.r. (12.33) 100 n.r. (0.68) 42 

 

- n.r. (1.17) 83 n.r. (<MDL or 

<LOQ) 42 

- <MDL n.r. (1.29) 75 
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Butt et al., 2014 
USA New Jersey 

 

2013-
2014 

19 mothers 
Spot urine 

Specific gravity adjusted  

- n.r. (0.64) 14 
 

- n.r. (11.0) 100 
 

- n.r. (2.3) 100 
 

- n.r. (68.7) 95 
 

  23 paired children (1-5 years) 
Spot urine 

Specific gravity adjusted 

- n.r. (0.46) 4 

 

- n.r. (251) 100 

 

- n.r. (10.1) 92 
 

- n.r. (140) 100 

 

Dodson et al., 

2014 
USA California 

2011 16 adults 

Spot urine 
Not adjustment for specific 

gravity. 

0.63 (2.1) 75 

 

n.a. (0.97) 31 

 

- 0.09 (3.9) 94 

 

0.11 (0.45) 56 

 

-  n.a. (0.71) 12 

 

0.44 (6.8) 62 

 

Hoffman et al., 
2014 

USA North 

Carolina  

2011-
2012 

 

8 pregnant women  
(18th and 28th week of pregnancy: 

24-h urine and first morning 

voids. After birth of child: 1 spot 
urine) 

39 urine samples  

Not adjusted for specific gravity 

- - - 1.1 (19.9) 97 
 

- - - 1.6 (37.3) 97 
 

Meeker et al., 
2013 

USA 

Massachusetts 

2002-
2007 

45 men  
Spot urine 

Presumably specific gravity 

adjusted   

- - - 0.12 (25.0) 91 
 

- - - 0.27 (9.84) 96 
 

Cooper et al., 

2011 

North America  

n.r.  3 adults  

9 urine samples  

Spot urine 
Specific gravity adjusted 

- - - 0.37 (3.47) 100 

 

- - - 1.81 (63.8) 100 

 

a In most studies, the metabolite method limit of detection (MLOD) was in the range of 0.01-0.6 g/l, depending on the method used. It was lower for BDCIPP and BBOEP (3 ng/l) in the study 

of He et al., 2018a) and for BCEP, BDCIPP, and DPHP in the study of Sun et al., 2018 (2-5 ng/l). The MLOD was in the range of 1.0 to 2.7 g/l for BCIPP in the study of Hammel et al. (2016), 

for BCIPP and DPHP in the study of Kosarac et al. (2016), and for DNBP and DPHP in the study of Yoshida et al. (2012). The limit of quantification (LOQ) of BCEP, BCIPP, BDCIPP, and 

DNBP was in the range of 0.8-1.6 g/l in the study of Chen et al. (2018). The LOQs of BCEP and BCIPP were 1.2, and 3.7 g/l, respectively, in the study of Van den Eede et al. 

(2013b). The LOQ of DNBP and DPHP were 2.3, and 2.6 g/l, respectively, in the study of Yoshida et al. (2012).  
a Mean 
n.r. Not reported. 

n.a. Not applicable 

- Not analyzed 
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Table 4. Urinary concentrations of the principal metabolites of PEFRs in workers (g/L).  

50th percentile (max) % ≥ limit of detection (LOD)  

Author, location Sampling 

year 

N (population) BCEP BCIPP 

 

BCIPHPP BDCIPP DNBP 

 

ip-PPP DPHP Other 

Bello et al., 

2018 

USA 

n.r. 12 spray polyurethane 

foam applicators  

(construction insulation) 

Spot urine pre- and 

post-shift (24 samples) 

Specific gravity 

adjusted 

 - 6.2a (51.4) 100 

 

88.8a (703) 100 

 

5.3a (33.4) 

100 
 

 - 27.9 a (134) 

100 
. 

6.5 a (36.1) 100 

 

 

Tao et al., 2018 

China 

2016-

2017 

26 hotel room 

attendants (52 samples) 

Morning void and post-

shift urine 

Specific gravity 

adjusted  

- - - 0.23 (2.4) 79 0.048 (1.3) 38 - 0.24 (1.8) 87 BBOEP : 0.11 

(9.0) 59 

DoCP&DpCP : 

0.17 (1.1) 79 

and 87 

 

Yan et al., 2018 

China 

n.r. e-waste recycling site 

88 workers (men and 

women) 

First morning void 

Not adjusted for 

specific gravity 

1.77 (48.3) 94 n.r. (0.31) 16 - 0.23 (31.8) 82 n.r. (0.96) 41 - 0.70 (26.6) 93 BBOEP : n.r. 

(21.0) 35 

DBP: n.r. (0.96) 

41 

 

  Incineration plant  

30 workers (men and 

women) 

First morning void 

Not adjusted for 

specific gravity 

1.44 (22.5) 97 n.r. (0.97) 40 - 0.22 (3.56) 93 - - 0.11 (3.39) 90 BBOEP : n.r. 

(26.2) 43 

DBP: 0.30 

(34.8) 100 

 

Jayatilaka et al., 

2017 

USA 

2010-

2011 

146 firefighters 

Spot urine collected 

within 3h after 

firefighting 

Not adjusted for 

specific gravity 

0.86 (10) 90 

 

0.24 (2.9) 63 

 

 - 3.4 (44) 100 

 

0.18 (2.4) 92 

 

 - 2.9 (28) 100 

 

DpCP : <LOD 

(0.31) 34 

 2015 76 adults from the 

general population 

Not adjusted for 

specific gravity 

<LOD (4.1) 10 

 

<LOD (0.98) 5 

 

 - 0.69 (6.8) 100 <LOD (0.26) 5 

 

 - 0.89 (5.6) 100 n.a. 0 
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Schindler et al., 

2014  

Germany 

n.r. 5 aircraft maintenance 

technicians 

Spot urine 

Not adjusted for 

specific gravity 

Preshift/Postshift 

0.5/0.3 

(1.7)/(0.5) 100 

 

0.2/0.2 

(0.3)/(0.3) 70 
 -  - 12.5/23.5 

(37.2)/(51.6) 

100 

 - 2.9/3.5 

(7.4)/(7.9) 100 

DoP, DmCP, or 

DpCP < LOD 

(i.e. 0.5) 

Carignan et al., 

2013 

USA  

2009 29 office workers 

(women and men) 

Spot urine during 

afternoon of a work day 

Specific gravity 

adjusted 

- - - 408a.(1760) 

100 
 

- - -  

Schindler et al., 

2013, 2009a 

and b 

(Anderson, 

2015; Weiss et 

al., 2015)  

Germany 

n.r. 332 urine samples from 

air crews 

Spot urine collected 

within 12h after 

exposure 

Not adjusted for 

specific gravity 

0.33 (20.3) 82 

 

0.16 (6.87) 65 

 
 - - 0.28 (9.72) 100 

 

 - 1.10 (302) 

100 

 

DoP: < LOD 

(i.e. 0.5) 

DmCP: <0.5b 

(0.62) 0.3 

DpCP < LOD 

(0.55) 0.3 

  30 individuals from the 

general population (11-

68 years) 

Spot urine 

Not adjusted for 

specific gravity 

<0.1b (27.5) 50 

 

<0.25b (0.85) 12 

 
 -  - <0.25b (0.26) 4 

 
 - 0.52 (5.47) 68 

 

DoP, DmCP, or 

DpCP < LOD 

(i.e. 0.5) 

a Geometric mean  
b Limit of detection (LOD) 

n.r. Not reported 

- Not analyzed 
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Table 5 PEFR concentrations in hair and nails (ng/g dry weight) 

50th percentile (range) % ≥ limit of detection  

Author 

Location 

N (population) 

Sampling year                     

 TCEP TCIPP 

 

TDCIPP TNBP 

 

TEHP EHDPP TPHP TBOEP Other 

Europe           

Alves et al., 2017 

 

Belgium 

A woman and a 

man 

Year n.r. 

Hair (scalp 

segment, one 

sample) 

        DPHP 

Womanc: 0.25 

Manc: 0.23 

 Fingernails                      

(4 or five 

collections over 

2 months 

        Womanc: 40002 

Manc: 80.5 

 Toenails                   

(4 or five 

collections over 

2 months 

        Womanc: 6815 

Manc: 18.5 

Kurcharska et al., 

2015a 

 

Norway 

48 mothers and 

their 54 children (6-

12 year old) 

2012 

Hair (scalp 

segment) 

Mothers 

72 

(<33 a -163) 

16 

 

 30  

(<9 a -3744) 

91 

 

22 

(5-672) 

100 

 

12  

(<1 a -53) 

96 

 

27 

(5 -265) 

100 

 

52 

(5-1256) 

100 

 

65 

(14-1253) 

100 

 

TCPb 

8 

(<2 a -134) 

78 

 

 Hair (scalp 

segment) 

Children 

59 

(<33 a -118) 

26 

 

 31  

(<9 a -2698) 

92 

n.r. 

11 

(3  -150) 

100 

n.r. 

8 

(<1 a -118) 

90 

n.r. 

21  

(2 a -346) 

100 

n.r. 

63 

(6-363) 

100 

n.r. 

318 

(34-2411) 

100 

n.r. 

TCPb 

8 

(<2 a -74) 

62 

 

Martin et al., 

2015 

 

Germany 

4 women 

Hair (scalp 

segment) 

 n.r. (0.18-

1.70) 100 

 0   n.r. (0.10-0.91) 

100 
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Year n.r 

Kurcharska et al., 

2014 

 

Belgium 

20 adults 

Year n.r. 

 

Hair 

 

55 

(34-404) 

70 

 

 42 

(10-2969) 

95 

 

32 

(7-5032) 

95 

 

10 

(2-322) 

75 

 

15 

(5-105) 

100 

 

59 

(7-237) 

100 

 

37 

(7-338) 

100 

 

TCPb 

5 

(3-73)  

65 

 

China           

Qiao et al., 2016 

 

49 adults (27 man 

and 22 woman)  

2014 

 

Hair (two 

segments) 

3.61  

(<3.50a-64.9)  

57 

 

43.9 

 (<6.53 a -141) 

98 

 

4.14 

(<1.04 a -73.8)  

86 

 

3.30 

(<0.61 a -25.4)  

98 

 

24.1                 

(<0.05 a -151)  

98 

 

11.8                 

(5.78 a -78)  

71 

 

20.5 

(<1.43 a -352) 

84 

 

 TiPP 

2.43  

(<0.81 a -12.4)  

94 

 

United States           

Liu et al., 2016 

Indiana 

50 adults 

2014 

Hair (scalp 

segment) 

240 

(60-2740) 

68 

 

450 

(100-9840) 

88 

. 

360 

(70-10490) 

90 

 

   220 

(70-4710) 

98 

. 

  

 Fingernail 190 

(93-1860) 

20 

 

220 

(74-2410) 

36 

. 

300 

(90-1410) 

66 

 

   370 

(110-59800) 

74 

 

  

 Toenail 150 

(100-150) 

8 

 

230 

(90-5150) 

32 

 

230 

(75-2300) 

50 

 

   1080 

(54-232900) 

74 

 

  

Liu et al., 2015 

Indiana 

5 adults 

Year n.r. 

 

Hair (scalp 

segment) 

 

 n.r.  

(<75 a -1950) 

80 

 

n.r.  

(290-1190) 

100 

 

n.r.  

(<75 a -970) 

80 

 

   n.r.  

(76-310) 

100 

r. 

  

 Fingernail n.r.  

(<150 a -<150) 

0 

n.r.  

(<150 a -<150) 

0 

n.r.  

(280-630) 

100 

   n.r.  

(<150 a-17500) 

100 

  

a Limit of quantification (LOQ) 
b Sum of isomers 
c Average level 

n.r. Not reported 
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S1. Chemical structure of the main PEFR metabolites  

 

     BECP  

     BCIPP 

    BCIPHPP 

     BDCIPP 

     DBNP 

    BEHP 
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    ip-PPP 

  BBOEP 

  BBOEHEP 

     DPHP 

     DoCP 

   5-OH-EHDPHP 

 


