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Abstract

The impact of temperature on carbonation was investigated in laboratory conditions using a 

device developed for this purpose. Two hardened cement pastes (CEM I and CEM V/A) were 

tested between 20°C and 80°C at different levels of relative humidity (RH). The carbonation rate 

of the CEM I increased with temperature, whereas that of CEM V/A reached a maximum at 

around 50°C. 
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1. Introduction

Atmospheric carbonation involves a reaction between carbon dioxide (CO2) and cementitious 

materials. Gaseous CO2 present in the atmosphere diffuses through the concrete cover, dissolves 

in the pore solution, and then reacts with calcium ions to precipitate calcium carbonate (CaCO3). 

The result of carbonation is the dissolution of calcium-bearing hydrates, the first of them being 

portlandite, Ca(OH)2. This causes the pH of the pore solution to drop, which provides the ideal 
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conditions for the active corrosion of reinforcing steel. As carbonation has been studied for 

many years, the main mechanisms and influential parameters are well-known and efficient 

models are available to calculate the rate of the carbonation reaction [1–8]. Among all the 

influential parameters, the following are worth citing: 

 Gaseous diffusion of CO2: carbonation is driven by the gaseous diffusion of CO2 in the 

ambient air through the carbonated layer to the calcium carbonate precipitation zone: 

the carbonated depth is proportional to the square root of time at steady-state [1,9,10]. 

 Concentration of solid phases which can be carbonated (and especially portlandite) 

[1,6,11]. 

 Moisture content: water is necessary for the chemical reactions to occur (reaction 

medium), but it is also hampers CO2 diffusion. The higher the water content, the more 

likely the chemical reactions but the slower the diffusion rate. These two contradictory 

phenomena justify the existence of an optimal RH for carbonation around 40-60% [1,12–

14]. 

In the field of radioactive geological disposal in France, reinforced concrete would be broadly 

used for waste packages, vaults, galleries or shafts that should remain stable during the 

operating period (up to 120 years) in order to ensure retrievability of the waste emplaced in the 

repository (reversibility). During this period, atmospheric carbonation would be one of the main 

phenomena concrete will have to cope with. Atmospheric carbonation is not expected to 

generate significant physical degradation by itself but rather through its major consequences 

(rebar corrosion). Due to the thermal output of some waste, the temperature in the vaults could 

be significantly higher than the ambient for several decades (it could reach 50 °C). 

The effect of temperature is difficult to estimate because different contradictory mechanisms are 

at work. First, temperature modifies the solubility of the reactants: the higher the temperature, 

the lower the calcium [15,16] and CO2 contents in solution [17,18]. This effect is expected to 

lessen the probability of reaction and thus inhibit carbonation. Dheilly et al. [19] used powdered 



portlandite to check the influence of temperature between 10 and 40°C. They found that the 

higher the temperature, the lower the carbonation kinetics. The calcium carbonate crust formed 

around the portlandite grains was not found to inhibit carbonation [20,21] and the kinetic 

decrease with the temperature increase was therefore attributed to the decrease in the calcium 

solubility. 

Temperature is also known to activate transport. Carbonation is a phenomenon driven by 

transport: a temperature increase is favourable to carbonation since it increases the diffusivity 

of CO2 through the carbonated layer towards the CaCO3 precipitation zone. In the same way, 

calcium ionic diffusion from the sound core to the precipitation zone is also enhanced. Transport 

can be described using the classical Arrhenius activation law with an activation energy of about 

15-20 kJ/mol for CO2 gas diffusion [22] and 44 kJ/mol for calcium diffusion [23,24]. 

Water retention is also affected by temperature: for a given RH, a temperature increase reduces 

the water retained at equilibrium [25–31]. Because the water content impacts both CO2 diffusion 

and the chemical reactions, it is impossible to predict the influence of water retention 

modifications induced by temperature on carbonation. Moreover, temperature also impacts 

water transport; drying is faster when the temperature is increased [32–36]. From this 

perspective, the interaction between carbonation and water transport appears to be essential 

and even more important than at ambient temperature. 

Several studies are available in the literature that address the effect of temperature on 

carbonation [1,37–44]. In these studies, carbonation was mainly characterized through the 

variations in the carbonated depth versus time using phenolphtalein projection. Papadakis et al. 

[1] observed limited increase in the carbonation kinetics between 22 and 42°C (about 15-20%) 

in their study using concretes (w/c=0.65). Similar results were obtained by He [42], Jae-Dong et 

al. [39] and Loo et al. [40] over small temperature ranges (between 15 °C and 40°C). Mori et al. 

[37] found that the carbonated depth at 40°C was twice the value obtained at 20°C. In the same 

way, Uomoto and Takada [38] reported a multiplication factor of 1.7 between 10 and 30°C, 



Matsuzawa et al. [43] obtained a factor 2 between 20 and 60°C. and Li et al. [44] obtained a 

factor 3 between 10 and 60°C. The compilation of these results is shown in Figure 1. Despite 

some discrepancies and uncertainties, the trend is clear: the carbonation rate increases with 

temperature. 

The results of Liu et al. [41] were quite different. They used samples prepared by compaction of 

recycled autoclaved lightweight concrete (ALC) and water to achieve target water content. It 

must be recalled here that 11 Å-tobermorite (C/S = 5/6) is the main component of ALC. The 

samples were carbonated at temperatures ranging from 20 to 100°C with 100% CO2 which was 

introduced into the chamber after bubbling into water to prevent sample drying. Between 20 

and 60°C, the amount of adsorbed CO2 strongly increased. Yet beyond 60°C, it decreased by 

about 30% (between 60 and 100°C, Figure 2). It therefore seemed that 60°C was the optimal 

temperature for carbonation, i.e. the temperature at which the carbonation rate was maximal. 

According to the authors, the fall in absorbed CO2 above 60°C was attributed to the temperature-

induced decrease in solubility (Ca2+ and CO2). This unexpected result was supported by the 

modelling study of Ishida and Li [45]. They accounted for the temperature influence on CO2 

dissolution and transport as well as on the solubility of calcium-bearing phases. Performing 

simulations between 10 and 50°C, they obtained an increase in the carbonation rate between 10 

and 30°C and a decrease for higher temperatures. The value of 30°C itself is not significant 

because it depends on the input data. It is in fact important to consider that the two opposite 

effects of temperature can theoretically result in an optimal temperature for the carbonation 

rate. 

At a first glance, all these results may appear contradictory, but it remains impossible to confirm 

this because most of them were obtained at temperatures below 60°C i.e. lower than the optimal 

temperature proposed by Liu et al. [41]. Moreover, all these experiments were not conducted 

using similar protocols (in terms of preconditioning, CO2 concentration) or materials, and 

sometimes the preliminary drying was questionable as it can generally be said that most of the 

samples were probably not in equilibrium at the beginning of carbonation. The results might 



therefore have inadvertently included the contribution of drying. For this reason, the main goal 

of this paper is to study the impact of temperature on the carbonation of two hardened cement 

pastes up to 80°C. 

2. Materials and methods

2.1. Materials

We used two hardened pastes prepared using commercial cements, which were selected for 

their potential use in radioactive waste management in France:

 CEM I (ordinary Portland cement including at least 95% clinker) from Lafarge, Val 

d’Azergues factory, France 

 CEM V/A (clinker with 22 wt% slag and 22 wt% fly ash) from Calcia, Airvault factory, 

France. 

These two cements were selected by the French Radioactive Waste Management Agency (Andra) 

as references for all R&D studies. The water-to-binder ratio (w/b) of the pastes was fixed to 

enable comparison between the two pastes. We chose a w/b ratio of 0.40 because the properties 

of fresh paste seemed suitable, i.e. good workability, with neither visible segregation nor 

bleeding. The elementary composition of each paste is given in Table 1.

All the samples were cast in laboratory conditions in seven consecutive batches spanning over 

two days. The fresh paste was poured into cylindrical moulds (Ø35 × H60 mm) and vibrated. The 

samples were then kept seven days at ambient temperature in their closed moulds. After 

unmoulding, they were immersed three months in a small volume of solution in an airtight 

container to prevent carbonation. The curing solution composition was designed to prevent 

calcium and alkalis leaching [46,47]. 

The composition of the curing solution was determined by i) expression of the inner solution 

[48,49] of samples kept three months in sealed bags, and ii) analysis using ionic chromatography 



(Table 2). The curing solution compositions were also determined before the samples were 

added and then at the end of the curing process: only small changes could be observed, which 

confirmed that there was no significant leaching. 

After the cure, the top and bottom parts of the samples were cut off and discarded, resulting in 

Ø35×H50 mm samples which were assumed to be homogeneous. It was verified that the samples 

were fully saturated (no water uptake after 48 hours in water and a vacuum): no additional 

procedure was used to ensure initial saturation. 

2.2. Specimen preparation and preconditioning

Once cured, the samples were divided into different sets (including at least four samples for each 

formulation), which were preconditioned at 20, 50 and 80°C with different RHs using airtight 

containers and saturated salt solutions. Table 3 summarises the solutions used for the three 

temperatures. 

The containers were regularly opened and the samples weighed to compute their relative mass 

variation according to:

, (1)(∆𝑚
𝑚 )(𝑡) =

𝑚(𝑡) ‒ 𝑚0

𝑚0

where  and  are the initial mass and the mass measured at the time t respectively. The 𝑚0 𝑚(𝑡)

deviation from equilibrium was estimated using the following equation:

. (2)𝜀(𝑡) =
(∆𝑚

𝑚 )(𝑡 + 1) ‒ (∆𝑚
𝑚 )(𝑡)

(∆𝑚
𝑚 )(𝑡)

The pastes were assumed to be at equilibrium when ε became lower than 0.05%. These results 

(mass at equilibrium) were used to assess the water retention curves; see [31] for more details. 

The cylinders were covered with overlapping adhesive aluminium foils [50], leaving only the top 

side accessible to carbonation and to ensuring that one-dimensional CO2 diffusion could occur. 



The samples were then put back in the containers from which they were taken seven days 

before being submitted to carbonation. Note that all the sample sets were not used for 

accelerated carbonation (see after). 

2.3. Accelerated carbonation

A specific device was designed to conduct accelerated carbonation experiments under controlled 

environmental conditions (Figure 3). It was composed of different components with different 

purposes. First a commercial climatic chamber was used to control temperature and RH in the 

volume used for the experiments (340 L). The chamber made it possible to perform experiments 

between 20 and 90°C and between 20 to 95% RH. A device was added to analyse and regulate 

the CO2 content within the chamber. It was composed of a commercial CO2 analyser (making use 

of infra-red absorption), together with a complex system of pumps and servo-valves to remove 

the gas from the chamber, transferring it to the CO2 analyser and back to the chamber. When the 

CO2 content in the chamber was lower than the target, pure CO2 was injected until both of them 

corresponded. The analyser was automatically calibrated using ambient air (0,04% CO2) and 

pure CO2 (100%). A gas cooling system (Peltier effect) was added between the chamber and the 

analyser to prevent penalising water condensation inside the analyser. 

A thermo-hygrometer and a CO2 sensor were introduced into the chamber to monitor the 

conditions during the experiments. Figure 4 presents the results of a preliminary test conducted 

at 80°C, 70% RH and using 50% CO2. Despite the increased variability of the environmental 

conditions induced by the addition of dry CO2 into the chamber (on day 1), the environment was 

regulated correctly and the CO2 content revealed the fact that the variations remained limited. 

These variations were much smaller than those defined in the French standard for the 

accelerated carbonation test (NF P18-458), i.e. ± 3°C for temperature and ± 5% for RH and the 

CO2 content. 



Accelerated carbonation tests were conducted at 50% CO2 for seven days (168 hours) using the 

environmental conditions in which the samples were at equilibrium. A period of 7 days 

appeared as the best compromise between the time needed to test different configurations 

(temperature and RH) and the time needed for each test. After the test, the CO2 regulation 

system was shut down and the CO2 withdrawn from the chamber by injection of compressed air. 

The chamber could then be opened and the samples taken out for characterization. 

It must be noted that accelerated carbonation using 50% CO2 is known to be unduly aggressive 

and not representative of natural carbonation in terms of the consequences [51]. In this study, 

using 50% CO2 made it possible to perform all the carbonation tests in a reasonable time, 

however, readers must keep in mind that the transposition of some of the results and 

conclusions to natural carbonation is arguable. For more carbonation results on these pastes at 

lower CO2 concentration, the readers are referred to [52,53]. 

2.4. Characterization methods

After carbonation, the specimens were cut along their vertical axis. One part was sprayed with 

phenolphthalein and the carbonated depth was measured. The other part was cut into thin slices 

(about 500 µm thick) that were used for X-ray diffraction (XRD) and thermo-gravimetric 

analysis (TGA). 

XRD was used to characterize the mineralogical changes during carbonation. Data was collected 

using a PANalytical X'Pert diffractometer with an X'Celerator detector (CuKα, λ = 1.5405 Å). The 

analyses were performed directly on the disk surface [54]. The disks were scanned between 5 

and 65° with a step size of 0.017°, for a total duration of 20 minutes. Plotting the diffracted 

intensity of the main peak of a phase versus depth provided a mineralogical profile from the 

surface exposed to CO2 to the noncarbonated core that was used to identify the presence of the 

considered phases in the mineralogical assemblage. 



The XRD results were processed to estimate the polymorphic abundance of calcium carbonate 

(calcite, aragonite and vaterite) in the carbonated zone. To this end, we tried to use Rietveld 

refinement but the results were not satisfactory because suitable model structures could not be 

found for the C-S-H [55] and the alternative methods such as PONCKS or that of Snellings [56] 

could not be easily used here because of carbonation itself. Rather, we found easier and more 

straightforward to use a modified version of the method proposed by Chung [57,58]: it is 

presented in Appendix 1. It was used to estimate the weight fraction in the carbonated zone of 

vaterite ( ) and aragonite ( ) relative to that of calcite ( ) using: 𝑣 𝑎 𝑐

(3)
𝑥𝑣

𝑥𝑐
= (𝑘𝑐

𝑘𝑣)∫𝐼𝑣𝑑𝑣
∫𝐼𝑐𝑑𝑣

(4)
𝑥𝑎

𝑥𝑐
= (𝑘𝑐

𝑘𝑎)∫𝐼𝑎𝑑𝑣
∫𝐼𝑐𝑑𝑣

with: 

  mean value of the weight fraction of compound  in the carbonated zone 𝑥𝑖 𝑖

  is the diffracted intensity for the compound  𝐼𝑖 𝑖

  ratio of intensity of the compound  to that of corundum. 𝑘𝑖 𝑖

TGA was used to quantify the amount of portlandite and calcium carbonate. Some disks were 

powdered and then introduced into a Netzsch STA 409 analyser. The sample (120 mg ± 1 mg) 

was left in the device for 72 hours at ambient temperature under a dry nitrogen flowrate (80 

mL/min) to remove all evaporable water before it was heated from 25°C up to 1150°C at 

10°C/min under a constant nitrogen flow (80 mL/min). The amount of portlandite and calcium 

carbonate was computed using the mass loss recorded between 400 and 550°C and between 

600 and 900°C respectively. 



3. Results

3.1. Initial state

The mineralogical assemblage obtained at 20°C and characterized using XRD (Figure 5) was 

considered usual for those binders. Portlandite, ettringite and C-S-H (broad peak around 29°) 

[59–63] were detected for CEM I, as well as traces of anhydrous compounds (C4AF and C2S). The 

CEM V paste was similar to that of CEM I with monosulfoaluminate and traces of mullite and 

quartz. Table 5 lists some of the properties of the non-carbonated pastes obtained elsewhere 

[31]. 

The first desorption isotherms obtained at 20°C (Figure 6) are of type IV according to the 

classification originally proposed by Brunauer [64,65]: the monomolecular layer edification at 

low RH is clearly visible, as is the presence of a plateau near saturation (CEMV) representative of 

capillary condensation within a meso-porous medium. Whatever the paste, a temperature 

increase led to a significant reduction in the water retained at equilibrium with any arbitrary RH. 

After the preconditioning period, the mineralogical assemblage at 50 and 80°C was more or less 

the same as that of 20°C: for PV (CEM V/A) katoite (Ca3Al2(SiO4)(OH)8, see [66]) was detected at 

the expense of ettringite and monosulfoaluminate [67–69] (Table 6). Results of TGA tests 

conducted on CEM I samples preconditioned at 20 and 80°C showed that the portlandite content 

remained stable (around 5.8 mol/L of paste) whatever the RH (Figure 7). This indicates that the 

3-month cure was long enough for the CEM I paste to reach maturity. Conversely, the portlandite 

content of the CEM V/A samples kept at 80°C decreased when the RH increased. This was 

assumed to be an indication of ongoing hydration (due to pozzolanic reactions) during the 

preconditioning. We believe that this may have impacted the results of the CEM V/A pastes, but 

we did not attempt to quantify it. 



3.2. Impact of carbonation on mineralogy

Regardless of the temperature and RH, the XRD results (Figure 8) showed the precipitation of 

the three usual polymorphs of calcium carbonate, i.e. calcite, aragonite and vaterite [70,71], at 

the expense of portlandite. In most cases, portlandite was not completely depleted in the 

carbonated zone. It was believed (but not verified) that the precipitation of calcium carbonate 

around the crystals of portlandite tended to inhibit the dissolution of portlandite [72–75] (Table 

7). 

Using TGA (Figure 9), a carbonation profile (portlandite and calcium carbonate concentrations 

versus depth) was determined for the CEM I paste carbonated at 80°C and 65% RH. The 

resulting profile was very similar to that obtained using XRD (Figure 8), thus confirming that 

XRD could be used in a semi-quantitative approach [76]. The decrease in the mass loss between 

25°C and 200°C observed on DTG (Figure 10) was attributed to the carbonation of C-S-H [77,78]. 

The decomposition of calcium carbonate appeared to be characterized by different peaks 

ranging from 550 to 900°C as has already been observed in the past [6,77,79,80]. This was 

assumed to be due to the presence of aragonite and vaterite (and perhaps also to amorphous 

calcium carbonate) in addition to calcite [79–81]. It sometimes proved hard to distinguish the 

decomposition peak of portlandite from those of calcium carbonate, rendering the quantification 

process difficult. 

Using the modified RIR method, the mean value of the weight fractions of aragonite ( ) and 𝑥𝑎

vaterite ( ) relative to that of calcite ( ) could be computed. In most cases, the amounts of 𝑥𝑣 𝑥𝑐

vaterite and aragonite increased when the RH decreased (Figure 11). At high RH, calcite was the 

major calcium carbonate (ratio close to zero), but it no longer appeared to be the major calcium 

carbonate at low RH. For instance, considering the CEM I paste carbonated at 80°C and 26% RH, 

the weight fraction of aragonite in the carbonated zone was four times that of calcite. Aragonite 

also always appeared in higher amounts than vaterite. The results obtained at 20°C for the CEM I 



paste were quite different from all the others; they may not be reliable because of the very small 

carbonation depth (Figure 12). 

These results were interpreted as follows. The presence of metastable forms of calcium 

carbonate (vaterite and aragonite) together with the stable form (calcite) was considered as an 

intrinsic feature of carbonation because it has been broadly observed for years [70,82,83] and 

because of the temperature increase in the present tests [84,85]. Aragonite and vaterite are 

generally obtained in the carbonation of C-S-H and sulfoaluminate phases [68,71,81,86–88]. The 

increase in the polymorphic abundance at low RH was believed to be due to the inhibition of the 

polymorphic transformation from the metastable state to the thermodynamically stable one 

[84,89,90] due to the lack of water in the pores [91]. 

3.3. Carbonation depth

Figure 12 shows the measured carbonation depths versus RH. The results depicted the well-

known bell curves for both pastes, with a maximum at around 50% RH [1,12–14]. It must, 

however, be noted that the 20°C-optimal RH of the CEM V paste was much lower: around 33%. 

This was believed to be due to its unusual type IV water retention curve (plateau at high RH) 

that required a very low RH (down to 26%) to desaturate the pore system (Figure 6) [31]. For 

CEM I, the fact that the optimal RH remained the same for all three temperatures tended to 

indicate that the temperature-induced modification of the water retention was minor for 

carbonation but this was not confirmed by the CEM V results that were clearly changed beyond 

20°C. Whatever the temperature, the carbonation depth of the composite cement (CEM V/A) 

paste was greater than that of Portland (CEM I) as we already know [11,92–96]. 

Figure 13 compares the carbonation depth values measured using phenolphthalein and XRD. In 

the latter case, we used the mineralogical profiles to evaluate the depth at which the portlandite 

peak intensity became lower than the average obtained in the non-carbonated zone (Figure 8). 

Unlike the results of references [6,97,98], the comparison was quite good: all the data aligned 



along the equality line, although the carbonation depth obtained using XRD was almost always 

greater than that obtained using phenolphthalein. This was believed to be due to the short 

duration of the experiments (7 days) that helped reduce the difference between the two 

methods. 

The carbonated zone appeared to be frequently cracked as has already been observed, see 

references [52,53,99–101]. Figure 14 illustrates the cracking patterns obtained at 80°C between 

26% and 76% RH. For both cements, the cracking increased when the RH decreased: cracking 

was thus believed to be due to a combination of desiccation and carbonation shrinkage [14,102–

104]. Furthermore, the CEM V/A pastes were generally cracked more severely than the CEM I. 

This was believed to be due to the greater amount of C-(A)-S-H in the CEM V/A paste, which 

induced more shrinkage when they were decalcified [103,105]

4. Discussion

Figure 15(a) reports the maximal carbonation depth obtained at a given temperature as a 

function of the test temperature. The latter appeared to increase the depth of carbonation, 

though not in the same way for both cements. Considering the CEM I paste, the carbonation 

depth increased almost linearly with temperature: the maximal carbonation depth increased 

threefold between 20 and 80°C. Obviously, the thermo-activation of CO2 transport and chemical 

reactions controlled the temperature influence on carbonation. This was consistent with most of 

the results in literature [37–40,43,44] - see Figure 15(b). The results of the CEM V/A paste were 

quite different. The carbonation rate increased between 20 and 50°C, but decreased between 50 

and 80°C; the rate at 80°C remained greater than that of 20°C. The results clearly show that 

temperature has an accelerating effect, but with a maximum at 50°C. This observation is 

consistent with the results of Liu et al. [41]. 

Such a difference between the two pastes was not expected because all the samples were 

submitted to the same test sequence. This difference was thought to result from the differences 



in their mineralogical composition and properties (Table 5): less portlandite and more C-(A)-S-H 

for the CEM V paste with regards to CEM I. The reduced C/S ratio of the C-(A)-S-H in the CEM V 

paste [106–109] may also have played a prominent role, as the calcium concentration at 

equilibrium is known to be lower (whatever the temperature between 25°C and 85°C) [16]. 

5. Conclusion

In the field of radioactive waste management, the impact of temperature on the atmospheric 

carbonation of cement-based materials was investigated. Two hardened cement pastes made 

with CEM I and CEM V/A were carbonated at three temperatures ranging from 20 and 80°C. The 

tests were conducted at different RH with 50% CO2 using a device that was specifically set up for 

this purpose. The device was designed to maintain the temperature, RH and CO2 content over 

large ranges with great accuracy. Prior to carbonation, all the paste samples were brought as 

close to hygral equilibrium as possible. The pastes were carbonated 7 days and then the samples 

were tested using phenolphthalein, XRD and TGA. 

The results showed that the carbonation process was not significantly impacted at temperatures 

higher than the ambient temperature: the calcium-bearing phases were dissolved to precipitate 

calcium carbonate. The two metastable forms of calcium carbonate (aragonite and vaterite) 

were always observed in varying amounts. Their presence was inferred to be an intrinsic feature 

of carbonation. Furthermore, the amount of metastable phases increased when the RH 

decreased: this indicates that the polymorphic transformation into calcite was inhibited due to 

the lack of water. 

In terms of carbonation rate, temperature was found to accelerate carbonation though not in the 

same manner for the two pastes. The carbonation rate of the CEM I paste increased linearly with 

temperature between 20 and 80°C, whereas that of the CEM V/A paste reached a maximum at 

around 50°C. This disparity was thought to be due to differences in the mineralogical 

assemblage of the two pastes: less portlandite and reduced C/S ratio for the CEM V/A paste. 
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Appendix 1: Extended RIR method

It was shown that when a sample is exposed to monochromatic X-rays, the intensity of the 

diffracted X-rays depends on the composition [110]: 

(5)𝐼𝑖 = 𝐾𝑖
𝑥𝑖

𝜌𝑖𝜇𝑚

with: 

  is the intensity of the diffracted X-rays by a selected plane (hkl) of the compound 𝐼𝑖 𝑖

  constant that depends on compound  and diffractometer𝐾𝑖 𝑖

  weight fraction of compound  in the exposed sample 𝑥𝑖 𝑖

  density of compound  𝜌𝑖 𝑖

  mass absorption coefficient of the exposed sample. 𝜇𝑚

Considering the carbonated area as a homogeneous zone (the mass absorption coefficient  is 𝜇𝑚

assumed to be uniform), the mean value of the weight fraction  of compound  in the 𝑥𝑖 𝑖

carbonated zone is then given by: 

(6)𝑥𝑖 =
1
𝑉𝑐

∫𝑥𝑖𝑑𝑣 =
1
𝑉𝑐

∫𝜇𝑚
𝜌𝑖

𝐾𝑖
𝐼𝑖𝑑𝑣 = 𝜇𝑚

𝜌𝑖

𝑉𝑐𝐾𝑖
∫𝐼𝑖𝑑𝑣

where  is the volume of the carbonated zone. 𝑉𝑐

Let us consider the case of the pure compound  ( ), the diffracted intensity  is given by (𝑖 𝑥0
𝑖 = 1 𝐼0

𝑖

 is the mass absorption coefficient of the pure compound ): 𝜇𝑖 𝑖

(7)𝐼0
𝑖 = 𝐾𝑖

𝑥0
𝑖

𝜌𝑖𝜇𝑖
=

𝐾𝑖

𝜌𝑖𝜇𝑖

Combining equations (6) and (7) helps flush out the cumbersome parameter : 𝐾𝑖



(8)𝑥𝑖 =
1

𝑉𝑐𝐼0
𝑖
(𝜇𝑚

𝜇𝑖 )∫𝐼𝑖𝑑𝑣

Let us now assume the presence of an internal reference  (of known concentration ) in the 𝑓 𝑥𝑓

carbonated zone that would be used to evaluate the fraction of the other compounds (flushing 

agent) [57]: 

(9)𝑥𝑓 =
1

𝑉𝑐𝐼0
𝑓
(𝜇𝑚

𝜇𝑓)∫𝐼𝑓𝑑𝑣

The weight fraction of the compound  in the carbonated zone is then: 𝑖

(10)𝑥𝑖 = 𝑥𝑓
𝜇𝑓

𝜇𝑖(𝐼0
𝑓

𝐼0
𝑖
)∫𝐼𝑖𝑑𝑣

∫𝐼𝑓𝑑𝑣

When corundum is used as a flushing agent, it was shown [57] that:

(11)
𝜇𝑓

𝜇𝑖(𝐼0
𝑓

𝐼0
𝑖
) =

1
𝑘𝑖

where  is the reference intensity ratio (RIR) of the compound  [111]. This value is available in 𝑘𝑖 𝑖

the powder diffraction file (PDF) of the International Centre for Diffraction Data1 (ICDD). 

(12)𝑥𝑖 = 𝑥𝑓(1
𝑘𝑖)

∫𝐼𝑖𝑑𝑣
∫𝐼𝑓𝑑𝑣

In the absence of corundum in the sample, any other compound may be used as internal 

reference: calcite ( ) was chosen here since it is the main product of carbonation. Eq. (12) then 𝑐

becomes [58]: 

(13)
𝑥𝑖

𝑥𝑐
= (𝑘𝑐

𝑘𝑖)
∫𝐼𝑖𝑑𝑣
∫𝐼𝑐𝑑𝑣

1 http://www.icdd.com/ 

http://www.icdd.com/
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List of tables

Table 1: Composition of the pastes 

Compound CEM I CEM V/A Unit
OPC 1396 759 g/L
Limestone filler - - g/L
Slag - 298 g/L
Fly ash - 298 g/L
Silica fume - - g/L
Water 558 542 g/L

Table 2: Composition (in mmol/L) and pH of the interstitial and curing solutions (at the 
beginning and of the cure) 

CEM I CEM V/A
Na+ K+ Ca2+ pH Na+ K+ Ca2+ pH

Inner solution 47 452 2 13.7 87 533 2 13.7
Curing solution - beginning of cure 49 439 2 13.6 90 518 4 13.7
Curing solution - end of cure 54 455 3 13.6 85 474 2 13.7

Table 3: RH generated as a function of temperature [112–116] 

TemperatureDesiccant/saturated salt solutions
20 °C 50 °C 80 °C

Lithium chloride LiCl - - 11%
Magnesium chloride MgCl2 33% 31% 26%
Magnesium nitrate Mg(NO3)2 54% - -
Sodium bromide NaBr - 51% 51%
Urea CO(NH2)2 - 62% -
Ammonium nitrate NH4NO3 63% - -
Potassium iodide KI 70% - 61%
Sodium nitrate NaNO3 - - 65%
Sodium chloride NaCl - 74% 76%
Ammonium sulphate (NH4)2SO4 - - -
Ammonium chloride NH4Cl 80% - -
Potassium chloride KCl - - -
Potassium nitrate KNO3 - 85% -
Sodium carbonate Na2CO3 - - 85%
Potassium sulfate K2SO4 - - 95%

Table 4: Inter-reticular distance and RIR ratio 

Calcite Aragonite Vaterite
d(h,k,l) 3.04 Å 3.40 Å 3.57 Å
𝑘𝑖 2.0 1.15 0.60



Table 5: Properties of the non-carbonated pastes [31] 

Properties CEM I CEM V/A Unit
Saturated density dsat 2.04 1.93 g/cm3

Porosity (80°C) 37.2% 38.9% -
C-S-H content 5.1 7.0 mol/L of paste
Portlandite content 5.8 2.1 mol/L of paste
Specific surface area 190 297 m2/g
Permeability to water 2.0×10-22 0.7×10-22 m2

Table 6: Mineralogy of the non-carbonated zone 

Paste Temp Detected phases in the non-carbonated zone (XRD)
20°C C-S-H + portlandite + ettringite + C2S + C4AF 
50°C C-S-H + portlandite + ettringite + C2S + C4AFPI (CEM I)
80°C C-S-H + portlandite + C2S + C4AF

20°C C-S-H + portlandite + ettringite + monosulfoaluminate + mullite + 
quartz + C2S + C4AF

50°C C-S-H + portlandite + ettringite + monosulfoaluminate + katoite + 
mullite + quartz + C2S + C4AF

PV (CEM V/A)

80°C C-S-H + portlandite + katoite + mullite + quartz + C2S + C4AF

Table 7: Mineralogy of the carbonated zone 

Paste Temp Detected phases in the carbonated zone (XRD)
20°C Calcite + aragonite + vaterite + portlandite + ettringite + C2S + C4AF
50°C Calcite + aragonite + vaterite + portlandite + C2S + C4AFPI (CEM I)
80°C Calcite + aragonite + vaterite + portlandite + C2S + C4AF

20°C Calcite + aragonite + vaterite + portlandite + monocarboaluminate + 
ettringite + mullite + quartz + C2S + C4AF

50°C Calcite + aragonite + vaterite + portlandite +katoite + mullite + 
quartz + C2S + C4AFPV (CEM V/A)

80°C Calcite + aragonite + vaterite + portlandite +katoite + mullite + 
quartz + C2S + C4AF


