C. T. Butts, Network inference, error, and informant (in)accuracy: a Bayesian approach, Soc. Netw, vol.25, pp.103-140, 2003.

M. Newman, Network structure from rich but noisy data, Nat. Phys, vol.14, pp.542-545, 2018.
DOI : 10.1038/s41567-018-0076-1

URL : http://arxiv.org/pdf/1703.07376

M. Newman, Network reconstruction and error estimation with noisy network data, 2018.

C. Cattuto, Dynamics of person-to-person interactions from distributed RFID sensor networks, PLOS ONE, vol.5, pp.1-9, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00503275

J. Stehlé, High-resolution measurements of face-to-face contact patterns in a primary school, PLOS ONE, vol.6, p.23176, 2011.

H. H. Jo, M. Karsai, J. Kertesz, and K. Kaski, Circadian pattern and burstiness in mobile phone communication, New J. Phys, vol.14, p.13055, 2012.
DOI : 10.1088/1367-2630/14/1/013055

URL : http://iopscience.iop.org/article/10.1088/1367-2630/14/1/013055/pdf

M. Schläpfer, The scaling of human interactions with city size, J. Royal Soc. Interface, vol.11, p.20130789, 2014.

D. Centola, The spread of behavior in an online social network experiment, Science, vol.329, pp.1194-1197, 2010.

A. Sapienza, A. Bessi, and E. Ferrara, Non-negative tensor factorization for human behavioral pattern mining in online games, Information, vol.9, p.66, 2018.

S. B. Seidman, Network structure and minimum degree, Soc. Netw, vol.5, pp.269-287, 1983.
DOI : 10.1016/0378-8733(83)90028-x

J. I. Alvarez-hamelin, L. Dall'asta, A. Barrat, and A. Vespignani, K-core decomposition of internet graphs: hierarchies, self-similarity and measurement biases, Networks Heterog. Media, vol.3, pp.395-411, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00012974

, We solve the equation by using Matlab function fsolve, which is based on a modified Newton method, called the trust-regiondogleg method. The initial values of a i is given by the configuration model: a i = ? j: j =i

, ? i< j m o i j /?, where the numerator and the denominator represent the means of i's temporal degree and the doubled number of total temporal edges

M. Kitsak, Identifying influential spreaders in complex networks, Nat. Phys, vol.6, p.888, 2010.

M. ´. Serrano, M. Boguná, and A. Vespignani, Extracting the multiscale backbone of complex weighted networks, Proc. Natl. Acad. Sci. USA, vol.106, pp.6483-6488, 2009.

M. Tumminello, S. Miccichè, F. Lillo, J. Piilo, and R. N. Mantegna, Statistically validated networks in bipartite complex systems, PLOS ONE, vol.6, p.17994, 2011.

M. Li, Statistically validated mobile communication networks: the evolution of motifs in European and Chinese data, New J. Phys, vol.16, p.83038, 2014.

V. Hatzopoulos, G. Iori, R. N. Mantegna, S. Miccichè, and M. Tumminello, Quantifying preferential trading in the e-MID interbank market, Quant. Financ, vol.15, pp.693-710, 2015.

V. Gemmetto, A. Cardillo, and D. Garlaschelli, Irreducible network backbones: unbiased graph filtering via maximum entropy, 2017.

G. Casiraghi, V. Nanumyan, I. Scholtes, and F. Schweitzer, From relational data to graphs: Inferring significant links using generalized hypergeometric ensembles, International Conference on Social Informatics, pp.111-120, 2017.

R. Marcaccioli and G. Livan, A parametric approach to information filtering in complex networks: The Pólya filter, 2018.

P. Holme and J. Saramäki, Temporal networks, Phys. Rep, vol.519, pp.97-125, 2012.

N. Masuda and R. Lambiotte, A Guide to Temporal Networks, 2016.

P. A. Grabowicz, L. M. Aiello, and F. Menczer, Fast filtering and animation of large dynamic networks, EPJ Data Sci, vol.3, p.27, 2014.

L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and J. Saramäki, Temporal motifs in time-dependent networks, J. Stat. Mech, p.11005, 2011.

M. Granovetter, The strength of weak ties, Am. J. Sociol, vol.78, pp.1360-1380, 1973.

D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, vol.393, pp.440-442, 1998.

R. Mastrandrea, J. Fournet, and A. Barrat, Contact patterns in a high school: A comparison between data collected using wearable sensors, contact diaries and friendship surveys, PLOS ONE, vol.10, pp.1-26, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01238308

M. Génois and A. Barrat, Can co-location be used as a proxy for face-to-face contacts?, EPJ Data Sci, vol.7, p.11, 2018.

P. Vanhems, Estimating potential infection transmission routes in hospital wards using wearable proximity sensors, PLOS ONE, vol.8, p.73970, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00862591

T. Kobayashi and T. Takaguchi, Social dynamics of financial networks, EPJ Data Sci, vol.7, p.15, 2018.

T. Kobayashi, A. Sapienza, and E. Ferrara, Extracting the multi-timescale activity patterns of online financial markets, Sci. Rep, vol.8, p.11184, 2018.

F. Munoz-mendez, K. Klemmer, K. Han, and S. Jarvis, Community structures, interactions and dynamics in London's bicycle sharing network, Proc. 2018 ACM Int. Jt. Conf. 2018 Int. Symp. on Pervasive Ubiquitous Comput. Wearable Comput.-UbiComp '18, 2018.

I. Morer, A. Cardillo, A. Diaz-guilera, L. Prignano, and S. Lozano, Comparing spatial networks: A 'one size fits all' efficiency-driven approach, 2018.

M. Rosvall and C. T. Bergstrom, Maps of random walks on complex networks reveal community structure, Proc. Natl. Acad. Sci. USA 105, pp.1118-1123, 2008.

P. Holme and . Saramäki, J. Temporal Networks, 2013.

T. Kobayashi and T. Takaguchi, Identifying relationship lending in the interbank market: A network approach, J. Bank. & Finance, vol.97, pp.20-36, 2018.

G. Caldarelli, A. Capocci, P. De-los-rios, and M. A. Muñoz, Scale-free networks from varying vertex intrinsic fitness, Phys. Rev. Lett, vol.89, p.258702, 2002.

M. Boguñá and R. Pastor-satorras, Class of correlated random networks with hidden variables, Phys. Rev. E, vol.68, p.36112, 2003.

G. De-masi, G. Iori, and G. Caldarelli, Fitness model for the Italian interbank money market, Phys. Rev. E, vol.74, p.66112, 2006.

M. E. Newman and M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E, vol.69, p.26113, 2004.

M. E. Newman, Analysis of weighted networks, Phys. Rev. E, vol.70, p.56131, 2004.

J. Onnela, Structure and tie strengths in mobile communication networks, Proc. Natl. Acad. Sci. USA, vol.104, pp.7332-7336, 2007.

A. Machens, An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices, BMC Infect. Dis, vol.13, p.185, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00817269

M. Génois, C. L. Vestergaard, C. Cattuto, and A. Barrat, Compensating for population sampling in simulations of epidemic spread on temporal contact networks, Nat. Commun, vol.6, 2015.

L. Gauvin, A. Panisson, A. Barrat, and C. Cattuto, Revealing latent factors of temporal networks for mesoscale intervention in epidemic spread, 2015.