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The degenerate scale issue for 2D-boundary integral equations and boundary element methods has been already
investigated for many cases when the properties of the medium are homogeneous. We address here the problem
of several subdomains with different properties. Then, the domain decomposition into homogeneous subdomains
gives rise to a system of BIEs. If there are n subdomains, (n bounded subdomains in the case of an interior problem,
and n- 1 bounded subdomains and one unbounded subdomain in the case of an exterior problem) there are n
degenerate scales in both cases. For an interior problem, the n degenerate scales are the degenerate scales of
the n subdomains. For an exterior problem, there are n— 1 degenerate scales equal to the degenerate scales of
the n— 1 bounded subdomains and one intrinsic degenerate scale linked to the solution of a specific boundary
value problem. Some properties of this intrinsic degenerate scale are investigated by analytical and numerical
methods. The case of a half-plane is also studied according to the boundary condition along the line bounding

the half-plane.

1. Introduction

The loss of uniqueness for the solution of 2D Boundary Value Prob-
lems (BVP) is well known in the case of conduction in homogeneous
domains, i.e. Laplace equation. In the present work, we consider the
case where the domain is divided into several homogeneous subdomains
when solving problems by Boundary Element Method (BEM). The rele-
vant Boundary Integral Equation (BIE) is turned into a system of BIEs.
This domain splitting can be made necessary because the properties of
the media are not homogeneous but only piecewise homogeneous. How-
ever, this splitting can also be useful for numerical reasons; it leads to
a blocked sparse matrix. We can refer for example to [ 1-6]. The case of
continuously variable properties has been also investigated by different
authors introducing an additional field function [7], using local integral
equations [8]; some special cases of functionally graded media with a
simple algebraic formula have been considered by Carslaw and Jaeger
[9] and Sutradhar et al. [10] (conductivity k = kgx", k = k(1 + ax) or
k = kge™).

For 2D problems on homogeneous domains, there can be one or sev-
eral degenerate scales (depending of the physical problem under con-
sideration), for which the BIE has more than one solution leading to nu-
merical flaws in BEM [11]. This issue is intensively investigated since
early works dealing only with mathematical aspects of the BIE [12].
The problem has been investigated for Laplace problem, plane elasticity
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problem [13-16], biharmonic problem [17,18]. For Laplace Dirichlet
problem, the degenerate scale is linked to the logarithmic capacity (or
the transfinite diameter) of the potential theory [19-21]. Different nu-
merical methods have been suggested to find the degenerate scale: a one
trial method from the normal scale has been suggested [22], a similar
method appears for plane elasticity in [13], a Newton iterative method
for finding the zero of a determinant [23], null field BIE [24]. Recently,
the cases of boundary conditions other than Dirichlet condition have
been investigated [25,26] using a generalized eigenvalue solver to find
the numerical value of the degenerate scale factor.

The issue of degenerate scales in the case of a domain split into sev-
eral subdomains, each one having homogeneous properties, seems to
have not been investigated yet. We focus on the conduction problem
with Dirichlet boundary condition and the direct BIE method; we ad-
dress both interior and exterior problems. After the present introductory
section, Section 2 deals with the interior problem which is the simplest.
The rest of the paper is devoted to the exterior problem. Section 3 gives
the number of degenerate scales: n for n subdomains; n— 1 scales which
are associated to each bounded subdomain and one intrinsic scale which
depends only on the overall boundary value problem and not on the
splitting into subdomains. Then, Section 4 gives some properties of this
intrinsic degenerate scale for »n = 2. The use of conformal mapping in
Section 5 will allow us to apply the closed form results found for con-
centric circles to some other cases. Section 6 deals with the problem in
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a half-plane; the conclusion depends on the type of boundary condition
on the line bounding the half-plane. In Section 7, we consider the case
of two half-planes with different conductivities. In such a case, it is pos-
sible to find the Green function and to write only one BIE. In Section 8,
a numerical method is shown to evaluate the degenerate scales and dif-
ferent numerical results are given. In Section 9, we sum up our results
and state some possible extensions of the present work.

2. Interior problem
2.1. Background for an homogeneous domain

It is well known that, due to the presence of a logarithmic term in
the Green function, the simple layer boundary operator is not invertible
for a specific scale of the problem called the degenerate scale.

It means that, starting from a specific boundary I' there exists an
homothetic boundary pI', such that

/ 4(G(x, y)dS, =0, (0
e

with G(x, y) = —1/2x In(|x — y|), can have an infinity of non null solu-
tions g(y) for a specific value of p, called the degenerate scale factor.
Then, I is at a degenerate scale.

It is less known that the degenerate scale factor can be found by
solving the following problem: find the couple (g(x), @) complying with
the system of equations:

JraGx, y)dS, + @ =0, (2a)
Jrads, = 1 (2b)
It has been shown that this problem has a unique solution (g(x),
) (see for example [27]). The value of @ is related to the degenerate

scale factor. Indeed, we consider the homothetic boundary pI" with the
similarity ratio p, the function g,(y) = ¢(y/p) and we have

1 1
/‘rq,,(y)G(x.y)dSy—/rq(y)(G(X-y)- o In(p))p d—S‘y—-p(w+; ln(p)).
3)

Hence the equation /,rq,(y)G(x, y)dS, =0 has a non null solution
for the boundary pI" with p = e=2*®, This boundary oI is therefore at its
degenerate scale and the similarity ratio p is the degenerate scale factor
of I'.

The advantage of the problem in (g, ) is to search for a specific
factor by the solution of a well posed problem which has always a unique
solution. Besides, the numerical solution of this problem is the simplest
way to produce the degenerate scale factor.

We recall that for mixed boundary condition or Robin boundary con-
dition the degenerate scale have been found to be the same as for Dirich-
let condition in the case of the interior homogeneous problem [25,26].
For the sake of simplicity, we focus hereafter on the case of Dirichlet
boundary condition.

2.2. The problem on an heterogeneous domain

Each subdomain has a boundary I';, which is a simple curve. The
common boundary between €; and € is denoted by I';; =I'; UT ;. We
denote by Q, the infinite part of the plane outside U &; and its boundary
is denoted by I',. The common boundary of Q; and €, is denoted by I'y,
(Fig. 1).

We consider the following interior BVP of finding the functions v;
defined in each Q;:

Avi(x)=0.x € Qi€ (1,....n); (4a)

v(x)=0,xel, ul’; (4b)

(BVF) vi(x) = vj(x).x er, Ul'l-:i.j e {l.....n}; (4c)
o ao;

k,:—”:(x)+k,;—’é(x)=0;i.je {L....n). (4d)

Fig. 1. Notations for the case of 2 subdomains.

We limit ourselves to the physically sound case of k; > 0. (Without this
assumption (for example if k; .k, < 0) there are serious mathematical dif-
ficulties; for example the uniqueness of the solution cannot be deduced
from Eq. 17.) We will also consider the following auxiliary problem:

Av(x)=0,xe Qi€ (l,....n}): (5a)
v(x)=0x €T, Ul (5b)
(BVP{){ 4,(x) = v;(x),x €T, UT ;i) € (1,...,m): (5¢)

a; av; e 3
k,a—"'(x)+kja—"](x)—aq(x),l.je(l..A..n). (5d)

Following [3] we write the integral equation for each (connected)
subdomain €: it results in n boundary integral equations (BIE):

G 4 .
ﬁl(v,.(y)- v,(x))x(x.y)- k—:G(x. y)dS’. =0xelii=1,...,n 6)

Finally, we get the following system with n; the exterior normal to
I, u=v,and ¢, = k,% defined on I':
i

Jr, = u,(x));ﬁm(x. »- '%”G(X. »dSs, =0,

xel,ie(l,...n} (7a)
(BIE,Ru(x)=0,xel Ul ie(l,...n) (7b)
ux)=ujx),x €Ul i,je(l,..., n}: (Tc)
4(x)+q;(x) =0, x €T, Ul i.j € (L, ....n}. (7d)

We say that the system BIE, is at a degenerate scale if it has a non
null solution.

2.3. Necessary condition for a degenerate scale

We assume that the system BIE, is at a degenerate scale and we prove
that at least one of the Q; is at a degenerate scale.

Let us assume that none of the €, is at the degenerate scale. Then,
there is a solution v, in each Q; of the Dirichlet problem defined
by Av(x)=0.x € Q;, v;(x)=ulx).x €T,. Then, (v;, dv;/dn) satisfies
Eq. (7a) and, as the simple layer boundary integral operator is invertible
(no degenerate scale) we have g, = k,aniz. If one of the u,, g; is not null,
then at least one of the v; is not null.

As a consequence, v; should be a non null solution of the BVP; and
there is no such solution, the related domain being not at a degenerate
scale. This is easy to prove by integrating by parts the quantity

> k,-/ v,Av,ds,. (8)
i=lan o

More details are given for the case of the exterior problem in Section 3.3.
Finally, we conclude that if BIE; is at a degenerate scale then, at least
one of the subdomain is at a degenerate scale.



Fig. 2. Combination of BEM domains, one included in the other: interior prob-
lem.

2.4. Sufficient condition for a degenerate scale

We show now that if one of the component boundaries is at a de-
generate scale, then the overall problem on the heterogeneous domain
is also at a degenerate scale.

We assume that one of the boundaries is at its degenerate scale. With-
out loss of generality, we can assume that this boundary is I'y. Then
there is ¢; #0 such that frl 61 (»)G(x, y)dS, = 0 for x € T'y. We consider
the following problem BVP, with the same conditions as the original
problem BVP; except the transmission condition on I'y:

duy o
k,a(x)+k,o—"i(x)—o,(x).xel',nl',-. i# 1. 9)

Hsiao et al. [28] proved that there is always one solution to the corre-
sponding Eq. (4) if all subdomains are strong Lipschitz. This result can
also be extended to the case of 6;# 0 in Eq. (9).

Then there is a function v such that u, = v; and ¢, = (1/k,)dv;/dn,)
on I'; satisfy the conditions (7) except (7a) for i# 1 which is replaced by
g +q;=0 fori=1

We choose:
ux)=vx), xel'y (10)
avy v, )
ql(x)=k|0—(x)-o|,q,-(x)=k,»—(x)xel",, i#1. (11)
ny on;

Then we have g,(x) = —¢,(x),x € I'; nT; and also Eq. (7a) for I'; since

./r. (MG (x, y)dS, =0 . x €Ty, (12)
1

So, we have found a solution (i, ¢;.i € {1 ...n})satisfying all the con-
ditions of BIE,. This solution is non null as &, is non null and then, at
least one av;/dn; #0 and then at least one g; # 0.

We conclude that BIE; is at a degenerate scale. Finally, we conclude
that there are n degenerate scales for BIE; which are equal to the degen-
erate scales of Q;,i € {1... n}. Obviously, some of the related degenerate
scale factors can be equal between themselves, which can lead to a lesser
number of degenerate scale factors, for example when searching these
factors by using a numerical method.

Remark: 1t is worthwhile noticing that the degenerate scales of the
overall domain are the degenerate scales of the different subdomains
but the associated solutions of the BIE are different from the case of one
subdomain alone.

2.5. Comparison with Robin condition

We consider 2 boundaries Iy, I'y, distant from e (Fig. 2). The dis-
tance between I'; and I',, is equal to e — 0, and the ratio k = ky/k; is
assumed to be equal to e/t. We assume homogeneous Dirichlet condi-
tion vy = 0onT,. At the boundary I';, we have v ~ € dv/dn;. Then using

Fig. 3. Notations for the exterior problem: case of 3 subdomains (n= 3).

dv/dny = =1/k(dv/dn)) = tdv/dn,, we deduce that dv/dn, + rv = 0. That
means that v has a Robin type boundary condition on I'y. Then, it is
possible to have an approximation of the Robin problem with a 2 subdo-
mains model. The degenerate scales are those of I'y and I',,. In the case
of the interior problem and for the 2 subdomains model, there are two
degenerate scales. Both tend to the degenerate scale for I'; with Dirich-
let boundary condition, that corresponds to the case of Robin boundary
condition (see [26]).

3. Degenerate scales for the exterior problem
3.1. Preliminaries

In that section, we consider an exterior problem with n subdomains
including only one infinite subdomain Q, which is the exterior of a
bounded simple curve (Fig. 3).

The main objective of this section is to show that the associated
system of BIEs has n degenerate scales (some of them may be equal).
Amongst them, n— 1 are equal to the n — | degenerate scales of the dif-
ferent bounded subdomains and the last one is associated to a non null
solution of a BVP coupling all subdomains.

3.2. Formulation of BVPs on an exterior heterogeneous domain

From a general point of view, an exterior problem behaves very dif-
ferently, compared to interior problems. Indeed, as seen in the case of
Robin or mixed boundary conditions for one domain, the degenerate
scale for an exterior problem is different from the one related to Dirich-
let BC. In the case of an interior problem with several subdomains, the
degenerate scales correspond to the solution of BIEs related to a spe-
cific BVP, as seen in the previous section. Some important properties
of the BVP related to an exterior problems can be obtained from those
corresponding to interior problems by using the method of inversive
geometry. So, in a first step, the method of inversive geometry is intro-
duced. Next, the exterior boundary value problems related to possible
degenerate scales are introduced and finally, the problem of degenerate
scale for the exterior heterogeneous problem is studied.

3.2.1. Relation between exterior problem and inverse problem by inversive
geometry

It is possible to derive some properties of the exterior problems
from those of interior problems for conduction equation by using the
method of inversive geometry [29-31]. Applied to harmonic functions
the method is known as Kelvin transformation [32].

We consider the complex inversion I: z — 1 /2. It transforms a function
fir, 8) into the function F(R,0) = f(1/R,-0). It is known that the inver-
sion transforms a harmonic function into a harmonic function [29,30].
It can be checked readily by using the expression of Laplacian in polar
coordinates. The complex inversion is also a conformal mapping that
let the magnitude and the sign of angles invariant [33]. We can check



directly that the gradient is multiplied by —1/R? when performing the
inversion:

JdF 1 oF
VF(R,0)= ﬁe“ + E—eg (13)
__1of 10f
=~z 5 /R~Oer = 355 (1/R.~Oeg (14)
__ 1 fof 1 af
_-F(;(l/k,-e)e,+1/—R%(|/R.-e)ee). (15)

We deduce that |[VF(R,0)| = (1/R®)|(Vf(1/R,-©)| and as the an-
gles are invariant: F /AN = VF.N = (1/R)V f.n= 1/R%0f /dn (if the
normal n is oriented from € to Q;, the normal N is oriented from ()
to I(©))). So, a solution of BVP; can be transformed into a solution of an
exterior problem if the inversion center is within the considered domain,
with o; ; changed into 1/R%c, ;.

The case of an exterior problem is different, because in this case,
the boundary sources provide a field at infinity varying as Aln (r). We
consider the interior problem transformed of the exterior problem by the
inversion of the center O which is in Q. Then we consider the solution
of the interior problem corresponding to the boundary values obtained
by inversion of the exterior problem with a negative unit source added in
0. The inversion of this solution gives a solution of the original exterior
problem with U(R) = -1/2xIn(R) + @ + O(1/R) at infinity, which has a
convenient behaviour at infinity.

Thanks to the complex inversion, the existence results for the solu-
tion of interior problems can be extended to exterior problems.

3.2.2. A BVP on an heterog d
subdomains

From a general point of view, the degenerate scale is related to the
BIE formulation of a given BVP. So, it is important to consider a for-
mulation of a BVP in an infinite domain. As recalled in Section 2, it is
possible to transform the search of the degenerate scale into the search
of a factor @ by using a well-posed problem.

In a first step, we will therefore consider the following BVP: to find
the function v and the constant @ satisfying:

in with continuity b

Avi(x)=0,x€ Qi€ {l,....n) (16a)
vx)=0xelguly: (16b)
vy =vx)x €Ul j € (L, ... .n} (l6c)
BYPN 2 4k, Xy = 0 1 ; 16d
i;’(x)'f‘ j;](x)— Jj el .n) (16d)
v(x) = =3 In(r) + @+ 00~ 1), r — oo; (16e)
B T L i WA (16f)

If there is only one domain, this BVP has been introduced in
[20] where it is proved that it has a unique solution and that the corre-
sponding BIE is at the degenerate scale iff @ = 0. It must be emphasized
that this formulation replaces the search of a degenerate scale factor
by the solution of a well posed BVP. In a first step, we will study the
uniqueness of the solution of this BVP.

The uniqueness of the solution in the heterogeneous case can be
shown with the following standard argument. Consider the difference
v between two solutions of BVP, and the domain bounded by a suffi-
ciently large circle I'y. We write the following sum of integrals and we
use an integration by parts and the divergence theorem:

n-1
T [ wur+k, [ 9o
=y Qg
-1 n—1
=Ek,./ v_(u,.w,.)+k,,/ v.(u,vU,,)-(Zk,./ u,Au,.+k,,/ u_Au,,)
=1 Yy Qg =1 Iy Qp
=V« %k % an
-y ,.Luia"i /I:v <3

Due to Egs. (16a)-(16¢), the right hand member of the above equa-
tion reduces to: fl-‘l v,,;"—'; =0(1/R) and then its limit when R = o is
null and the solution v is constant and null because of the boundary
condition on T,. If there is one disk included in I, then after a scal-
ing of the problem we can assume that the radius of this disk is larger
than 1. Then after geometric inversion, the domain of the correspond-
ing interior problem is included in a disk of radius less than 1. Then, as
it has been seen previously, this problem has a (unique) solution (the
additional source does not affect the uniqueness of the solution as can
be seen by considering the difference of two solutions with the same
source) and by another inversion and rescaling we find the solution of
BVP,.
3.2.3. A second auxiliary problem with given sources at the boundary

We will also consider the auxiliary problem BVP_: find the function
v and the constant @ satisfying:

Avi(x)=0,x€Q, i€ {l,....n}; (18a)
v(x)=0,x €Ty UT}; (18b)
v(x)= vj(x).xeriur}.i.je {L.....n}: (18¢)
BVPN ey 4k %) = ijell ; 18d
.(,—"’(XH ,W(X)—o,‘,(:t).we( seean)y (18d)
o(x) =@ +00")r = oo; (18e)
20 = 0¢2),r = oo (18f)

where o, j is given on the boundary.
The uniqueness of the solution can be proved in the same way as for
BVP,. The existence of this solution follows from Section 3.2.1.

3.3. Necessary condition for a degenerate scale if none of the bounded
bd is at a degenerate scale

In this part, we show that in the case of an heterogeneous domain
whose homogeneous components are not at a degenerate scale, it ap-
pears a degenerate scale which is related to the behavior of the solution
of BVP,, at infinity.

We investigate the following system of BIEs and its possible degen-
erate scales:

r, @) =) 5~ £GAS, = 0.x €Ti € (Looun=1} (19)
)+ fr (4, (0) = 14, (3)ZE - 22GdS, = 0,x€T; (19b)
(BIE,{ 4;(x)=0,x €eUI;; ’ (19¢)
u,-(x)=uj(x).x e]‘,-ul‘j.l,je {1,....n}: (19d)
4(x)+q;(x)=0 ,x €T Ulij € {l....n}. (19e)

As previously, there is a solution v; in each bounded subdomain Q; of
the Dirichlet problem defined by Av;(x) = 0,x € Q;, v;(x) = u;(x).x €T',.
Then, v;, dv;/dn satisfies Eq. (19a). If none of the bounded subdomains
are at the degenerate scale, we have ¢; = k,%.

We must consider now the unbounded subdomain Q,. There is a
solution of the Dirichlet problem defined by: Av,(x)=0.x € Q,; v,(x) =
u(x),x €l v,(x)=-(1/2x /r,, 4,/k,dS ) In(r) + @ + 0(1/r). Then v, sat-
isfies the following Green formula [20],

G v,
v,,(x)+/ 0p(») = vy(x))=— = =G |dS, = o, x€l,UQ,; (20)
r, dn  On
We deduce by comparing (20) and (19b), that
q, dv, _ .
[_‘”(k—"-W)GdSy—a),xel‘,,Uﬂ,. @1

Then it is known (e.g. [34]) that there is a unique solution ¢, to the
following problem: find 5,,C € R such that /. 06,GdS,=C, [. 0,dS, =



1 and that if fl‘ fGdSy is constant then f = as,. So we can write

Gn 00\ _
(E_"_") = ao,,. 22)
But considering the asymptotic behavior of (20), we have
4n 3!.!"
2d4dS. = —dS
f s ] G #

and we conclude that @ = 0 in (22) and finally we have :—" = "ai:. Then
comparing (19b) and (20) we find that @ = 0; that mcans‘that we have
found up to a multiplicative factor a solution of BVP, with @ = 0. This
solution is non null if the solution u of BIE, is non null.

So the only possible degenerate scales are the degenerate scales of
the bounded subdomains € and the scale for which BVP, has a solution
with @ = 0. We call this last degenerate scale the intrinsic degenerate scale
as it does not depend on the decomposition into subdomains: when all
the homogeneous subdomains are split into several smaller subdomains,
all the degenerate scales are changed except the intrinsic degenerate
scale which remains unchanged as it depends only on the formulation
of BVP, and on the choice of the Green function. The other degenerate
scales depend only on the geometry of the bounded subdomains (and
not on the ratios ki/k;). By contrast with the infrinsic degenerate scale,
these degenerate scales can be named geometric ones. For the interior
problem, there are only geometric degenerate scales.

3.4. Sufficient conditions for BIE, being at a degenerate scale

Having found the possible degenerate scales in the previous subsec-
tion, we show now that when one of these possible degenerate scales
occurs, BIE, is actually at a degenerate scale.

3.4.1. Intrinsic degenerate scale: sufficient condition when the solution of
BVP, is such that w = 0

We have found previously that, if no subdomain is at a degenerate
scale, a necessary condition for a degenerate scale to appear in the prob-
lem related to the heterogeneous domain is that the related solution of
BVP, leads to @ = 0. If this condition is not met, this condition can be
recovered by performing a uniform scaling over all the subdomains.

So, having @ = 0 and knowing the solution v of BVP,, the restriction
u of v to I' is a solution of BIE, by using the third Green identity. In the
case of the equation corresponding to the unbounded subdomain, we
consider as previously in Section 3.1 a circle I'y withR — co. Then @ = 0
ensures Eq. (19b).

3.4.2. Sufficient condition when a subdomain is at the degenerate scale

We assume that one bounded domain €, is at the degenerate scale.
We assume also that BIE, is not at the intrinsic degenerate scale and so
that the solution of BVP, is such that @ #0. We denote by &, a non null
solution of i, oy(»)G(x,y)dS, =0.x €T}

Then we consider the solution v, @’ of the problem BVP with o, ; =
oy

It satisfies BIE, except that:

* (19e) for i = 1is replaced by k0v/, /oy + k00 /dn; = o,

* (19b) is not generally verified. Indeed @ is generally different from
0 and in this case, the boundary integral equation for the infinite
domain must contain a complementary term function of @’ as shown
in [20].

In the specific case @ =0, (19b) is satisfied, and by choosing ¢, =
k10t /ony = o1, q; = k;0v}/dn;,i # 1, we find a non null solution of BIE,
and we conclude that BIE, is at a degenerate scale.

If @’ #0, we consider the solution (v, @) of BVP,. We have assumed
@#0 (BIE, is not at the intrinsic degenerate scale), then it is pos-
sible to consider w = ' — (@' /w)v. The restriction of this function to

Fig. 4. The case of n circles.

the boundaries satisfies all the equations of BIE,, except the transmis-
sion condition involving the boundary I';. For this equation, we choose
qy = k0w, /on - oy.

This solution of BIE, is non null. If w =0 on T, then w =0 in the
bounded subdomain Q; and dw/dn =0 on I'y, then g, # 0. We finally
conclude that BIE, is at a degenerate scale.

3.5. Conclusion: number of degenerate scales for the exterior problem

Finally, we have found all the degenerate scales of BIE,. There are n
degenerate scales but some of them can be equal between them. There
are n degenerate scales which are the degenerate scales of the n -1
bounded subdomains and an intrinsic degenerate scale corresponding to
the non null solution of BVP,. This intrinsic degenerate scale depends
only on BVP, and on the choice of the Green function G and not on the
division into different subdomains.

3.6. An example: case of n concentric circles

Let us find the degenerate scale corresponding to a solution of BVP,,
for n concentric circles (Fig. 4). We write the possible solution in Q,_,:
v,y =A, In(r)+ B,_,. Then writing the conditions at the interface, we
get the following relation:

kn-1
0
A, = A
(B,.)= Ky In(R )( ! —i) 1(8::)' =
" "\k,y Kk,

Then, we deduce by recursion:

(5)-]s ,;_\_:"ZMR»{,(,'_, -2)

The system is at a degenerate scale if B, = 0,4, #0, A In(R)) + B, =
0. We get:

|
o

>
—
>

n). e

1 ¢ 11
—-InR;j— + E ln(Rv)(———) =0. (26)
'K a5 \ky Kk

The intrinsic degenerate scale factor p is given by:

i (-mr, L+ 11 2
ln(p)—k,,< lnR'k.+§ln(R')(ki_1 k)) 27

If all k; are equal, then the condition (27) becomes R; = 1.
Eq. (27) can also be written in the following way:

n—1 1 3
. Ry 2
In(p) = k,,(;l —, ln(—' )) —InR,. (28)

On this example, it can be checked that the intrinsic degenerate scale
depends on the ratios k;/k;j, though the other degenerate scales do not



Fig. 5. Case when the degenerate scale associated to each subdomain is unchanged.

depend on these ratios. If one subdomain is included in another subdo-
main, the degenerate scale associated to each subdomain remains con-
stant if the inner boundary is moved inside the larger subdomain (see
Fig. 5). Numerical results show that this is not true for the intrinsic de-
generate scale (see Section 8.2.2).

Let us check now that R; = 1,i € {2,...,n} are the other degenerate
scales.

We assume that R; = 1 with 1 <l <n and that the problem is not at
its intrinsic degenerate scale. Then we look for the function denoted by
win Section 3.4.2.

The condition on the normal derivatives on I gives: k;_;A;_; — k;A; =
1. so we have:

ki-1
E 0

-1

g (£
= (29)

(Bl ki1 In(Ry) ﬁ— ﬁ) 1\B;, 0

LI} 0

kg A =1
P éln(R)(L-l) 1 (B:)+(g) e
=R VA
We then can deduce:
L] 0
A k, A,)
n) = .. 31
(B,) > ln(R,)( L —i) 1(31 e
it kiy Ky
L}
B I 0 (A,)
k ln(R)(———) 1|\ By
lEz Nkioy Kk
L o) /=
+H = 7 * 32
> 1n(R,.)(L—i) 1 (6) A
i+l kior kg

The boundary condition gives By = — In(R;)A;. The radiation condi-
tion gives B, = 0. We deduce:

n L]
1 1 1 1
k ln(R-)(—-—)-ln(R ) JA = ln(R-)(—-—) (33)
The coefficient of A; in Eq. (33) appears in Eq. (27): if the problem
is not at its intrinsic degenerate scale, the coefficient is non null and
it is possible to find A;, and then, all coefficients A;, B;. From these
coefficients, we deduce the functions u;, ¢; on I'; which satisfy BIE,.

Table 1
Variation of the degenerate scale factor as a function of k, for two concentric
circles.
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one included in the other.

Fig. 6. Combi

Remark 1. If n=2, Eq. (27) shows that if R , k, k; remain constant and
R, /', then p /ifky >kq and p\ if ky <k;. A proof for simple curves (not
only concentric circles) is given in Section 4.3.

Remark 2. If n=2, Eq. (28) shows that if Ry, R,, k; remain constant and
ko /', then p /. The variations of the degenerate scale factor p is given
in Table 1.

The more general case of 2 simple curves is addressed in Section 4.2.

Remark 3. As k;>0 and R, > R,_,. it can be seen from Eq. (28) that
In(p) > = In(R,): if R, <1, then the problem cannot be at a degenerate
scale. If all k;, (i#n) remain constant, and k,, — 0 then In (p) = In(R,).

4. Study of the intrinsic degenerate scale for a case of 2
subdomains

We investigate the case of Fig. 6 where the conductivity has two dif-
ferent values in two areas. The boundary condition is applied on I'; and
the boundary I'y is strictly inside the domain interior to I'y. Therefore,
there is no intersection between I'y and the unbounded domain Q.
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Fig. 7. Comparison with Robin condition for the case of two concentric circles.

4.1. An example: the comparison with Robin condition in the case of circles

In this section, we show that a heterogeneous domain comprising
two concentric circles where the radii are close to each other can be
approximated by a homogeneous problem using a Robin boundary con-
dition. We consider here the case of 2 concentric circles (Fig. 7).

We assume that the R, = R, — ¢ with e «<R,. Considering the 2
subdomains problem, we can write Eq. (27): In(p) = (k,/k,)In(Ry/Ry) -
In(R,). The problem is at its intrinsic degenerate scale if p = 1. That is if
(ky/k)In(l + €/ Ry,) = (ky/ky)e/ Ry = In(R,) or Ry In(Ry) = (ky/k)e. We
have also: u(R,) ~ ekdu,/dr. So at the circle r = R,, we have the Robin
type condition du/dr = ruwith r = 1/((k,/k)e). The Robin type problem
inQ, isatits degenerate scale if7R, In(R,) = 1 [25]. Then, we check that
the degenerate scale for Robin condition with parameter t is equal to the
limit of the intrinsic degenerate scale of the 2 domains problem when
€—0 with k,/k,e =1, t being constant.

4.2. Effect of the variation of the ratio ky/k;

As shown previously, the intrinsic degenerate scale factor depends
on the conductivity ratio. The aim of this subsection is to show that the
degenerate scale depends monotonically on the ratio k,/k;. We denote
by v, and v} the solutions of the problem BVP, associated with k, =
kaa/kyas kp = kop/kyp and x = ky/k, (Fig. 6). We apply the first Green
identity to (v, — vp) on Qg, we find:

/ (g = Up)A(L, — 1p) =0
Qp

/(v.,—v) / (v..—v)

I lz =0

"" / (Vo). (34)

It is easy to see that I, = 0 as R — co. WenoteA_,—',{- Vg and

we can conclude that I; > 0 so that:
Iy = Ay = Agy— Apg + Ay 2 0; (35)

We apply the first Green identity to (iv, — vp) on 4, A being con-
stant. We get

fn (Av, —v,,)A(/lv —u) =0

0
/(Av —v) U”) /(Av vy) (Av Db) /(V(Au —v,,))

1,<0 Iy 15<0

(36)
We conclude:

Is = =A%k A gy + AkyA gy + AkgApg — kA > 0. @37

Nﬂ-—-

&>

=]
w
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Fig. 8. Effect of the change of the boundary between the two BEM domains.

We choose A= \/; in (37) and combining the two inequalities
(35) and (37), we get:

1
(\/x_‘—-l)A,,,,+(—ﬁ— l)AMZO. (38)
We apply the second Green identity to (v,, v,) on Q,,
Ja, vaB(vs) = vpA(0,) = 0

vy, av, . auy, au,
= [ v,=— - vp— Vg=— =V, .
r, “om ban, r, “om bon, (9

~~

~
=0 Iy

We deduce that Iy = kA, — kA, =0, or:

Ay, = KA. (40)
Substituting in (38) the value of A,,, we get:

(=14 2yk =K)A, = —(1 = k)24, 20, (1)

and finally A, <0.

We apply the second Green identity to (v,, v,) on Qp,
Jag VaB(0s) = 0;A(,) =0

_ vy, v, vy v,
= L,E vbm+ - Va g ~ Vb - 42)
19 ‘L
We have: Iy = A, — Ay, and lim I}, = (@, — ®,) when R — co. So we
deduce:
Agp = Apg + 2x(wp — @,) = 0. 43)

Using (40), we get (wp — @,) = (k — 1)A 5. As Ay, <0, we conclude:

k
x=k—">14:»(0,2(0,,:»pb=c‘2‘“’lgpa=e‘z’“’-. (44)

a
Finally, it proves that the intrinsic degenerate scale factor p increases
when k,/k; increases.

4.3. Behavior when the domain near the internal boundary increases

The aim of this subsection is to study what happens when the sub-
domain Q; bounded by I'y and I'y grows and becomes Q, bounded by
I} and I'y (Fig. 8). We show that the intrinsic degenerate scale factor
increases when the bounded domain grows.

We use the same approach as in the next Section 4.2. We note v, the
solution of BVP, with the boundaries I'; and I'y and v;, the solution of
BVP, with the boundaries I'y and I'y. We assume that the conductivity
equals 1 in ©; for v, and v, equals 1 for v, and equals k for v, in Q,
and equals k outside I' for both v, and vy,



Fig. 9. Conformal mapping from a circle.

We denote:

A dug @3)
= Uy —.
afij /r.l “ on j

We apply the first Green identity to (v, — v) on Q, to (Av, — vy) on
Q, and to (v, — v,) on Q. We get successively:

Agaat = Aapat — Apaar + Ay 2 0 (@6)

P A=A uyy= Mg + Ay

+ 2 A=A A=A g + Az 2 0: @7
Aga3y = Aap3y — Apa3y + Appy 2 0. (48)
We have:

Aga2t = —KkAgan: Apa21 = —kApa2i Agso1 = —Aasn: Ap21l = —Api2t

A2 = —Auadys Apan2 = —Apaass Aapsr = —kAgga3s Apsay = —kAgszs. (49)
The equations become now:
kA + Agpzy + kApapy = Apyny 2 0 (50)
A=A =My + Ay + A2 A= M gn =AMy + Ay 2 0;
(51)
—kA n+ Agpzy +kApa — Apan 2 0. (52)
We choose 4= \/I? Adding the inequalities (50)-(52), we find:

(1= VX Auy = ViApy + Auy = Vi App) 2 0. (53)

We apply now the second Green identity to (v,, v;) on Q;, Q,, Qp:

—Agn +kAy =0; (54)

A2 = Apa22 + Aap32 — Apai2 = 0: (55)
1

—x Aabi2 + Apazy + @ — @, =0. (56)

We assume that k <1 (the conductivity is smaller in the unbounded
subdomain). Then, we add the inequality (48) multiplied by (1+
\/I:)/(l - \/I?) (its sign does not change), the equality (54), the equal-
ity (55) multiplied by —v/k and the equality (56) by k. The final result

is @, — @, > 0 and we have the final conclusion for the degenerate scale
factor: p, > py. If k> 1, we have gy > p,.

It proves that the intrinsic degenerate scale factor increases when the
bounded domain grows, for the same position of the internal boundary
ryifk>1.

5. Use of conformal mapping

Conformal mapping is powerful to provide solutions of problems in-
volving 2D Laplace equation. It has been used many times to provide
the degenerate scale factor in the homogeneous case or equivalently the
capacity of the domain contained inside a given boundary I.

In the following, we consider its use for a conduction problem in an
heterogeneous domain with two different values of the conductivity.

5.1. General case of two curves being the images by a conformal mapping
of two concentric circles

As we know the value of the intrinsic degenerate scale factor for the
case of concentric circles, it is natural to consider the case when the
boundaries I'y and I', are the images of two concentric circles C; and
Cy (Fig. 9) by a conformal mapping w which maps the outside of C;
to the outside of I';. The conformal mapping is assumed to be w(z) =
z+ay/z+ -~ and the radius Ry = 1. Then, I'; is at the degenerate scale
for the homogeneous conductivity problem.

We consider the solution defined by v; = R(4; In(z) + B;), z € Q; for
the circle problem with Ay = —1/2x (Section 3.6). We are going to prove
that the function defined by & = R(v;(w=()). ¢ € Q| is the solution
of the problem BVP, for Q|, Q). It is seen easily that 7; are harmonic
functions in /. The continuity of the function oy({)= 5;({).{ €T isa
direct consequence of the continuity of v at the boundary C,. We must
check the transmission condition of 95 /dn.

We have:

a5,/ 0n(¢) = R@v,(w™"()/an) = R(e™* A, /™ (O w™ (). (57)

with @ the angle between ¢ and n. As A; € R and kj A, = kyA; we con-
clude that ka0, /dn = k00, /dn. The degenerate scale is found by con-
sidering the asymptotic behavior of Dy(r). For large ¢, we have 5,({) =
R(=1/27 In(w="({)) + By). We conclude, as w='(¢)= ¢ +0(1/[¢]) for
|¢| = o0, that 1) = —=1/27 In|¢| + B,. We conclude that the degener-
ate scale is the same for the problem with circles (C;, C») and for the
problem with (I'y = w(C).I; = w(C;)), the values of the conductivity k;
being the same in the two problems.



Fig. 10. The notch and some ellipses E,.
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Fig. 11. Value of the degenerate scale factor p as a function of r.

5.2. Example: case of a notch

We consider the conformal mapping z — z + 1/z The image of the
unit circle is the segment [-2, 2] (Fig. 10). The images of the circles of
radius r are ellipses E, with semi-axes (r + 1/r, r — 1/r), i.e. for an aspect
ratio (2 + 1)/(r* — 1). We consider the problem where I'; is the segment
[-2.2] and T, is the ellipse E,. Fig. 11 gives the value of the degenerate
scale factor as a function of r and for different values of k, the ratio of
the conductivity in the two areas. Fig. 11 shows that if k/ then p/ for
a fixed r, that is coherent with Section 4.2. When r/, then p increases
if k>1 and decreases if k <1, as seen in Section 4.3.

6. Case of problems in a half-plane

In this section, the case of boundary value problems defined within a
half-plane P* is studied. It is assumed that the boundary of the studied
domain has no common point with the line bounding the half-plane.
The BIEs corresponding to the bounded subdomains are the same as for
a problem in the whole plane. The BIE corresponding to the unbounded
subdomain is similar but the Green function must be changed [32,35]:

Glx.y) = G(x.y) +€G(x.7) (58)

with e = 1 for the boundary condition % =0 on the boundary line and
e =—1 for the boundary condition « =0 and y is the symmetric of y
along the line D (Fig. 12).

We need only to consider exterior problems: indeed, if the boundary
has no common point with the bounding line, interior problems involve
only the usual Green functions of the plane and not the one related to the
half-plane. As for the main study of the exterior problems in the plane,
we consider one unbounded domain Q, and (n-1) bounded domains ;.
Fig. 12 displays the geometry of the problem in the upper half-plane
(domains Q,, Q). It is known that the Green function for the half-plane
is obtained by considering also the points obtained by symmetry with re-
spect to the boundary line. It is therefore useful to consider the domains
obtained by such a symmetry: they are denoted Q,, Q; within Fig. 12.
The symmetrized domains will be of prime importance in the following.

Fig. 12. Problemin the half-plane and its symmetrized counterpart in the plane.

Fig. 13. Case of two half-planes with conductivities k,, k.

6.1. Earlier results for a homogeneous half-plane

A preceding paper [35] has shown, in the homogeneous case, that
there is one degenerate scale if the boundary condition on the line D
bounding the half-plane is :—: = 0 and no degenerate scale if the bound-
ary condition is u = 0. The methods of this earlier paper can be applied
to the piecewise homogeneous problems under consideration. An im-
portant result of this earlier paper is that the degenerate scale for the
half-plane with a flux condition on the boundary line is the same as the
degenerate scale for the whole plane containing the original boundary
and its symmetric with respect to the boundary line. This last problem
will be called the “symmetrized problem” in the following.

We are considering again the symmetrized solutions. The (u, q) solu-
tion of the BIE in the half-plane P* can be completed in the whole plane
by

s u(x), x eP*. -
YT \eu®), xept’
_ fax). xeP*+
Gx)= {eq(i), <P, (60)

with e = —1 for the boundary condition « = 0 and € = 1 for the boundary
condition % =0.

6.2. The degenerate scales of a problem in the half-plane with u = 0 on the
boundary line are also degenerate scales of the symmetrized problem in the
whole plane

The (u, ) non null solution of the homogeneous BIEs can be com-
pleted by (i,§) (with e = —1). The BIEs are the same (eventually up up
to a symmetry) for the bounded subdomains in the half-plane and in the
plane. For the unbounded domain, it can been checked directly that the



corresponding BIE for the whole plane is also satisfied (see [35]). Then,
if a problem in the half-plane with « = 0 on the boundary line is at the
degenerate scale, the symmetrized problem is also at the degenerate
scale in the plane.

But it should be noticed that a non null solution of the BVP in the
half-plane with v =0 on the boundary line is not possible. By sym-
metrization, the solution in the whole plane is such that fl‘, 4 =0 since
q(x) = —q(%) with asymptotic behavior v(x) — 0, x = co and this leads to
a null solution in the plane (uniqueness of the solution of BVP, see
Section 3.2.3) and then also in the half-plane.

6.3. The degenerate scales of a problem in the half-plane with % =0on
the boundary line are also degenerate scales of the symmetrized problem in
the whole plane

We obtain similar results for 2 = 0 on the boundary line. The (y,
q;) non null solution of the homogeneous BIE in the half-plane can be
completed by #:(x),§;(x) within the whole plane with ¢ = 1 and these
extended solutions are solutions of the BIEs in the whole plane.

So we can conclude that the degenerate scales for the two problems
in the half-plane are all degenerate scales for the symmetrized problem
in the plane.

6.4. Determination of the non null solutions of the BIEs of the half-plane
from the solutions corresponding to the degenerate scales of the whole plane

We consider now the geometrically symmetrized problem. The cor-
responding BIE problem has (2n - 1) degenerate scales. Due to the sym-
metry, the 2n — 2 degenerate scales corresponding to the bounded sub-
domains are equal two by two. Then the procedure described in Section
3.4.2 can be applied to each bounded domains ©; and to ©Q;. We as-
sume that Q; (and Q,) is at its degenerate scale. We denote by i, ¢' and
@ =/(%),§' = ¢'(%) the corresponding non null solutions of the homo-
geneous BIEs. By considering v'(x) = 4 (x) + €it'(x) r/(x) = ¢/ (x) + €3/ (x),
we define a solution for the BIE system in the half-planes with e = -1 for
boundary condition u = 0 or € = | for boundary condition :—: =0. As in
Section 3.4.2, it can be checked that (v, ') # (0, 0). This defines (n — 1)
degenerate scales associated to the n— | bounded domains for the two
cases of problems in the half-plane.

We consider now the intrinsic degenerate scale of the problem in
the plane. Due to the symmetry, the solution is also symmetric (it is
unique and the symmetrized solution is also associated to the intrinsic
degenerate scale) then we have also % =0on D and conclude that this
a degenerate scale in the half-plane with boundary condition % =0.So
with the condition % =0, there is an intrinsic degenerate scale.

6.5. Conclusion

From Sections 6.2 and 6.3, we see that the sum of the numbers of
the degenerate scales for the two problems in the half-plane with n - 1
bounded subdomains and 1 semi-infinite subdomain is at most equal to
the number of degenerate scales of the symmetrized problem which is
equal to 2n — | taking into account their multiplicity.

From Section 6.4 we have found (n — 1) geometric degenerate scales
each of them equal to the degenerate scale of one of the bounded subdo-
mains for the two cases of half-plane problems and one intrinsic degen-
erate scale for the problem with % =0, this intrinsic degenerate scale
being equal to the intrinsic degenerate scale of the symmetrized prob-
lem. The total ber of found degenerate scales is 2n - 1, taking into
account their multiplicity.

Finally we have found all the degenerate scales for the two problems
in the half-plane. These results generalize the results obtained for the
homogeneous half-plane [35] which can be considered as the special
case n= 1.

7. Case of two half-planes with different conductivities

Up to now, boundaries between the constitutive domains have been
assumed as bounded. It is therefore interesting to see how the results ob-
tained previously can be extended to the case where the internal bound-
aries are not bounded. We consider therefore the case of internal bound-
aries located along a line that separates the plane into two half-planes as
in Fig. 12. There is an unbounded boundary, and as a consequence it is
no longer possible to consider the logarithmic capacity of this boundary.

7.1. Case of two half-planes minus one bounded domain

In that case, the approach is different from the method used in the
previous sections. Instead of writing several BIEs, it is possible to look
for the fundamental solution G(x, y) related to the whole plane with a
different conductivity k in each half-plane such that:

V. (k(5)V (G(x, y)) = =b(x = ), 1)

and that the transmission conditions at the interface between the two
half-planes are satisfied (see for the case of elasticity [36] and an early
reference for electrostatics [37]). For a source point x in the domain Q,,
we consider:

ky —ky
27k, (ky +k3)

In(r),

In(r) + In(F), yeQ:

1
5
1
Tk, + k)

Ifx is in the subdomain Q,, the subscripts 1 and 2 must be exchanged
in the above formula.

It can be checked easily that div, (k(y)grad,(G(x,y))= —d(x - y).
At the boundary D between the two half-planes, we have r=7 in
(62) and the continuity of G(x, y) is easily checked. The last condi-
tion is on the normal derivative on D. We must have the continuity
of k(y,)dG(x, y)/dy, at y, = 0. This is also an easy verification to do,
using d(In(r))/dy, = —x,/r¥? and a(In(7))/dy, = x,/r¥? for y, =0. We
have also the symmetry: G(x,y) = G(y, x).

For k| = k,, the standard value of G for the plane is recovered. For
ky =0 the solution in the half-plane Q, is recovered (for the standard
boundary condition ¢ = 0 at x, = 0). For k, = oo, the solution in the half-
plane Q, is recovered for the less usual boundary condition u = 0 [38].
It should be noted that the behavior at infinity is for all cases x € & and
YEQ;:

G(x,y) = (62)

YEQ,.

Gx,y)=— ln(r)+0(l ) r— 0o. (63)

w(ky +ky) r
7.2. Study of the BIE

With this specific Green function we can build the usual direct regu-
larized BIE for the exterior problem [38]. For the sake of simplicity we
assume that there are no internal sources. We write the BIE:

ﬁ [u(y) = u(x)]H (x, y) = ¢(»)G(x, y)dS, = 0, (64)

with H(x,y) = k(y)dG(x, y)/dn,. As with standard Green function for the
plane, there is a non null solution of the BIE with homogeneous Dirichlet
condition if:

A: 4(»)G(x,y)dS, = 0. (65)

7.3. Study of a special case

We consider the case when I'cQ, and when the diameter d>»a with
d the distance of I" to D and a the diameter of I (Fig. 14).

The logarithmic capacity of I' is denoted by C. For k; = 0, the Green
function is the same as for the half-plane with Neumann boundary condi-
tion on line D, then the degenerate scale corresponds to the logarithmic



Fig. 14. Case of two half-planes with I" “far” from D.

Table 2
Variation of the degenerate scale factor as a function of k, for two half-planes
and I' “far’ from D.
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Fig. 15. Study of a symmetric boundary.

capacity of the union of I' and its symmetric along D. If the diameter
a of I is far much smaller than the distance d between I" and D, then
the logarithmic capacity of the union of I" and its symmetric is ~ \/E
and therefore the degenerate scale factor is =~ 1/ \/E [35]. If ky = ky,
the plane is homogeneous and the scale is degenerate if C = 1, then we
have p=1/C. If k; — +o0, then the Green function tends to the Green
function of the half-plane with Dirichlet condition on the line bounding
the half-plane and there is no finite degenerate scale factor [35], and
this suggests p — +c0. These conclusions are summarized in Table 2.
These results are similar to those of Table 1.

7.4. Interior problem: symmetric case

Contrarily to the exterior problem, the interior problem with sym-
metry has not the same feature: the degenerate scale is the same as for
an homogeneous domain having the same shape.

We prove this property by considering the case of an interior problem
which is along the line D bounding the areas with different conductivi-
ties, with a symmetry between partial subdomains (Fig. 15).

Then the degenerate scale of the corresponding BIE is the usual de-
generate scale for a homogeneous problem. Let us check that by choos-
ing: ¢, =kyo on Ty, g, = kyo on I, with frIn|x - ylo(3)dS, = 0, this
distribution of normal flux gives a non null solution to the BIE for the
heterogeneous problem with Dirichlet boundary condition.

The BIE is at its degenerate scale if /- G(x, y)q( »dS, = 0. For xel’y
this condition writes out:

/r Glx. )a(dS, = 0 ©6)
= l Gx. Y0)S, + l Glx. »)a0)S, ©7)
1 2
1 ky —ky -

= ———In| d.S —————In

/;l P (r)g(y) y+/r-l ek + k) (F)q(y)dsS,

I L
1
* [~ O, “

~~

IE)

The integral I, can be turned into an integral on I'y:
e ky— ky

27 Jr, 27k (kg + k)

g

LN

In(r)g(5ds, . (€9)

J

Because of the symmetry, we have o(y) = o(7) and we can replace g(7) by
kyo(y) in Iy. Then, we have I3 + I, = fr, —i In(r)a(y)dS, and we finally
conclude f-G(x, y)q(»)dS, = [-G(x,y)o(y)dS, = 0.

This result is interesting, because it shows that the use of the Green
function accounting for the heterogeneity leads to a degenerate scale
which is different from the ones obtained by discretizing both bound-
aries and using the classical Green’s function. As seen before, these last
ones correspond to the degenerate scales of both subdomains.

8. Computation of the intrinsic degenerate scale factor by BEM
and numerical examples

In a first step, the methods using different Green functions are de-
scribed before to present several numerical examples.

8.1. Methods of numerical computation of the degenerate scales by using
BEM

8.1.1. Case of the full plane

The numerical computation of the degenerate scales will be de-
scribed in the case of two subdomains. Let us therefore consider two
subdomains Q;(/ = 1,2). The BEM formulation on each subdomain can
be expressed in the form:

[Ho1 = k—l,[Ga)] [q]

for I = 1,2. Column vectors [u] and [q] contain the value of the poten-
tial and normal flux at the nodes located on the boundary. [Gg] and
[Hg] are interaction matrices computed from Green’s function (for a
unit value of conductivity) and normal derivatives of Green’s function
over boundary elements. Each matrix can be split into one part related
to Qg, and one related to the interface between the two subdomains,
leading to:

i{[a(l.l)] [ar] + [Gapllaal} = [Han) ] = [H) 4]

for Q, where [Gg )] denotes the part of matrix [Gg] containing the
column vectors related to the interface nodes and to:

[Hop][m] + [Heo)] [w] = _kl_z [Gan]lar] + k_lz (G2 [a]



for €,,. For a Dirichlet boundary condition on the external boundary,
this leads to:

1 1
% % T Gan 0 —Hgp || N
w| =" . 1=
~% 0o g Lg H ~%
u Loen il en [fy,

Let us denote by [Gy ] the interaction matrix built for a given boundary
'), the interaction matrix [G ;] built for a scaled boundary oI'gy can
be written as

[G )] = [Gog)) + C[Bg)) (70)

where [B,] is built by using only an integration of the interpolation
functions over the elements (see details in Ref. [26]) and C = In(p). Us-
ing the same notation for the decomposition of matrix [By] leads to:

[Kg)]+C[L]=0 an
where [K,] is [K] being built by using [Goy] and [L] is given by:
1 1
wBan  Ban 0 0
1 1
[L]=

1

0 EB(U)

1
K,Ben 0
It shows that if the heterogeneous domain is at a degenerate scale, C
is the generalized eigenvalue Hy of ([K(,].=[L]). Then, the degenerate
scale factors are given by p, = e/7.
In the following, all computations are performed by using Matlab
software. The interaction matrices are built by using constant elements.

8.1.2. Case of the half-plane
The BEM formulation of the half-plane is effected by introducing the
Green function for the half-plane:

G(x.y)=G(x,y) +€G(x.y) (72)

where e =1 for the condition of null flux over the boundary line and
e = —1 for the condition of null displacement. % is the symmetric of x
with respect to the line bounding the halfplane and G(x, y) is the Green
function for the full plane. As a consequence the matrix [G(,)] of the
outer part can be written as:

[Go) =[G +€lG) (73)

where [G )] is built by using G(%, y). When introducing the scaling, each
part of G is affected by the scaling and therefore:

[é(g)] = [B(g)] + E[E(e)] =(l+ 5)[8(0] (74)

because [E(p] =[Bwl.

Using [Gy,)] and [By,] allows us to build the matrices K and L to
find the degenerate scales, similarly to the case of the full plane. It is
worthwhile noticing that [B,] is null for the case of null displacement
on the bounding line (¢ = —1). This explains why there is no degenerate
scale for the homogeneous problem in this case and why there is no
intrinsic degenerate scale in the heterogeneous case.

The formulation above allows us to compare the degenerate scale for
the half-plane with the degenerate scale for the symmetrized problem.
For example, in the hc yus case, the d ate scale for the half-
plane is obtained by solving

{61+ 161} +C{1B] +(Bl}lq) = 0. 5)

By comparison, the degenerate scale for the symmetrized problem is
given by:

&

(6™ [’f] =0 (76)
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Fig. 16. Theoretical and numerical computations of the intrinsic degenerate
scale factor as a function of the conductivity ratios k,/k, for the case of
Fig. 4 with two circles of radii 2 and 3.

Fig. 17. Case of two non concentric circles.

where g contains the fluxes at the symmetrized contour and
G G
sym] = |7 .
(6™ [G G] an
One can see easily that if the half-plane is at a degenerate scale, the

symmetrized contour is also at a degenerate scale by taking ¢° = g.

8.1.3. Case of two half-planes with different conductivities

As shown in Section 7, the Green tensor for two half-planes with
conductivities k; and k, are given by
G(x.y) = {G(x.y) + aG(Z.y)) (78)
1=k

el in the case where x and y are within the same half-
plane and with k; = 1. As a consequence, the related interaction matrix
is given by:

k
where a = T

[G] = {IG] +a[G]} (79)
and
[B] = (1 + «)[B). (80)

The degenerate scale factors are then obtained from the generalized
eigenvalues of ([G].—[B]).

8.2. Numerical examples

From a general point of view, the numerical results confirm the na-
ture of the results obtained theoretically in the previous sections: for
interior problems, the numerical computations recovers the degenerate
scale factors of the subdomains whose boundaries are discretized. For
exterior problems, the computation in the case of two subdomains re-
covers the degenerate scale factor related to the finite subdomain with,
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Fig. 18. Intrinsic degenerate scale factor for two circles of radii 1 and 4 as a
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Fig. 19. Intrinsic degenerate scale factors for two circles of radii 1 and 3 within
a half-plane with a null flux over the boundary line.

in addition, the “intrinsic” degenerate scale factor. Recovering the de-
generate scale factor of the finite subdomain is of lesser interest. So,
in the following, the examples are mainly focused on the intrinsic de-
generate scale, a few examples being mentioned in the case of interior
problems.

8.2.1. Comparison between theoretical and numerical computations of the
intrinsic degenerate scale factor in an infinite plane

Fig. 16 displays the theoretical and numerical values of the intrinsic
degenerate scale factor for the exterior problem corresponding to the
case of Fig. 4 with two circles of radii 2 and 3 for a varying value of
the conductivity ratio k,/k,. The computation is effected by using 400

constant boundary elements for each of the two circles. In all cases, the
numerical computation produces the intrinsic degenerate factor which
depends on the conductivity ratio and a constant degenerate scale factor
p = 1/3 corresponding to the domain comprised between the two circles.

The comparison with the theoretical results shows that the intrinsic
degenerate scale factor is computed accurately in all cases. In the case of
anull value of the conductivity of the outer domain (r> 3), the compu-
tation recovers the value p = 1/3 corresponding to the degenerate scale
factor of the domain bounded by the two circles. If k| = k,, we recover
the homogeneous case and the corresponding degenerate scale factor
p=1/2

A similar computation has been made for the heterogeneous interior
problem with the same conductivities and the same radii of the circles. In
this case, the conduction is taken into account inside the inner circle. The
computations produce two degenerate scales: p; = 1/3, corresponding to
the degenerate factor of the part between the two circles and p, = 1/2,
corresponding to the inner circle.

8.2.2. Case of two non-concentric circles

Let us consider now the case of two non concentric circles C; and
C, with again C, containing C; (Fig. 17). As shown in the previous
sections, this problem displays two degenerate scale factors: one related
to the interior domain for the part between C,; and C, and one intrinsic
degenerate scale. The first one does not depend on the relative position
between the two circles. So, one may question if the intrinsic degenerate
scale factor is also independent on the relative position.

Fig. 18 shows the values of the intrinsic degenerate scale factor for
two non concentric circles of radii 1 and 4 as a function of the dis-
tance between the centers of the circles when the conductivity ratio
is ky/ky = 2.

It can be seen that the intrinsic degenerate scale factor increases as a
function of the distance between the centers, from 0.062 for concentric
circles up to 0.2 for a distance of 2.35 between the centers. It shows that
contrarily to the case of the degenerate scale factors related to each par-
tial domain, the intrinsic degenerate scale factor depends on the relative
position between the circles.

8.2.3. Case of two concentric circles within a half-plane

The degenerate scale factors have been obtained for the exterior
problem related to two concentric circles of radii R, = 2and R, =3 in-
side a half-plane, the distance between the centers of the circle and the
boundary of the half-plane being equal to 1.5R,. The condition over the
boundary of the half-plane is ¢ = 0.

Fig. 19 displays the values of both degenerate scale factors as a func-
tion of the conductivity ratio. One can still observe the dependence of
the intrinsic degenerate scale factor on the conductivity ratio, the geo-
metric degenerate scale being constant, equal to 1/3 for any conductiv-
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Fig. 20. Intrinsic degenerate scale factors for one circle of radius 3 within a half-plane with different conductivity ratios between upper and lower half-planes.



ity ratio. Compared with the full plane case, one can observe that the
intrinsic degenerate scale factor corresponding to small values of the
conductivity ratio is no more equal to 1/3. It is equal to the degener-
ate scale corresponding to the domain outside the outer circle in the
half-plane, p = 0.1827 (see below).

A similar computation has been made in the case of the condition
u=0 over the boundary line. In this case, the computation produces
only one constant geometric degenerate scale factor p = 1/3 and there
is no more an intrinsic degenerate scale factor, as found in Section 6.

8.2.4. Case of two half-planes with different conductivities

The degenerate scale factors have been obtained in the case of the
exterior problem of a circle of radius R = 3 inside a half-plane, the dis-
tance between the center of the circle and the boundary of the half-plane
being equal to 1.5R. Fig. 20 shows the degenerate scale factors for differ-
ent conductivity ratios between lower and upper planes. For k,/k, =0,
the computation gives the same value p = 0.1827 as for the previous case
of one circle in the half-plane with a null flux at the boundary line. It
can be found also from the logarithmic capacity of two circles of radii
3 with a distance of 9 between the centers [39]. For k,/k; = 1, one ob-
tains p = 1/3, corresponding to the case of the homogeneous case for
the circle of radius 3. For ky/k, > 1, p increases and becomes very large
when k, tends to infinity, which corresponds to the case of u = 0 at the
boundary, when there is no more degenerate scale. This is consistent
with the theoretical considerations of the previous section.

9. Conclusion

We have considered the problem of the degenerate scale when the
medium is piecewise homogeneous. The most convenient way to use
BEM is then to split the plane into several homogeneous domains and
to write a BIE for the boundary of each subdomain. This is possible if
all boundaries are bounded. Then, if there are n bounded subdomains,
there are n degenerate scales corresponding to each bounded subdomain
for interior and exterior problems. For exterior problems, there is in ad-
dition an intrinsic degenerate scale linked to a non null solution of the
BVP corresponding to the overall domain. This result has been proved
theoretically and recovered by using a numerical computation of the
degenerate scale factors. An analytical value of the intrinsic degenerate
scale factor has been provided in the case of subdomains bounded by
concentric circles. These results have been extended to the case where
the internal boundaries are obtained from the circles by using conformal
mapping. The case of an exterior problem in a half-plane with only one
unbounded subdomain has been also considered: if the boundary condi-
tion on the line bounding the half-plane is u = 0, the degenerate scales
are the degenerate scales of the bounded subdomains; if the boundary
condition on the line bounding the half-plane is du/an = 0, the degener-
ate scales are the degenerate scales of the bounded subdomains and an
intrinsic degenerate scale.

When it is possible to have an explicit Green function for the piece-
wise homogeneous problem, then the formulation of the problem needs
only one BIE. We have been able to find some results in the case of
domains within two half-planes, each having its own conductivity.

We focused on the conduction problem with Dirichlet boundary con-
ditions but several other cases could be investigated.

The results obtained in this work can be extended to other kinds of
boundary conditions. The necessary conditions of parts 2 and 3 can still
be derived in the same way for Robin or mixed boundary condition as for
Dirichlet one. The only possible degenerate scales are the ones of each
subdomain and an intrinsic degenerate scale for the exterior problem.
The sufficient conditions need the use of an existence theorem for the
boundary value problems equivalent to BVP;, BVP, BVP, and BVP_.
The use of the inversion can reduce the problem of BVP; to BVP as
in Section 3. The extension of the results presented in this paper to the
case of plane elasticity will be also considered in a future work.
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