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11 ABSTRACT: Here we report the complete characterization
12 of the primary structure of a multimeric glycoprotein in a
13 single analysis by capillary electrophoresis (CE) coupled to
14 mass spectrometry (MS). CE was coupled to electrospray
15 ionization tandem MS by means of a sheathless interface.
16 Transient isotachophoresis (t-ITP) was introduced in this
17 work as an electrokinetically based preconcentration techni-
18 que, allowing injection of up to 25% of the total capillary
19 volume. Characterization was based on an adapted bottom-up
20 proteomic strategy. Using trypsin as the sole proteolytic
21 enzyme and data from a single injection per considered
22 protein, 100% of the amino acid sequences of four different
23 monoclonal antibodies could be achieved. Furthermore, illustrating the effectiveness and overall capabilities of the technique, the
24 results were possible through identification of peptides without tryptic miscleavages or posttranslational modifications,
25 demonstrating the potency of the technique. In addition to full sequence coverages, posttranslational modifications (PTMs) were
26 simultaneously identified, further demonstrating the capacity of this strategy to structurally characterize glycosylations as well as
27 faint modifications such as asparagine deamidation or aspartic acid isomerization. Together with the exquisite detection
28 sensitivity observed, the contributions of both the CE separation mechanism and selectivity were essential to the result of the
29 characterization with regard to that achieved with conventional MS strategies. The quality of the results indicates that recent
30 improvements in interfacing CE-MS coupling, leading to a considerably improved sensitivity, allows characterization of the
31 primary structure of proteins in a robust and faster manner. Taken together, these results open new research avenues for
32 characterization of proteins through MS.

33 Capillary electrophoresis (CE) was commercially intro-
34 duced as a separation technique during the early
35 1980s,1−3 though electrokinetically driven separation strategies
36 have been applied in laboratories since the beginning of the
37 20th century.4,5 In CE, analytes are separated under an
38 electrical field; this technique has some major advantages
39 including the possibility to obtain separations within minutes
40 while maintaining exceptional separation efficiency. This is
41 partially explained by the absence of a stationary phase,
42 tremendously reducing the longitudinal dispersion responsible
43 for peak broadening. Despite the considerable effort made
44 regarding instrumental development, platforms combining CE
45 and electrospray ionization (ESI) mass spectrometry (MS) are
46 still marginally used as compared to chromatography-based
47 methods. This is mainly related to the difficulty to maintain the
48 CE electrical field while positioning the capillary outlet inside
49 the ESI source. Another aspect is related to the fact that CE-

50ESI-MS platforms rarely provide optimal sensitivity, as
51common interfaces rely on strategies that by nature induce
52losses of sensitivity.6,7 On the other hand, coupling of high-
53performance liquid chromatography (HPLC) with MS is more
54straightforward and tends to be preferentially used for
55separation ahead of MS due to its ease of coupling and
56excellent robustness. However, as ESI-MS has demonstrated its
57suitability for the study of biological samples such as protein
58and peptides,8,9 electrophoresis should be theoretically the
59preferred separation technique for biological samples especially
60because it is a miniaturized technique which should favor the
61formation of a nanoESI, thus enhancing the ionization process.
62Biologists are routinely using electrophoresis to reduce the
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63 complexity of samples or to isolate proteins10 and likewise
64 DNA11,12 or RNA.13,14 Recently a novel sheathless interface
65 was introduced for CE-ESI-MS hyphenation.15 It is originally
66 based on a sheathless design by Moini et al.16 and is here
67 referred to as CESI-MS. It allows the hyphenation of CE to
68 ESI-MS without sacrificing the sensitivity because it does not
69 require any sheath liquid to maintain the electrical contact,
70 which would otherwise be responsible for analyte dilution.
71 Separation performances and characteristics of CE are in terms
72 of efficiency and selectivity, well applicable to the range of
73 analytes that are typically well separated by reverse phase liquid
74 chromatography (RP-LC). Additionally, CE could also alleviate
75 some of the drawbacks usually encountered when using RP-LC
76 such as separation and elution of very small and hydrophilic
77 peptides that may elute with the dead volume in RP-LC or
78 large ones that could be adsorbed irreversibly on the stationary
79 phase. Other groups have recently shown that the implementa-
80 tion of an electrophoretic separation, prior to the MS analysis,
81 could benefit bottom-up proteomics analysis compared to
82 conventional methodologies.17,18 Here we are reporting the
83 capacity of t-ITP CESI-MS/MS methodology to enable the
84 complete amino acid (AA) sequence characterization for a
85 protein in a single injection. Transient isotachophoresis (t-ITP)
86 is an electrokinetic-based preconcentration process, commonly
87 used in CZE, which allows for larger sample injections without
88 any detrimental effect on separation efficiency. Contrarily, the
89 integration of t-ITP often enables an improvement of
90 separation efficiency as compared to conventional CZE.19 In
91 t-ITP, the sample buffer used has an electrophoretic mobility
92 superior to that of the background electrolyte (BGE); under
93 the electrical field applied during the separation, the sample
94 content is stacked in a reduced capillary volume compared to
95 the actual injected volume. The use of t-ITP allows for the
96 injection of significantly larger volumes without losing
97 separation efficiency: maximum of 25% of the total capillary
98 volume while only 1−2% in conventional CZE.15

99 mAbs (monoclonal antibodies) are tetrameric glycoproteins
100 having a molecular mass of approximately 150 kDa. They are
101 composed of two heavy chains (HCs) and two light chains
102 (LCs) linked to each other by several disulfide bonds. The HC
103 bears at least one N-glycosylation site.20 The first monoclonal
104 antibody (mAb) studied here was trastuzumab, which is
105 approved for the treatment of HER2-positive breast cancer,21

106 and the second antibody studied was cetuximab, directed
107 against epidermal growth factor receptor (EGFR) and used to
108 treat colorectal, head, and neck cancer.22,23 From an analytical
109 standpoint, these proteins have an interesting trait due to their
110 structural complexity. They present a large number of
111 microheterogeneities commonly found in proteins such as
112 posttranslational modifications (PTMs) including glycosyla-
113 tions and small chemical modifications.24 Four mAbs were
114 studied. Along with the characterization of the AA sequence,
115 other aspects of the primary structure of the studied proteins
116 could be characterized with an unprecedented reliability.
117 Separation mechanisms provided by CE demonstrated their
118 utility for protein characterization by MS, as it has been
119 possible to separate peptides having only minor differences as
120 small as one AA conformational change.

121 ■ EXPERIMENTAL SECTION
122 Materials. Chemicals used were of analytical grade or high
123 purity grade and purchased from Sigma-Aldrich (Saint Louis,
124 MO). Water used to prepare buffers and sample solutions was

125obtained using an ELGA Purelab UHQ PS water purification
126system (Bucks, UK). Trastuzumab and cetuximab samples are
127EMA/FDA-approved formulations purchased, respectively,
128from Genentech (San Francisco, CA) and Merck (Whitehouse
129Station, NJ). RapiGest SF surfactant was purchased from
130Waters (Milford, MA).
131Sample Preparation. For each mAb sample, a volume
132corresponding to 100 μg of protein was sampled using the final
133formulation for the approved mAbs (trastuzumab and
134cetuximab) and samples coming directly from the bioreactor
135for the mAbs in development samples. Samples were diluted
136using Milli-Q water to a final concentration of 6.7 μg/μL.
137Samples were then diluted using 0.1% RapiGest surfactant to a
138final concentration of 3.35 μg/μL and heated to 40 °C during
13910 min. Dithiothreitol (DTT) was added to the sample to
140obtain a final concentration of 25 mM. Samples were then
141heated to 95 °C during 5 min. After the sample was cooled to
142room temperature (RT), iodoacetamide (IDA) was added to a
143final concentration of 10 mM. Afterward, samples were placed
144in the dark for 20 min to allow alkylation of cysteine (Cys). A
145volume of 1 μL of trypsin (0.5 μg/μL) was added to the
146sample, which was left at room temperature for 3 h, and
147another volume of 1 μL was added afterward. Digestion was
148performed overnight at 37 °C. After digestion was complete,
149formic acid (FA) was added to the samples at a final
150concentration of 1% (v/v) to cleave the surfactant, and samples
151were left at RT for 2 h. Finally, samples were diluted to a final
152protein concentration of 2.2 μM using 50 mM ammonium
153acetate (pH 4.0).
154Capillary Electrophoresis. The CE experiments were
155performed with a PA 800 Plus capillary electrophoresis system
156from Beckman Coulter equipped with a temperature-controlled
157autosampler and a power supply able to deliver up to 30 kV.
158Hyphenation was realized using a CESI prototype made
159available by Sciex Separations (Brea, CA). The prototype of
160bare fused-silica capillaries (total length 100 cm; 30 μm i.d.)
161had a characteristic porous tip of 3 cm on the end, and a second
162capillary (total length 80 cm; 50 μm i.d.) filled during
163experiments with BGE allows electric contact. The new
164capillaries were flushed for 10 min at 75 psi (5.17 bar) with
165methanol and then 10 min with 0.1 M sodium hydroxide,
166followed by 10 min with 0.1 M hydrochloric acid and 20 min
167with water also at 75 psi. Finally, the capillary was flushed 10
168min at 75 psi with BGE which was 10% acetic acid.
169Hydrodynamic injection (410 mbar for 1 min) corresponding
170to a total volume of 90 nL of sample injected was used.
171Separations were performed using a voltage of +20 kV.
172Mass Spectrometry. For antibody characterization, the
173CESI system was hyphenated to a 5600 TripleTOF mass
174spectrometer (AB Sciex, Darmstadt, Germany). The 5600 MS
175was equipped with a hybrid analyzer composed of quadrupoles
176followed by a time-of-flight (TOF) analyzer. ESI source
177parameters were set as follows: ESI voltage −1.75 kV while
178gas supplies (GS1 and GS2) were deactivated, source heating
179temperature 150 °C, and curtain gas value 5. Experiments were
180performed in Top15 information-dependent acquisition (IDA),
181and accumulation time was 250 ms for MS scans and 100 ms
182for MS/MS scans, leading to a total duty cycle of 1.75 s. Mass/
183charge (m/z) range was 100−2000 in MS and 50−2000 in MS/
184MS. Using those parameters, the mean resolution provided by
185the instrument was 40 000 in MS (m/z 485.251) and 25 000 in
186MS/MS (m/z 345.235).
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187 MS/MS data analysis: Data obtained from the CESI-MS/MS
188 experiments were analyzed using Peakview software (AB Sciex,
189 San Francisco, CA). Purely tryptic peptides (without
190 miscleavages or PTMs except for cys carbamidomethylation)
191 were determined theoretically from considered mAb amino acid
192 sequences available through the literature. Additional peptides
193 were identified using Mascot search engine provided by Matrix
194 Science; tryptic cleavage rules were applied. Carbamidomethy-
195 lation of cysteine (+57.02 Da) and N-deamidation of aspartic/
196 isoaspartic acid (+0.985 Da) or succinimide intermediate
197 (−17.03 Da) were selected as variable modifications.
198 Methionine oxidation (+15.99 Da) and N-terminal glutamic
199 acid cyclization (−17.02 Da) were also selected as variable
200 modifications. The mass tolerance allowed for search algorithm
201 identification was set to ±5 ppm for precursor ions and ±0.05
202 Da for fragmentation ions.

203 ■ RESULTS AND DISCUSSION

204 mAbs were characterized in a bottom-up proteomic adapted
205 strategy, and samples were digested by trypsin using an in-
206 solution digestion protocol. We reported previously the
207 development of a method using sheathless CE-ESI-MS/MS
208 for monoclonal antibody characterization.25 In the current work
209 the methodology was significantly modified to improve the
210 level of characterization, especially regarding the amino acid
211 sequence and glycoforms. The digestion protocol was modified
212 to enhance proteolytic digestion efficiency. Additionally, the
213 changes increased the compatibility of the sample’s content to
214 capillary zone electrophoresis (CZE) and transient isotacho-
215 phoresis (t-ITP) while also controlling the matrix effect. The
216 sample preparation was conducted without any desalting
217 treatment to prevent any potential loss of peptides due to
218 either poor or irreversible retention during reverse-phase solid-
219 phase extraction (SPE). After digestion, the sample was diluted
220 to a final concentration of 2.2 μM in ammonium acetate (50
221 mM, pH 4.0). Ammonium acetate was chosen as a sample
222 matrix for its compatibility with both ESI-MS and t-ITP. The
223 separation was performed under an electrical field of 210 V/cm

224in a background electrolyte (BGE) composed of 10% acetic
225acid. This BGE has two advantages; it presents a rather low
226conductivity, as it is not a strong acid, and it is fully compatible
227with the ESI ionization process. mAb digests were analyzed
228through CESI-MS/MS, and the injection volume corresponded
229to a quantity of 200 fmol of digested peptides. Peptide
230identification was performed through a peptide fragment
231fingerprinting (PFF) strategy where peptides are identified
232based on their complete molecular mass and fragmentation
233pattern with a mass accuracy systematically better than 5 ppm.
234 f1As emphasized in Figure 1, the CESI-MS/MS analysis of the
235mAb tryptic digest allowed us, in a single injection, to obtain
236100% sequence characterization for both the HC and LC.
237Furthermore, the full sequence characterization could be
238performed exclusively through identification of peptides
239without PTMs or miscleavages. To our knowledge, this is the
240first time that a protein tryptic digest could be entirely
241characterized in a single injection in such a manner. As
242expected, additional peptides exhibiting miscleavages or various
243PTMs could also be identified during the experiment; they can
244be used to confirm parts of the AA sequence if necessary. This
245result was achieved by the use of t-ITP CESI-MS/MS for the
246method along with the sample preparation which was adapted
247to allow highly efficient digestion. Additionally, sample
248preparation enables a complete compatibility with the CE
249separation conditions. Indeed, sample preparation exploits the
250electrokinetic separation and ESI ionization to the fullest
251extent. The same experiment was performed by nanoLC-MS/
252MS on trastuzumab digest using the same instrumental settings.
253Identifications from a single nanoLC-MS/MS analysis did not
254result in complete sequence coverage (Supporting Information
255Figure S-1). A simple solution to complete the sequence
256coverage would be to use a different proteolytic enzyme such as
257chymotrypsin and concatenate all peptides identified in each
258digest.
259The capacity to characterize, without restrictions, every
260peptide comprising the digest opens new possibilities for
261protein primary structure characterization. In particular, the

Figure 1. Sequence coverage obtained for trastuzumab by CESI-MS/MS methodology. Experimental conditions: 90 nL injected (200 fmol). CESI-
MS/MS spectra recorded on 5600 TripleTOF (AB Sciex, San Francisco, CA). Constant domain (blue), variable domain (orange), and
complementarity determining region (red) represent the heavy chain and light chain.
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262 possibility exists to go beyond the DNA sequence usually used
263 for peptide identification and also identify mutations and/or
264 transcription mismatches. This capability is enabled by the low
265 pH (2.2) of the BGE, which induces every peptide to be
266 positively charged in solution. Under this condition, all peptides
267 migrate toward the MS inlet, regardless of their chemical
268 nature, under electrophoresis, as it can be demonstrated by the
269 separation and identification, under the same experimental
270 conditions, of peptides having from 2 to 63 AAs and a large
271 range of isoelectric points (pI). Results point out additional
272 advantages provided by the CESI-MS technique for protein
273 characterization; N-terminal as well as C-terminal parts of the
274 protein could be completely and robustly characterized.
275 Moreover in this case, the N-terminal parts known as the
276 variable domain of the antibody are involved in antibody−
277 antigen recognition and require a high level of characterization.
278 Tandem MS (MS/MS), through gas-phase fragmentation of
279 tryptic peptides, allows precise identification of the AA order of
280 a peptide depending on the spectra quality.26 Results
281 demonstrated the capacity of the CESI-MS technique to obtain
282 almost all y/b ions of peptides from mAb variable domains and
283 even for trastuzumab in its totality. Over the whole protein,
284 systematically more than 70% of the y/b fragment ions could
285 be obtained during the experiment and more than 90% in the

t1 286 case of trastuzumab (Table 1), depending largely on the size of

287 the tryptic peptides generated. The y and b ions are generated
288 by peptide fragmentation in collision-induced dissociation
289 (CID) in MS/MS.27 Peptide identifications are partially based
290 on those fragment ions. The possibility to detect nearly all of
291 the fragment ions allows, on one hand, increased confidence in
292 the identification. On the other hand, fragment ions give
293 precious information about the precise succession order of AAs
294 along the sequence and allow determination of the exact AAs
295 experiencing chemical modifications. This capability could be
296 confirmed for both the HC and LC of the four different mAbs
297 studied (trastuzumab, cetuximab, mab 1, and mab 2).
298 Additionally, three different digestions were characterized for
299 each sample and considered as technical replicates, allowing us
300 to obtain similar results and proving the robustness of the
301 designed methodology. MS/MS results describe the superior
302 spectra quality obtained while coupling CE to MS by means of
303 the CESI interface. Spectra quality is a direct consequence of
304 the ionization efficiency which directly impacts the achievable

305sensitivity and signal/noise ratio. In the case of the CESI
306interface, the ability to generate a very stable spray at quite low
307flow rates enables robust operation in the nanoESI regime.
308Intrinsic characteristics of the CESI interface have a key role in
309the ionization yield of the interface.28 Briefly, in nanoESI,
310smaller droplets are initially formed, favoring Rayleigh division
311but also a desolvation process and finally resulting in readily
312improved ionization and signal/noise ratio compared to
313standard ESI.29

314mAbs are glycosylated proteins, and those glycans are
315naturally incorporated in the protein during secretion into the
316extracellular environment.30 Glycosylation has been implicated
317in mAb safety and pharmacokinetics/pharmacodynamics (PK/
318PD) and is one of the main sources of heterogeneity among
319this type of protein. Therefore, extensive characterization in
320terms of structure and relative abundance are mandatory.
321Concomitantly to primary sequence characterization, using the
322same CESI-MS/MS data, in-depth characterization of glyco-
323sylation was possible. For example, in the case of trastuzumab,
32415 different glycoforms were identified, demonstrating the
325 f2outstanding sensitivity of the CESI-MS method (Figure 2).
326Glycopeptides were identified based on accurate mass measure-
327ment in MS1 provided by high resolution MS (sub 2 ppm) and,
328additionally, fragmentation spectra. Indeed, MS/MS spectra
329exhibited the fragmentation of glycans present on the
330glycopeptide, giving structural information on the glycans
331along with reinforcing the confidence of the identification.
332Furthermore, the electropherogram obtained showed partial
333separation of the different glycopeptides, demonstrating the
334benefit of using CE as the separating technique for this type of
335characterization. As displayed in Figure 2, particular glycopep-
336tides having a difference of one galactose (meaning a mass
337difference of 162 Da) could be baseline separated. The capacity
338to separate peptides having such small differences is clearly
339interesting because they tend to compete against each other
340during the ionization process, potentially interfering with
341relative quantification. Therefore, their separation participates
342to ease their ionization, imparting a rare sensitivity with regard
343to glycosylation characterization with the CESI-MS/MS
344methodology developed. Such sensitivity could be achieved
345while the entire peptide digest mixture was characterized
346without glycan release followed by extraction which is
347commonly performed in glycan analysis by MS.31Cetuximab
348contains a second N-glycosylation site on the HC: one is
349located in the Fc/2 domain (Asn299) similarly to trastuzumab
350while the second one is located in the Fd domain on Asn88.32

351The CESI-MS/MS experiments on cetuximab indicated the
352two different sites, and each glycosylation site could be
353precisely located based on the CESI-MS/MS data. Additionally,
354structural glycan characterization as well as relative quantifica-
355tion could both be established independently for each site in
356the same experiment.
357Additional PTMs were also analyzed in the same run. For
358example, the trastuzumab HC N-terminal extremity contains a
359glutamic acid which can undergo partial cyclization leading to
360pyroglutamic acid.20 The m/z ratios corresponding to the
361native N-terminal peptide and the pyroglutamic acid variant
362migrate as two different peaks separated by several minutes.
363This result can be explained by the fact that glutamic acid
364cyclization entails for the AA a mass loss of 17.02 Da. As CE
365separates compounds on the basis of their size and charge state
366in solution, this PTM involves a significant modification of the
367electrophoretic mobility.

Table 1. Summarized Results Obtained for a Single Analysis
of Each Antibody Studied Using CESI-MS/MS Analysis,
Showing the Robustness of the Methodology Developed and
the Extension of the Primary Structure Characterization

trastuzumab cetuximab
mAb in-dev

#1
mAb in-dev

#2

sequence coverage 100% 100% 100% 100%
%MS2 y/b ions >90% >70% >90% >70%
identified
glycosylations

15 15 10 16

Other PTM Hotspots
glutamic acid
cyclization

1/1 1/1 1/1 1/1

methionine oxidation 2/2 0/0 2/2 0/0
asparagine
deamidation

4/4 4/4 2/2 4/4

aspartic acid
isomerization

6/6 2/2 3/3 2/2
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368 Another common microvariant is methionine oxidation. This
369 modification implies for the peptide a mass increase of 15.99
370 Da while the charge density remains the same. In a similar way
371 as previously, the same CESI-MS/MS data highlight the
372 capacity of CE to separate the modified peptide undergoing
373 methionine oxidation from the native peptide (Supporting
374 Information Figure S-2). Those results open perspectives for
375 improved relative quantification regarding the level of
376 occurrence of those modifications similarly to glycosylation
377 characterization.

378Deamidation is associated with the removal of the amide
379group present on the side chain of asparagine (Asn) and, to a
380lesser extent, of glutamine (Gln) residues.33 These modifica-
381tions are observed by separation methods such as isoelectric
382focusing (IEF) and cationic exchange chromatography (CEX)
383in combination with offline MS methods. In contrast, the CESI-
384MS/MS method afforded complete separation between the
385 f3parent and the degraded peptide (Figure 3). That characteristic
386in separation could be confirmed for every deamidation hot-
387spot identified on both trastuzumab and cetuximab (four

Figure 2. Glycoform determination obtained for trastuzumab using the CESI-MS/MS method in a single analysis (left-hand side). Extracted ion
electropherogram (EIE) corresponding to the m/z of the most abundant glycoforms, illustrating the separation selectivity obtained with CE
regarding mAb glycopeptides (right-hand side).

Figure 3. (A) EIE corresponding to the m/z of peptide LT04 (light chain, position 40−45) and LT06 with deamidated Asp41. Deconvoluted MS/
MS spectra corresponding to (B) peptide LT04 and (C) LT04 deamidated Asp41 (deamidation represented by deaN).
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388 different sites each). The ability to separate those modified
389 peptides is particularly important. Deamidation involves a loss
390 of only 0.98 Da; such a small difference would lead, during the
391 ionization process, to competition, lowering the sensitivity of
392 the MS signal in the case that both peptides could not be
393 separated. That appears to be quite relevant, as the deamidation
394 sites on the studied mAbs exhibited a low level of modification
395 usually below 5%, urging the necessity to prevent ionization
396 competition. The excellent separation provided by CE enables,
397 in the case of this characterization, the best sensitivity for both
398 peptides. One direct consequence is that the fragmentation
399 spectra quality was significantly improved, allowing precise
400 location of the modified AA even if other Asn or Gln were
401 present in the peptide.
402 The last considered PTM is aspartic acid isomerization; this
403 modification is particularly difficult to characterize. Indeed, the
404 change of conformation of aspartic acid (Asp) could not induce
405 a significant variation of affinity toward the reverse stationary
406 phase and requires particular analytical methodologies giving
407 access only to a specified aspect of the protein.33−35

408 Furthermore, the conformation change does not induce a
409 change in the mass of the peptide; thus, ESI-MS using hybrid
410 analyzers such as a quadrupole-time-of-flight (Q-TOF) does
411 not allow a determination of potential Asp isomerization. From
412 the CESI-MS/MS data, extraction of the m/z ratio correspond-
413 ing to a peptide potentially presenting Asp isomerization
414 systematically exhibited two consecutive peaks as shown in in

f4 415 Figure 4. The important acquisition rate capacity provided by
416 MS therefore enabled us, from the CESI-MS/MS data, to
417 obtain the fragmentation spectra for both peaks. From the
418 fragmentation pattern, MS/MS spectra presented in Figure 4
419 unambiguously proved that the two peaks correspond to the
420 same peptides. Fragmentation is obtained inside the MSCID; in
421 this fragmentation mode the energy conveyed to neutral
422 particles (usually N2 or Ar) is limited to a few tenths of an
423 electron volt (eV). Such energy levels allow the activation of
424 the fragmentation of the peptide backbone, enabling the

425detection of specific b and y fragments ions.36 In the context of
426this study, two consecutive peaks leading to the same
427fragmentation spectrum suggest that those CE conditions
428enable the separation of the same peptide having different Asp
429isomers. From a theoretical aspect, electrophoretic mobility is
430significantly influenced by the hydrodynamic radius of the
431molecule. Two similar peptides with the same AA sequence
432containing different aspartic acid isomers should be differently
433oriented. This would most likely induce a difference in their
434respective hydrodynamic radius, therefore implying a difference
435of electrophoretic mobilities between them. Also the different
436potential Asp isomerization sites studied, on both samples,
437exhibited the same behavior while peptides having no Asp did
438not present this characteristic, reinforcing the assertion on
439separation based on Asp isomerization.
440To validate with certainty the capacity of the developed CE
441method to separate peptides with regard to Asp isomerization,
442two peptides were specially synthesized. Those peptides,
443composed of 20 AAs, have exactly the same AA sequence
444and contain one Asp, each synthetic peptide bearing a different
445Asp isomer. As emphasized in Supporting Information Figure
446S-3, several samples composed of a mixture of both synthetic
447peptides in different ratios were analyzed using the same t-ITP-
448CESI-MS/MS conditions as in the mAb characterization.
449Results obtained for the different mixture ratios exhibit two
450consecutive peaks for the m/z ratios corresponding to the
451synthetic peptide. On the contrary, when only a single peptide
452is injected, the extracted ion electropherogram (EIE) showed
453only one peak. To reinforce the result, peak heights illustrate
454relatively the evolution in proportion of one peptide to the
455other. These results demonstrate without ambiguity the
456selectivity of the separation in the case of a peptide
457experiencing Asp isomerization. These results further empha-
458size the relevance of using CE separation for protein primary
459structure by MS. It indeed allows the discrimination of peptides
460having Asp isomerization in a robust manner, thereby further

Figure 4. EIE corresponding to m/z for digested peptide HT23 (heavy chain; position 278−291) experiencing aspartic acid isomerization. Raw MS/
MS spectra for both peaks (right-hand side) demonstrated the same fragmentation pattern in addition to precursor m/z and charge state values.
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461 enriching the information that can be obtained by MS on a
462 given protein molecule.

463 ■ CONCLUSION
464 To summarize, we report here the use of t-ITP-CESI-MS/MS
465 for the characterization of four different therapeutic mAbs. The
466 instrumental components used include in particular a CE-ESI-
467 MS interface which has been recently developed. Using a single
468 injection, we were able to characterize the primary structure of
469 those antibodies in a robust manner at an unprecedented level.
470 We managed to obtain the complete AA sequence character-
471 ization while only relying on tryptic peptide without
472 miscleavages or exogenous modifications. It is the first time
473 that this level of characterization has been achieved in a single
474 injection/run, suggesting new approaches for bottom-up
475 proteomics in particular. Simultaneously to the AA sequencing,
476 PTMs including glycosylation were also characterized. Results
477 highlighted the benefit of using electrophoretic separation in
478 complement to chromatographic separation which is conven-
479 tionally applied in this type of study. CE separation selectivity
480 showed the ability to separate peptides having only minor
481 differences while the sensitivity provided by CESI-MS led to
482 the improvement of the MS/MS characterization. Indeed, the
483 opportunity to separate peptides having only an isomerization
484 of one AA or a difference of 0.98 Da enables the ability to
485 cancel ionization competition between the different peptides
486 and explains the capacity of the CESI-MS/MS methodology to
487 characterize, in the same experiment, the intact and the
488 modified peptide. Similarly, CE proved through MS to ease
489 primary structure characterization, as it was possible to detect
490 aspartic acid isomerization on several peptides from the same
491 analysis along with its other attributes. Glycosylations were also
492 characterized from the same experiment; thus, 15 different
493 glycans could be characterized for trastuzumab, showing that
494 using CESI-MS improved the sensitivity. Note that no glycan
495 release was necessary, reducing the sample treatment and the
496 necessity to use different experimental conditions to character-
497 ize glycosylation along with the other characteristics of the
498 primary structure of the protein. Finally this experiment could
499 be achieved by injecting a quantity of sample corresponding to
500 200 fmol of digested peptide, illustrating the suitability of the
501 CESI-MS/MS method for small amounts of sample. The CESI-
502 MS/MS data reported here indicate that electrophoretic
503 separation, combined with the highly efficient CESI interface,
504 becomes a viable alternative to LC-ESI-MS/MS for innovative
505 approaches in MS proteomics such as identifying AA mutations
506 or transcription mismatches.
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(32)586 Beck, A.; Sanglier-Cianfeŕani, S.; Van Dorsselaer, A. Anal. Chem.
587 2012, 84, 4637−4646.

(33)588 Vlasak, J.; Bussat, M. C.; Wang, S.; Wagner-Rousset, E.;
589 Schaefer, M.; Klinguer-Hamour, C.; Kirchmeier, M.; Corvaïa, N.;
590 Ionescu, R.; Beck, A. Anal. Biochem. 2009, 392, 145−154.

(34)591 Kern, W.; Mende, R.; Denefeld, B.; Sackewitz, M.; Chelius, D. J.
592 Chromatogr., B 2014, 955−956, 26−33.

(35)593 Zhang, J.; Yip, H.; Katta, V. Anal. Biochem. 2011, 410, 234−243.
(36)594 Mitchell Wells, J.; McLuckey, S. A. In Methods in Enzymology;

595 Burlingame, A. L., Ed.; Academic Press: New York, 2005; pp 148−185.

Analytical Chemistry Article

dx.doi.org/10.1021/ac502378e | Anal. Chem. XXXX, XXX, XXX−XXXH


