Z. Agur, M. Elishmereni, and Y. Kheifetz, Personalizing oncology treatments by predicting drug efficacy, side-effects, and improved therapy: mathematics, statistics, and their integration, Wiley interdisciplinary reviews. Systems biology and medicine, vol.6, pp.239-253, 2014.

V. Andasari, R. T. Roper, H. Maciej, M. A. Swat, and . Chaplain, Integrating intracellular dynamics using compucell3d and bionetsolver: Applications to multiscale modelling of cancer cell growth and invasion, PLOS ONE, vol.7, issue.3, pp.1-17, 2012.

R. Alexander, P. Anderson, and . Maini, Mathematical oncology. Bulletin of mathematical biology, vol.80, pp.945-953, 2018.

A. Baldock, R. C-rockne, A. Boone, M. Neal, D. Hawkins-daarud et al., From patient-specific mathematical neuro-oncology to precision medicine, Frontiers in oncology, vol.3, p.62, 2013.

A. Ballesta, Q. Zhou, X. Zhang, H. Lv, and J. M. Gallo, Multiscale design of cell-type?specific pharmacokinetic/pharmacodynamic models for personalized medicine: Application to temozolomide in brain tumors, CPT Pharmacometrics Syst. Pharmacol, vol.3, p.112, 2014.

A. Ballesta and J. Clairambault, Physiologically based mathematical models to optimize therapies against metastatic colorectal cancer: a mini-review, Current pharmaceutical design, vol.20, pp.37-48, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00849018

A. Ballesta, F. Pasquale, R. Innominato, . Dallmann, F. David-a-rand et al., Systems chronotherapeutics. Pharmacological reviews, vol.69, pp.161-199, 2017.

P. Ballet, SimCells, an advanced software for multicellular modeling Application to tumoral and blood vessel codevelopment, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01853293

D. Barbolosi, J. Ciccolini, and B. Lacarelle, Fabrice Barl??si, and Nicolas Andr?? Computational oncologymathematical modelling of drug regimens for precision medicine, Nature reviews. Clinical oncology, vol.13, pp.242-254, 2016.

D. Basanta and A. Anderson, Homeostasis back and forth: An ecoevolutionary perspective of cancer. Cold Spring Harbor perspectives in medicine, vol.7, 2017.

B. Bedessem and S. Ruphy, Smt or toft? how the two main theories of carcinogenesis are made (artificially) incompatible, Acta biotheoretica, vol.63, pp.257-267, 2015.

B. Bedessem and S. Ruphy, Smt and toft integrable after all: A reply to bizzarri and cucina, Acta biotheoretica, vol.65, pp.81-85, 2017.

M. Bizzarri and A. Cucina, Smt and toft: Why and how they are opposite and incompatible paradigms, Acta biotheoretica, vol.64, pp.221-239, 2016.

M. Block, Physiologically based pharmacokinetic and pharmacodynamic modeling in cancer drug development: status, potential and gaps. Expert opinion on drug metabolism & toxicology, vol.11, pp.743-756, 2015.

S. Brueningk, . Powathil, . Ziegenhein, . Ijaz, . Rivens et al., Combining radiation with hyperthermia: a multiscale model informed by , javax.xml.bind.jaxbelement@346894c0, experiments, Journal of the Royal Society, Interface, p.15, 2018.

F. Caraguel, A. Lesart, and F. Estève, Towards the design of a patient-specific virtual tumour. Computational and mathematical methods in medicine, p.7851789, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01975976

L. Carrara, S. M. Lavezzi, E. Borella, G. D. Nicolao, P. Magni et al., Current mathematical models for cancer drug discovery, Expert opinion on drug discovery, vol.12, pp.785-799, 2017.

M. A. Chaplain, The mathematical modelling of tumour angiogenesis and invasion, Acta Biotheoretica, vol.43, issue.4, pp.387-402, 1995.

F. Cornelis, J. Jouganous, M. Martin, O. Saut, and T. Colin, Patient specific image driven evaluation of the aggressiveness of metastases to the lung, Med Image Comput Comput Assist Interv, vol.17, issue.1, pp.553-60, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01038074

M. Leah, A. Cook, J. M. Araujo, . Pow-sang, M. Mikalai et al., Predictive computational modeling to define effective treatment strategies for bone metastatic prostate cancer, Scientific reports, vol.6, p.29384, 2016.

H. Naci, E. Gurpinar, E. Poplavska, A. Pinto, and C. Davis, Availability of evidence of benefits on overall survival and quality of life of cancer drugs approved by european medicines agency: retrospective cohort study of drug approvals 2009-13, BMJ, vol.359, p.4530, 2017.

H. Enderling, A. Katarzyna, and . Rejniak, Simulating cancer: computational models in oncology, Frontiers in oncology, vol.3, p.233, 2013.

A. Bahinski, . Huh-dongeun, and E. W. Esch, Organs-on-chips at the frontiers of drug discovery, Nature Reviews Drug Discovery, vol.14, pp.248-260, 2015.

J. Foo and F. Michor, Evolution of acquired resistance to anti-cancer therapy, Journal of theoretical biology, vol.355, pp.10-20, 2014.

A. Jill, P. M. Gallaher, K. A. Enriquez-navas, R. A. Luddy, A. Gatenby et al., Spatial heterogeneity and evolutionary dynamics modulate time to recurrence in continuous and adaptive cancer therapies, Cancer research, vol.78, pp.2127-2139, 2018.

E. Garralda, R. Dienstmann, and J. Tabernero, Pharmacokinetic/pharmacodynamic modeling for drug development in oncology, Annual Meeting, vol.37, pp.210-215, 2017.

P. Gerlee and A. Anderson, Evolution of cell motility in an individual-based model of tumour growth, Journal of theoretical biology, vol.259, pp.67-83, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00554584

A. Ghaffarizadeh, R. Heiland, H. Samuel, . Friedman, M. Shannon et al., PhysiCell: an open source physics-based cell simulator for 3-D multicellular systems, PLoS Comput. Biol, vol.14, issue.2, p.1005991, 2018.

N. Glade and A. Stéphanou, Le vivant discret et continu-Modes de représentation en biologie théorique, 2013.

F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two-dimensional extended potts model, Phys. Rev. Lett, vol.69, pp.2013-2016, 1992.

J. A. Grogan, A. J. Connor, B. Markelc, R. J. Muschel, P. K. Maini et al., Microvessel chaste: An open library for spatial modeling of vascularized tissue, Biophysical Journal, 2017.

S. Hamis and P. Nithiarasu, What does not kill a tumour may make it stronger: In silico insights into chemotherapeutic drug resistance, Journal of theoretical biology, vol.454, pp.253-267, 2018.

K. R. Hutchinson and L. , High drug attrition rates: where are we going wrong?, Nature Review in Clinical Oncology, vol.8, pp.189-190, 2011.

J. Pamela-r-jackson, A. Juliano, . Hawkins-daarud, K. R. Russell-c-rockne, and . Swanson, Patient-specific mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice, Bulletin of mathematical biology, vol.77, pp.846-856, 2015.

M. Angela, . Jarrett, A. Ernesto, D. A. Lima, . Hormuth et al., Mathematical models of tumor cell proliferation: A review of the literature, Expert review of anticancer therapy, pp.1-16, 2018.

Z. Ji, K. Yan, W. Li, H. Hu, and X. Zhu, Mathematical and computational modeling in complex biological systems, BioMed research international, p.5958321, 2017.

A. Karolak, C. Veronica, A. S. Estrella, T. Huynh, J. Chen et al., Targeting ligand specificity linked to tumor tissue topological heterogeneity via single-cell micro-pharmacological modeling, Scientific reports, vol.8, p.3638, 2018.

A. Karolak, A. Dmitry, L. J. Markov, . Mccawley, and . Rejniak, Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues, Journal of the Royal Society, Interface, p.15, 2018.

Y. Kim, G. Powathil, H. Kang, D. Trucu, H. Kim et al., Strategies of eradicating glioma cells: a multi-scale mathematical model with mir-451-ampk-mtor control, PloS one, vol.10, p.114370, 2015.

J. Landis and I. Kola, Can the pharmaceutical industry reduce the attrition rates?, Nature Review in Drug Discovery, vol.3, pp.711-716, 2004.

N. Kronik, Y. Kogan, M. Elishmereni, K. Halevi-tobias, S. Vuk-pavlovi et al., Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models, PLOS ONE, vol.5, issue.12, p.2010

A. Laird, Dynamics of tumor growth, British journal of cancer, vol.13, pp.490-502, 1964.

A. Lesart, B. Van-der-sanden, L. Hamard, F. Estève, and A. Stéphanou, On the importance of the submicrovascular network in a computational model of tumour growth, Microvascular research, vol.84, pp.188-204, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00738177

J. S. Trefil, J. C. Schaffner, C. J. Kovacs, H. A. Hopkins, and W. B. Looney, Solid tumor models for the assessment of different treatment modalities: I. radiation-induced changes in growth rate characteristics of a solid tumor model, Proceediings of the National Academy of Sciences U.S.A, vol.72, issue.7, pp.2662-2668, 1975.

P. Macklin, M. E. Edgerton, A. M. Thompson, and V. Cristini, Patient-calibrated agent-based modelling of ductal carcinoma in situ (dcis): from microscopic measurements to macroscopic predictions of clinical progression, Journal of theoretical biology, vol.301, pp.122-140, 2012.

P. Macklin, J. L. Hermann-b-frieboes, A. Sparks, . Ghaffarizadeh, H. Samuel et al., Progress towards computational 3-d multicellular systems biology, Advances in experimental medicine and biology, vol.936, pp.225-246, 2016.

S. C. Massey, A. Russell-c-rockne, J. Hawkins-daarud, A. Gallaher, P. Anderson et al., Simulating pdgf-driven glioma growth and invasion in an anatomically accurate brain domain, Bulletin of mathematical biology, vol.80, pp.1292-1309, 2018.

R. Gary, C. J. Mirams, M. O. Arthurs, R. Bernabeu, J. Bordas et al., Chaste: An open source c++ library for computational physiology and biology, PLOS Computational Biology, vol.9, issue.3, pp.1-8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00956373

M. Margriet, . Palm, G. Marchien, E. Dallinga, I. Van-dijk et al., Computational screening of tip and stalk cell behavior proposes a role for apelin signaling in sprout progression, PLOS ONE, vol.11, issue.11, pp.1-31, 2016.

A. R. Perestrelo, C. Ana, A. P-?guas, G. Rainer, and . Forte, Microfluidic organ/body-on-a-chip devices at the convergence of biology and microengineering, Sensors, vol.15, pp.31142-31170, 2015.

R. Perez, . Kang, J. Chen, A. Castellanos, A. Milewski et al., Computational oncology. Journal of oncopathology and clinical research, vol.2, 2018.

J. Pitt-francis, P. Pathmanathan, M. O. Bernabeu, R. Bordas, J. Cooper et al.,

B. Maini, S. L. Rodr??guez, J. P. Waters, H. M. Whiteley, D. J. Byrne et al., 40 YEARS OF CPC: A celebratory issue focused on quality software for high performance, Computer Physics Communications, vol.180, issue.12, pp.2452-2471, 2009.

J. Poleszczuk, R. Walker, E. G. Moros, K. Latifi, J. J. Caudell et al., Predicting patientspecific radiotherapy protocols based on mathematical model choice for proliferation saturation index, Bulletin of mathematical biology, vol.80, pp.1195-1206, 2018.

M. Pons-salort, B. Van-der-sanden, A. Juhem, A. Popov, and A. Stéphanou, A computational framework to assess the efficacy of cytotoxic molecules and vascular disrupting agents against solid tumours, Math. Model. Nat. Phenom, vol.7, issue.1, pp.49-77, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00847022

A. J. Gibin-g-powathil, . Munro, A. Mark, M. Chaplain, and . Swat, Bystander effects and their implications for clinical radiation therapy: Insights from multiscale in silico experiments, Journal of theoretical biology, vol.401, pp.1-14, 2016.

M. Gibin-g-powathil, M. Swat, and . Chaplain, Systems oncology: towards patient-specific treatment regimes informed by multiscale mathematical modelling, Seminars in cancer biology, vol.30, pp.13-20, 2015.

S. Prokopiou, G. Eduardo, J. Moros, J. Poleszczuk, J. F. Caudell et al., A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation, Radiation oncology, vol.10, p.159, 2015.

M. Ana, C. Soto, and . Sonnenschein, The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory, BioEssays : news and reviews in molecular, cellular and developmental biology, vol.33, pp.332-340, 2011.

A. Stéphanou, . Lesart, . Deverchère, . Juhem, F. Popov et al., How tumour-induced vascular changes alter angiogenesis: Insights from a computational model, Journal of theoretical biology, vol.419, pp.211-226, 2017.

A. Stéphanou, E. Fanchon, A. Pasquale-f-innominato, and . Ballesta, Systems biology, systems medicine, systems pharmacology: The what and the why, Acta biotheoretica, 2018.

S. R. Mcdougall, A. R. Anderson, M. A. Chaplain, and A. Stéphanou, Mathematical modelling of flow in 2d and 3d vascular networks: applications to antiangiogenic and chemotherapeutic drug stategies, Mathematical and Computer Modelling, vol.41, pp.1137-56, 2005.

H. Maciej, G. L. Swat, J. M. Thomas, A. Belmonte, D. Shirinifard et al., Chapter 13-multi-scale modeling of tissues using compucell3d, Computational Methods in Cell Biology, vol.110, pp.325-366, 2012.

I. M. Van-leeuwen, G. R. Mirams, A. Walter, A. Fletcher, P. Murray et al., An integrative computational model for intestinal tissue renewal, Cell Proliferation, vol.42, issue.5, pp.617-636

J. K. Rockhill, M. Mrugala, D. L. Peacock, A. Lai, K. Jusenius et al., Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model, Cancer Research, vol.69, issue.23, pp.9133-9173, 2009.

K. R. Winner, M. P. Steinkamp, R. J. Lee, M. Swat, C. Y. Muller et al., Spatial modeling of drug delivery routes for treatment of disseminated ovarian cancer, Cancer Research, vol.76, issue.6, pp.1320-1334, 2016.

. Thomas-e-yankeelov, Integrating imaging data into predictive biomathematical and biophysical models of cancer, ISRN biomathematics, 2012.

. Thomas-e-yankeelov, C. Richard-g-abramson, and . Quarles, Quantitative multimodality imaging in cancer research and therapy, Nature reviews. Clinical oncology, vol.11, pp.670-680, 2014.

G. Thomas-e-yankeelov, O. An, G. Saut, . Luebeck, S. Aleksander et al., Multi-scale modeling in clinical oncology: Opportunities and barriers to success, Annals of biomedical engineering, vol.44, pp.2626-2641, 2016.