G. Batchelor, The theory of homogeneous turbulence, Cambridge Monographs on Mechanics and Applied Mathematics, 1953.

L. Berselli, T. Iliescu, and W. Layton, Mathematics of Large Eddy Simulation of turbulent flows. Scientific Computation, 2006.

L. Berselli, C. Lewandowski, and R. , On the Reynolds time-averaged equations and the longtime behavior of Leray-Hopf weak solutions, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01695374

L. Berselli, S. Fagioli, and S. Spirito, Suitable weak solutions of the Navier-Stokes equations constructed by a space-time numerical discretization, J. Math. Pures Appl, vol.125, issue.9, pp.189-208, 2019.

C. Rebollo, T. Lewandowski, and R. , Mathematical and numerical foundations of turbulence models and applications. Modeling and Simulation in Science, Engineering and Technology, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01149312

P. Constantin and C. Foias, Navier-Stokes equations, Chicago Lectures in Mathematics, 1988.

M. Couplet, P. Sagaut, and C. Basdevant, Intermodal energy transfers in a proper orthogonal decomposition-Galerkin representation of a turbulent separated flow, J. Fluid Mech, vol.491, pp.275-284, 2003.

V. Decaria, W. Layton, and M. Mclaughlin, A conservative, second order, unconditionally stable artificial compression method, Comput. Methods Appl. Mech. Engrg, vol.325, pp.733-747, 2017.

V. Decaria, T. Iliescu, W. Layton, M. Mclaughlin, and M. Schneier, An artificial compression reduced order model, 2019.

V. Girault and P. Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, 1986.

C. Foia?, /73) Statistical study of Navier-Stokes equations, I, II. Rend. Sem. Mat. Univ. Padova, vol.48, pp.9-123, 1972.

C. Foias, O. Manley, R. Rosa, and R. Temam, Navier-Stokes equations and turbulence, of Encyclopedia of Mathematics and its Applications, vol.83, 2001.

J. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg, vol.195, pp.6011-6045, 2006.

J. Guermond, J. Oden, and S. Prudhomme, Mathematical perspectives on large eddy simulation models for turbulent flows, J. Math. Fluid Mech, vol.6, issue.2, pp.194-248, 2004.

J. Hesthaven, G. Rozza, and B. Stamm, Certified reduced basis methods for parametrized partial differential equations, BCAM Basque Center for Applied Mathematics, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01223456

T. Iliescu and Z. Wang, Are the snapshot difference quotients needed in the proper orthogonal decomposition? SIAM, J. Sci. Comput, vol.36, issue.3, pp.1221-1250, 2014.

N. Jiang and W. Layton, Algorithms and models for turbulence not at statistical equilibrium, Comput. Math. Appl, vol.71, issue.11, pp.2352-2372, 2016.

A. Kolmogorov, The local structure of turbulence in incompressible viscous fluids for very large Reynolds number, Dokl. Akad. Nauk SSR, vol.30, pp.9-13, 1941.

T. Lassila, A. Manzoni, A. Quarteroni, and G. Rozza, Model order reduction in fluid dynamics: challenges and perspectives, Reduced order methods for modeling and computational reduction, vol.9, pp.235-273, 2014.

W. Layton, The 1877 Boussinesq conjecture: Turbulent fluctuations are dissipative on the mean flow, 2014.

W. Layton and L. Rebholz, Approximate Deconvolution Models of Turbulence Approximate Deconvolution Models of Turbulence, Lecture Notes in Mathematics, vol.2042, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00003252

R. Lewandowski, Long-time turbulence model deduced from the Navier-Stokes equations, Chin. Ann. Math. Ser. B, vol.36, issue.5, pp.883-894, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01192773

J. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, 1969.

J. Málek, J. Ne?as, M. Rokyta, and M. R??i?ka, Weak and Measure-valued Solutions to Evolutionary PDEs, Applied Mathematics and Mathematical Computations, vol.13, 1996.

L. Prandtl, Berichtüber Untersuchungen zur ausgebildeten Turbulenz, Z. Angew. Math. Mech, vol.5, pp.136-139, 1925.

G. Prodi, Teoremi ergodici per le equazioni della idrodinamica, 1960.

G. Prodi, On probability measures related to the Navier-Stokes equations in the 3-dimensional case, Univ. Trieste. Air Force Res. Div. Contract, vol.61, pp.52-414, 1961.

A. Quarteroni, A. Manzoni, and F. Negri, Reduced basis methods for partial differential equations, vol.92, 2016.

A. Quarteroni, G. Rozza, and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations and applications, J. Math. Ind, vol.1, issue.3, p.44, 2011.

O. Reynolds, On the dynamic theory of the incompressible viscous fluids and the determination of the criterion, Philos. Trans. Roy. Soc. London Ser. A, vol.186, pp.123-164, 1895.

G. Rozza, Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications, Separated representations and PGD-based model reduction, vol.554, pp.153-227, 2014.

P. Sagaut, Large eddy simulation for incompressible flows. Scientific Computation, 2001.

D. Wells, Z. Wang, X. Xie, and T. Iliescu, An evolve-then-filter regularized reduced order model for convection-dominated flows, Internat. J. Numer. Methods Fluids, vol.84, issue.10, pp.598-615, 2017.

X. Xie, D. Wells, Z. Wang, and T. Iliescu, Approximate deconvolution reduced order modeling, Comput. Methods Appl. Mech. Engrg, vol.313, pp.512-534, 2017.

X. Xie, M. Mohebujjaman, L. Rebholz, and T. Iliescu, Data-driven filtered reduced order modeling of fluid flows, SIAM J. Sci. Comput, vol.40, issue.3, pp.834-857, 2018.

X. Xie, M. Mohebujjaman, L. Rebholz, and T. Iliescu, Lagrangian data-driven reduced order modeling of finite time Lyapunov exponents, the Author(s), 2018.