Long-Time Reynolds Averaging of Reduced Order Models for Fluid Flows: Preliminary Results

Abstract : We perform a theoretical and numerical investigation of the time-average of energy exchange among modes of Reduced Order Models (ROMs) of fluid flows. We are interested in the statistical equilibrium problem, and especially in the possible forward and backward average transfer of energy among ROM basis functions (modes). We consider two types of ROM modes: eigenfunctions of the Stokes operator and Proper Orthogonal Decomposition (POD) modes. We prove analytical results for both types of ROM modes and we highlight the differences between them. We also investigate numerically whether the time-average energy exchange between POD modes is positive. To this end, we utilize the one-dimensional Burgers equation as a simplified mathematical model, which is commonly used in ROM tests. The main conclusion of our numerical study is that, for long enough time intervals, the time-average energy exchange from low index POD modes to high index POD modes is positive, as predicted by our theoretical results.
Document type :
Journal articles
Complete list of metadatas

Cited literature [36 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01979939
Contributor : Maryse Collin <>
Submitted on : Wednesday, November 6, 2019 - 4:01:10 PM
Last modification on : Wednesday, November 6, 2019 - 4:20:15 PM

File

Berselli-MinE-revised.pdf
Files produced by the author(s)

Identifiers

Citation

Luigi C. Berselli, Traian Iliescu, Birgul Koc, Roger Lewandowski. Long-Time Reynolds Averaging of Reduced Order Models for Fluid Flows: Preliminary Results. Mathematics in Engineering, AIMS, 2019, 2 (1), pp.1-25. ⟨10.3934/mine.2020001⟩. ⟨hal-01979939v2⟩

Share

Metrics

Record views

50

Files downloads

12