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Abstract
Stochastic approximation methods play a central role in maximum likelihood estimation

problems involving intractable likelihood functions, such as marginal likelihoods arising in
problems with missing or incomplete data, and in parametric empirical Bayesian estimation.
Combined with Markov chain Monte Carlo algorithms, these stochastic optimisation methods
have been successfully applied to a wide range of problems in science and industry. However,
this strategy scales poorly to large problems because of methodological and theoretical difficul-
ties related to using high-dimensional Markov chain Monte Carlo algorithms within a stochastic
approximation scheme. This paper proposes to address these difficulties by using unadjusted
Langevin algorithms to construct the stochastic approximation. This leads to a highly efficient
stochastic optimisation methodology with favourable convergence properties that can be quan-
tified explicitly and easily checked. The proposed methodology is demonstrated with three
experiments, including a challenging application to high-dimensional statistical audio analysis
and a sparse Bayesian logistic regression with random effects problem.

1 Introduction
Maximum likelihood estimation (MLE) is central to modern statistical science. It is a cornerstone
of frequentist inference [7], and also plays a fundamental role in parametric empirical Bayesian
inference [11, 13]. For simple statistical models, MLE can be performed analytically and exactly.
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However, for most models, it requires using numerical computation methods, particularly optimisa-
tion schemes that iteratively seek to maximise the likelihood function and deliver an approximate
solution. Following decades of active research in computational statistics and optimisation, there
are now several computationally efficient methods to perform MLE in a wide range of classes of
models [32, 8].

In this paper we consider MLE in models involving incomplete or “missing” data, such as hid-
den, latent or unobserved variables, and focus on Expectation Maximisation (EM) optimisation
methods [18], which are the predominant strategy in this setting . While the original EM optimi-
sation methodology involved deterministic steps, modern EM methods are mainly stochastic [49].
In particular, they typically rely on a Robbins-Monro stochastic approximation (SA) scheme that
uses a Monte Carlo stochastic simulation algorithm to approximate the gradients that drive the
optimisation procedure [48, 17, 37, 30]. In many cases, SA methods use Markov chain Monte Carlo
(MCMC) algorithms, leading to a powerful general methodology which is simple to implement, has
a detailed convergence theory [2], and can address a wide range of moderately low-dimensional
models. Alternatively, some stochastic EM schemes use a Gibbs sampling algorithm [12], however
this requires running several fully converged MCMC chains and can be significantly more compu-
tationally expensive as a result.

The expectations and demands on SA methods constantly rise as we seek to address larger
problems and provide stronger theoretical guarantees on the solutions delivered. Unfortunately,
existing SA methodology and theory do not scale well to large problems. The reasons are twofold.
First, the family of MCMC kernels driving the SA scheme needs to satisfy uniform geometric er-
godicity conditions that are usually difficult to verify for high-dimensional MCMC kernels. Second,
the existing theory requires using asymptotically exact MCMC methods. In practice, these are
usually high-dimensional Metropolis-Hastings methods such as the Metropolis-adjusted Langevin
algorithm [51] or Hamiltonian Monte Carlo [33, 22], which are difficult to calibrate within the SA
scheme to achieve a prescribed acceptance rate. For these reasons, practitioners rarely use SA
schemes in high-dimensional settings.

In this paper, we propose to address these limitations by using inexact MCMC methods to
drive the SA scheme, particularly unadjusted Langenvin algorithms, which have easily verifiable
geometric ergodicity conditions, and are easy to calibrate [21, 15]. This will allow us to design a
high-dimensional stochastic optimisation scheme with favourable convergence properties that can
be quantified explicitly and easily checked.

Our contributions are structured as follows: Section 2 formalises the class of MLE problems con-
sidered and presents the proposed stochastic optimisation method, which is based on a SA approach
driven by an unadjusted Langevin algorithm. Section 3 presents three numerical experiments that
demonstrate the proposed methodology in a variety of scenarios. Detailed theoretical convergence
results for the method are reported in Section 4, which also describes a generalisation of the pro-
posed methodology and theory to other inexact Markov kernels. The online supplementary material
includes additional theoretical results and some details on computational aspects.

2 The stochastic optimisation via unadjusted Langevin method
The proposed Stochastic Optimisation via Unadjusted Langevin (SOUL) method is useful for solv-
ing maximum likelihood estimation problems involving intractable likelihood functions. The method
is a SA iterative scheme that is driven by an unadjusted Langevin MCMC algorithm. Langevin algo-
rithms are very efficient in high dimensions and lead to an SA scheme that inherits their favourable

2



convergence properties.

2.1 Maximum marginal likelihood estimation
Let Θ be a convex closed set in RdΘ . The proposed optimisation method is well-suited for solving
maximum likelihood estimation problems of the form

θ? ∈ arg max
θ∈Θ

log p(y|θ)− g(θ) , (1)

where the parameter of interest θ is related to the observed data y ∈ Y by a likelihood function
p(y, x|θ) involving an unknown quantity x ∈ Rd, which is removed from the model by marginalisa-
tion. More precisely, we consider problems where the resulting marginal likelihood

p(y|θ) =
∫
Rd
p(y, x|θ)dx ,

is computationally intractable, and focus on models where the dimension of x is large, making the
computation of (1) even more difficult. For completeness, we allow the use of a penalty function
g : Θ→ R, or set g = 0 to recover the standard maximum likelihood estimator.

As mentioned previously, the maximum marginal likelihood estimation problem (1) arises in
problems involving latent or hidden variables [18]. It is also central to parametric empirical
Bayes approaches that base their inferences on the pseudo-posterior distribution p(x|y, θ?) =
p(y, x|θ?)/p(y|θ?) [11]. Moreover, the same optimisation problem also arises in hierarchical Bayesian
maximum-a-posteriori estimation of θ given y, with marginal posterior p(θ|y) ∝ p(y|θ)p(θ) where
p(θ) denotes the prior for θ; in that case g(θ) = − log p(θ) [7].

Finally, in this paper we assume that log p(y, x|θ) is continuously differentiable with respect
to x and θ, and that g is also continuously differentiable with respect to θ. A generalisation of the
proposed methodology to non-smooth models is presented in a forthcoming paper [53] that focuses
on non-smooth statistical imaging models.

2.2 Stochastic approximation methods
The scheme we propose to solve the optimisation problem (1) is derived in the SA framework [17],
which we recall below.

Starting from any θ0 ∈ Θ, SA schemes seek to solve (1) iteratively by computing a sequence
(θn)n∈N associated with the recursion

θn+1 = ΠΘ[θn + δn+1(∆θn −∇g(θn))] , (2)

where ∆θn is some estimator of the intractable gradient θ 7→ ∇θ log p(y|θ) at θn, ΠΘ denotes
the projection onto Θ, and (δn)n∈N∗ ∈ (R∗+)N∗ is a sequence of stepsizes. From an optimisation
viewpoint, iteration (2) is a stochastic generalisation of the projected gradient ascent iteration [8]
for models with intractable gradients. For n ∈ N, Monte Carlo estimators ∆θn for ∇θ log p(y|θ) at
θn are derived from the identity

∇θ log p(y|θ) =
∫
Rd

∇θp(x, y|θ)
p(x, y|θ) p(x|y, θ)dx

=
∫
Rd
∇θ log p(x, y|θ)p(x|y, θ)dx ,
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which suggests to consider

∆θn = 1
mn

mn∑
k=1
∇θ log p(Xn

k , y|θn) , (3)

where (mn)n∈N ∈ (N∗)N is a sequence of batch sizes and (Xn
k )k∈{1,...,mn} is either an exact Monte

Carlo sample from p(x|y, θn) = p(x, y|θn)/p(y|θn), or a sample generated by using a Markov Chain
targeting this distribution.

Given a sequence (θn)Nn=1 generated by using (2), an approximate solution of (1) can then be
obtained by calculating, for example, the average of the iterates, i.e.,

θ̂N =
{

N∑
n=1

δnθn

}/{
N∑
n=1

δn

}
. (4)

This estimate converges almost surely to a solution of (1) as N → ∞ provided that some condi-
tions on p(y|θ), g, p(x|y, θ), (δn)n∈N, and ∆θn are fulfilled. Indeed, following three decades of active
research efforts in computational statistics and applied probability, we now have a good under-
standing of how to construct efficient SA schemes, and the conditions under which these schemes
converge (see for example [6, 29, 20, 1, 44, 2]).

SA schemes are successfully applied to maximum marginal likelihood estimation problems where
the latent variable x has a low or moderately low dimension. However, they are seldomly used them
when x is high-dimensional because this usually requires using high-dimensional MCMC samplers
that, unless carefully calibrated, exhibit poor convergence properties. Unfortunately, calibrating
the samplers within a SA scheme is challenging because the target density p(x|y, θn) changes at each
iteration. As a result, it is, for example, difficult to use Metropolis-Hastings algorithms that need
to achieve a prescribed acceptance probability range. Additionally, the conditions for convergence
of MCMC SA schemes are often difficult to verify for high-dimensional samplers. For these reasons,
practitioners rarely use SA schemes in high-dimensional settings.

As mentioned previously, we propose to address these difficulties by using modern inexact
Langevin MCMC samplers to drive (3). These samplers have received a lot of attention in the late
because they can exhibit excellent large-scale convergence properties and significantly outperform
their Metropolised counterparts (see [23] for an extensive comparison in the context of Bayesian
imaging models). Stimulated by developments in high-dimensional statistics and machine learning,
we now have detailed theory for these algorithms, including explicit and easily verifiable geometric
ergodicity conditions [21, 15, 26, 16]. This will allow us to design a stochastic optimisation scheme
with favourable convergence properties that can be quantified explicitly and easily checked.

2.3 Langevin Markov chain Monte Carlo methods
Langevin MCMC schemes to sample from p(x|y, θ) are based on stochastic continuous dynamics
(Xθ

t )t≥0 for which the target distribution p(x|y, θ) is invariant. Two fundamental examples are the
Langevin dynamics solution of the following Stochastic Differential Equation (SDE)

dXθ
t = −∇x log p(Xθ

t |y, θ)dt+
√

2dBt , (5)

or the kinetic Langevin dynamics solution of

dXθ
t = V θ

t , dV θ
t = −∇x log p(Xθ

t |y, θ)dt− V θ
tdt+

√
2dBt ,
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where (Bt)t≥0 is a standard d-dimensional Brownian motion. Under mild assumptions on p(x|y, θ),
these two SDEs admit strong solutions for which p(x|y, θ) and p(x, v|y, θ) = p(x|y, θ) exp(−‖v‖2 /2)/(2π)d/2
are the invariant probability measures. In addition, there are detailed explicit convergence results
for (Xθ

t )t≥0 to p(x|y, θ), and for (Xθ
t ,V

θ
t )t≥0 to p(x, v|y, θ), under different metrics [25, 24].

However, sampling path solutions for these continuous-time dynamics is not feasible in gen-
eral. Therefore discretizations have to be used instead. In this paper, we mainly focus on the
Euler-Maruyama discrete-time approximation of (5), known as the Unadjusted Langevin Algorithm
(ULA) [51], given by

Xk+1 = Xk − γ∇x log p(Xk|y, θ) +
√

2γZk+1 , (6)

where γ > 0 is the discretization time step and (Zk)k∈N∗ is a i.i.d. sequence of d-dimensional zero-
mean Gaussian random variables with covariance matrix identity. We will use this Markov kernel
to drive our SA schemes.

Observe that (6) does not exactly target p(x|y, θ) because of the bias introduced by the discrete-
time approximation. Computational statistical methods have traditionally addressed this issue by
complementing (6) with a Metropolis-Hastings correction step to asymptotically remove the bias
[51]. This correction usually deteriorates the convergence properties of the chain and may lead
to poor non-asymptotic estimation results, particularly in very high-dimensional settings (see for
example [23]). However, until recently it was considered that using (6) without a correction step
was too risky. Fortunately, recent works have established detailed theoretical guarantees for (6)
that do not require using any correction [15, 21]. A main contribution of this work is to extend
these guarantees to SA schemes that are driven by these highly efficient but inexact samplers.

2.4 The SOUL algorithm
We are now ready to present the proposed Stochastic Optimization via Unadjusted Langevin
(SOUL) methodology. Let (δn)n∈N∗ ∈ (R∗+)N∗ and (mn)n∈N ∈ (N∗)N be the sequences of step-
sizes and batch sizes defining the SA scheme (2)-(3). For any θ ∈ Θ and γ > 0, denote by Rγ,θ the
Langevin Markov kernel (6) to approximately sample from p(x|y, θ), and by (γn)n∈N ∈ (R∗+)N be
the sequence of discrete time steps used.

Formally, starting from some X0
0 ∈ Rd and θ0 ∈ Θ, for n ∈ N and k ∈ {0, . . . ,mn − 1},

we recursively define ({Xn
k : k ∈ {0, . . . ,mn}}, θn)n∈N on a probability space (Ω,F ,P), where

(Xn
k )k∈{0,...,mn} is a Markov chain with Markov kernel Rγn,θn , Xn

0 = Xn−1
mn−1

given Fn−1, and

θn+1 = ΠΘ

[
θn −

δn+1

mn

mn∑
k=1

∆θn(Xn
k )
]
,

where we recall that ΠΘ is the projection onto Θ, and for all n ∈ N

Fn = σ
(
θ0, {(X`

k)k∈{0,...,m`} : ` ∈ {0, . . . , n}}
)
, F−1 = σ(θ0) (7)

Note that such a construction is always possible by Kolmogorov extension theorem [34, Theorem
5.16], hence for any n ∈ N, θn+1 is Fn-measurable. Then, as mentioned previously, we compute a
sequence of approximate solutions of (1) by calculating, for example,

θ̂N =
{

N∑
n=1

δnθn

}/{
N∑
n=1

δn

}
. (8)
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The pseudocode associated with the proposed SOUL method is presented in Algorithm 1 below.
Observe that, for additional efficiency, instead of generating independent Markov chains at each SA
iteration, we warm-start the chains by setting Xn

0 = Xn−1
mn−1

, for any n ∈ {1, . . . , N}.

Algorithm 1 The Stochastic Optimization via Unadjusted Langevin (SOUL) method
1: Inputs:

θ0 ∈ Θ, X0
0 ∈ Rd, (γn)n∈N, (δn)n∈N, (mn)n∈N, N

2: for n ∈ {1, . . . , N − 1} do
3: if n ≥ 1 then
4: Xn

0 = Xn−1
mn−1

5: end if
6: for k ∈ {0, . . . ,mn − 1} do
7: Znk+1 ∼ N(0, Id)
8: Xn

k+1 = Xn
k + γn∇x log p(Xn

k |y, θn) +
√

2γnZnk+1
9: end for

10: ∆θn = 1
mn

∑mn
k=1∇θ log p(Xn

k , y|θn)
11: θn+1 = ΠΘ[θn + δn+1(∆θn −∇g(θn))]
12: end for
13: Outputs:

θ̂N =
{∑N

n=1 δnθn

}/{∑N
n=1 δn

}
To conclude, Section 3 below demonstrates the proposed methodology with three numerical ex-

periments related to high-dimensional logistic regression and statistical audio analysis with sparsity
promoting priors. A detailed theoretical analysis of the proposed SOUL method is reported in
Section 4. More precisely, we establish that if the cost function f(θ) = g(θ)− log p(y|θ) defining (1)
is convex, and if (γn)n∈N and (δn)n∈N go to 0 sufficiently fast, then E[f(θ̂N )] converges to minΘ f
and quantify the rate of convergence. Moreover, in the case where (γn)n∈N is held fixed, i.e. for all
n ∈ N, γn = γ, we show convergence to a neighbourhood of the solution, in the sense that there
exist explicit C,α > 0 such that lim supN→+∞ E[f(θ̂N )] − minΘ f ≤ Cγα. Finally, we also study
the important case where f is not convex. In that case, we use the results of [37] to establish that
(θn)n∈N converges almost surely to a stationary point of the projected ordinary differential equation
associated with ∇f and Θ. We postpone this result to Appendix B in the supplementary document
because it is highly technical.

3 Numerical results
We now demonstrate the proposed methodology with three experiments that we have chosen to
illustrate a variety of scenarios. Section 3.1 presents an application to empirical Bayesian logistic
regression, where (1) can be analytically shown to be a convex optimisation problem with an
unique solution θ?, and where we benchmark our MLE estimate against the solution obtained
by calculating the marginal likelihood p(y|θ) over a θ-grid by using an harmonic mean estimator.
Furthermore, Section 3.2 presents a challenging application related to statistical audio compressive
sensing analysis, where we use SOUL to estimate a regularisation parameter that controls the
degree of sparsity enforced, and where a main difficulty is the high-dimensionality of the latent
space (d = 2, 900). Finally, Section 3.3 presents an application to a high-dimensional empirical
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Bayesian logistic regression with random effects for which the optimisation problem (1) is not
convex. All experiments were carried out on an Intel i9-8950HK@2.90GHz workstation running
Matlab R2018a.

3.1 Bayesian Logistic Regression
In this first experiment we illustrate the proposed methodology with an empirical Bayesian logistic
regression problem [55, 45]. We observe a set of covariates {vi}

dy
i=1 ∈ Rd, and binary responses

{yi}
dy
i=1 ∈ {0, 1}, which we assume to be conditionally independent realisations of a logistic regres-

sion model: for any i ∈ {1, . . . , dy}, yi given β and vi has distribution Ber(s(vT
i β)), where β ∈ Rd

is the regression coefficient, Ber(α) denotes the Bernoulli distribution with parameter α ∈ [0, 1]
and s(u) = eu/(1 + eu) is the cumulative distribution function of the standard logistic distribution.
The prior for β is set to be N(θ1d, σ2 Id), the d-dimensional Gaussian distribution with mean θ1d
and covariance matrix σ2 Id, where θ is the parameter we seek to estimate, 1d = (1, . . . , 1) ∈ Rd,
σ2 = 5 and Id is the d-dimensional identity matrix. Following an empirical Bayesian approach, the
parameter θ is computed by maximum marginal likelihood estimation using Algorithm 1 with the
marginal likelihood p(y|θ) given by

p(y|θ) = (2πσ2)−d/2
∫
Rd


dy∏
i=1

s(vT
i β)yi(1− s(vT

i β))1−yi

 e−
‖β−θ1d‖2

2σ2 dβ . (9)

Lemma 7 in Appendix A of the supplementary document shows that (9) is log-concave with respect
to θ. We use the proposed SOUL methodology to estimate θ? for the Wisconsin Diagnostic Breast
Cancer dataset1, for which dy = 683 and d = 10, and where we suitably normalise the covariates.
In order to assess the quality of our estimation results, we also calculate p(y|θ) over a grid of values
for θ by using a truncated harmonic mean estimator.

To implement Algorithm 1 we derive the log-likelihood function

log p(y|β, θ) =
dy∑
i=1

{
yiv

T
i β − log(1 + e(vT

i β))
}
,

and obtain the following expressions for the gradients used in the MCMC steps (6) and SA steps
(2) respectively

∇β log p(β|y, θ) =
dy∑
i=1

{
yivi − s(vT

i β)vi
}
− (β − θ1d)

σ2 ,

∇θp(β, y|θ) = 〈1d, β − θ1d〉 /σ2 .

For the MCMC steps, we use a fixed stepsize γn = 8.34 × 10−5, and batch size mn = 1, for any
n ∈ N. On the other hand, we consider for the SA steps, the sequence of stepsizes δn = 60/n0.8,
Θ = [−100, 100] and θ0 = 0. Finally, we first run 100 burn-in iterations with fixed θn = θ0 to
warm-up the Markov chain, followed by 50 iterations of Algorithm 1 to warm-up the iterates. This
procedure is then followed by N = 106 iterations of Algorithm 1 to compute θ̂N .

1Available online: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+
(Diagnostic)
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Figure 1: Bayesian logistic regression - Evolution of the iterates θ̂n and θn for the proposed method during
(a) burn-in phase and (b) convergence phase. An estimate of θ?, the true maximiser of p(y|θ), is plotted as
a reference.

Figure 1(a) shows the evolution of the iterates θn during the first 100 iterations. Observe that
the sequence initially oscillates, and then stabilises close to θ? after approximately 50 iterations.
Figure 1(b) presents the iterates θn for n = 105, . . . , 106. For completeness, Figure 2 shows the
histograms corresponding to the marginal posteriors p(βj |y, v, θ̂N ), for j = 1, . . . , 10, obtained as
a by-product of Algorithm 1. In order to verify that the obtained estimate θ̂N is close to the

1

-1 0 1
0

1

2
2

0 1 2 3
0

0.5

1
3

-2 0 2
0

0.2

0.4

0.6
4

-2 0 2 4
0

0.2

0.4

0.6
5

-1 0 1 2 3
0

0.5

1

6

-1 0 1 2
0

0.2

0.4

0.6

7

0 1 2 3
0

0.5

1
8

0 1 2 3
0

0.5

1
9

-1 0 1 2 3
0

0.5

1
10

-1 0 1 2 3
0

0.5

1
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2× 106 Monte Carlo samples.
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true MLE θ? we use a truncated harmonic mean estimator (THME) [50] to calculate the marginal
likelihood p(y|θ) for a range of values of θ. Although obtaining the THME is usually computationally
expensive, it is viable in this particular experiment as β is low-dimensional. More precisely, given
n samples (βi)i∈{1,...,n} from p(β|y, θ), we obtain an approximation of p(y|θ) by computing

p̂(y|θ) = nVol(A)
/(

n∑
k=1

1A(βk)
p(βk, y|θ)

)
,

where A is a d-dimensional ball centered at the posterior mean β̄ = n−1∑n
k=1 βk, and with radius

set such that n−1∑n
i=1 1A(βi) ≈ 0.4. Using n = 6 × 105 samples, we obtain the approximation

shown in Figure 3(a), where in addition to the estimated points we also display a quadratic fit
(corresponding to a Gaussian fit in linear scale), which we use to obtain an estimate of θ? (the
obtained log-likelihood values are small because the dataset is large (dy = 683)).

To empirically study the estimation error involved, we replicate the experiment 103 times.
Figure 3 shows the obtained histogram of {θ̂N,i}1000

i=1 , where we observe that all these estimators
are very close to the true maximiser θ?. Besides, note that the distribution of the estimation error
is close to a Gaussian distribution, as expected for a maximum likelihood estimator. Also, there is
a small estimation bias of the order of 3%, which can be attributed to the discretization error of
SDE (5), and potentially to a small error in the estimation of θ?.

We conclude this experiment by using SOUL to perform a predictive empirical Bayesian analysis
on the binary responses. We split the original dataset into an 80% training set (ytrain, vtrain) of size
dtrain = 546, and a 20% test set (ytest, vtest) of size dtest = 137, and use SOUL to draw samples
from the predictive distribution p(ytest|ytrain, vtrain, vtest, θ̂N ). More precisely, we use SOUL to
simultaneously calculate θ̂N and simulate from p(β|ytrain, vtrain, θ̂N ), followed by simulation from
p(ytest|β, ytrain, vtrain, vtest). We then estimate the maximum-a-posteriori predictive response ŷtest,
and measure prediction accuracy against the test dataset by computing the error

ε = ‖ytest − ŷtest‖1/dtest =
dtest∑
i=1

∣∣ytest
i − ŷtest

i

∣∣ /dtest ,

and obtain ε = 2.2%. For comparison, Figure 4 below reports the error ε as a function of θ
(the discontinuities arise because of the highly non-linear nature of the model). Observe that the
estimated θ̂N produces a model that has a very good performance in this regard.

3.2 Statistical audio compression
Compressive sensing techniques exploit sparsity properties in the data to estimate signals from
fewer samples than required by the Nyquist–Shannon sampling theorem [10, 9]. Many real-world
data admit a sparse representation on some basis or dictionary. Formally, consider an `-dimensional
time-discrete signal z ∈ R` that is sparse in some dictionary Ψ ∈ R`×d, i.e, there exists a latent
vector x ∈ Rd such that z = Ψx and ‖x‖0 =

∑d
i=1 1R∗(xi) � `. This prior assumption can be

modelled by using a smoothed-Laplace distribution [38]

p(x|θ) ∝ exp
(
−θ

d∑
i=1

hλ(xi)
)
, (10)
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Figure 3: Bayesian logistic regression - (a) Estimated points of the marginal log-likelihood log p̂(y|θ) with
quadratic fit (corresponding to a Gaussian fit in linear scale). (b) Normalised histogram of θ̂N for 1000
repetitions of the experiment. An estimate of θ?, the maximiser of p̂(y|θ), is plotted as a reference.

where hλ is the Huber function given for any u ∈ R by

hλ(u) =
{
u2/2 if |u| ≤ λ ,

λ(|u| − λ/2) otherwise .
(11)

Acquiring z directly would call for measuring ` univariate components. Instead, a carefully designed
measurement matrix M ∈ Rp×`, with p� `, is used to directly observe a “compressed” signal Mz,
which only requires taking p measurements. In addition, measurements are typically noisy which
results in an observation y ∈ Rp modeled as y = Mz + w where we assume that the noise w has
distribution N(0, σ2 Ip), and therefore the likelihood function is given by

p(y|x) ∝ exp
(
−‖y −MΨx‖22 /(2σ

2)
)
,
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Figure 4: Bayesian logistic regression - Percentage of mislabelled binary observations in terms of θ. In
blue we show the value of θ̂N obtained with Algo. 1.

leading to the posterior distribution

p(x|y) ∝ exp
(
−‖y −MΨx‖22 /(2σ

2)− θ
d∑
i=1

hλ(xi)
)
.

To recover z from y, we then compute the maximum-a-posteriori estimate

x̂MAP ∈ argmin
x∈Rd

{
‖y −MΨx‖22 /2σ

2 + θ

d∑
i=1

hλ(xi)
}
, (12)

and set ẑMAP = Ψx̂MAP.
Following decades of active research, there are now many convex optimisation algorithms that

can be used to efficiently solve (12), even when d is very large [14, 43]. However, the selection of the
value of θ in (12) remains a difficult open problem. This parameter controls the degree of sparsity
of x and has a strong impact on estimation performance.

A common heuristic within the compressive sensing community is to set θcs = 0.1×‖(MΨ)ᵀy‖∞ /σ2,
where for any z ∈ R`, ‖z‖∞ = maxi∈{1,...,`} |zi|, as suggested in [35] and [28]; however, better results
can arguably be obtained by adopting a statistical approach to estimate θ.

The Bayesian framework offers several strategies for estimating θ from the observation y. In
this experiment we adopt an empirical Bayesian approach and use SOUL to compute the MLE θ?,
which is challenging given the high-dimensionality of the latent space.

To illustrate this approach, we consider the audio experiment proposed in [5] for the “Mary had a
little lamb” song. The MIDI-generated audio file z has ` = 319, 725 samples, but we only have access
to a noisy observation vector y with p = 456 random time points of the audio signal, corrupted
by additive white Gaussian noise with σ = 0.015. The latent signal x has dimension d = 2, 900
and is related to z by a dictionary matrix Ψ whose row vectors correspond to different piano notes

11



lasting a quarter-second long 2. The parameter λ for the prior (10) is set to λ = 4 × 10−5. We
used the heuristic θcs as the initial value for θ in our algorithm. To solve the optimisation problem
(12) we use the Gradient Projection for Sparse Reconstruction (GPSR) algorithm proposed in [28].
We use this solver because it is the one used in the online MATLAB demonstration of [5], however,
more modern algorithms could be used as well. We implemented Algorithm 1 using a fixed stepsize
γn = 6.9 × 10−6, a fixed batch size mn = 1, δn = 20n−0.8/d = 0.0069n−0.8 and 100 burn-in
iterations.

The algorithm converged in approximately 500 iterations, which were computed in only 325
milliseconds. Figure 5 (left), shows the first 250 iterations of the sequence θn and of the weighted
average θ̂n. Again, observe that the iterates oscillate for a few iterations and then quickly stabilise.
Finally, to assess the quality of the estimate θ̂N , Figure 5 (right) presents the reconstruction mean
squared error as a function of θ. The error is measured with respect to the reconstructed signal and
is given by MSE(x̂MAP) = ‖z? −Ψx̂MAP‖22/`, where z? is the true audio signal. Observe that the
estimated value θ̂N is very close to the value that minimises the estimation error, and significantly
outperforms the heuristic value θcs commonly used by practitioners.

0 50 100 150 200
Iteration (n)
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Figure 5: Statistical audio compression - Evolution of the the iterate θn and θ̂n with σ = 0.015 in log scale
(left). Reconstruction mean squared error (MSE) in dB as a function of the θ (right).

3.3 Sparse Bayesian logistic regression with random effects
Following on from the Bayesian logistic regression in Section 3.1, where p(y|θ) is log-concave and
hence θ? unique, we now consider a significantly more challenging sparse Bayesian logistic regression
with random effects problem. In this experiment p(y|θ) is no longer log-concave, so SOUL can
potentially get trapped in local maximisers. Furthermore, the dimension of θ in this experiment

2Each quarter-second sound can have one of 100 possible frequencies and be in 29 different positions in time.
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is very large (dθ = 1001), making the MLE problem even more challenging. This experiment was
previously considered by [2] and we replicate their setup.

Let {yi}
dy
i=1 ∈ {0, 1} be a vector of binary responses which can be modelled as dy conditionally

independent realisations of a random effect logistic regression model,

yi|x ∼ Ber
(
s(vT

i β + σzT
i x)

)
, i ∈ {1, . . . , dy} ,

where vi ∈ Rp are the covariates, β ∈ Rp is the regression vector, zi ∈ Rd are (known) loading
vectors, x are random effects and σ > 0. In addition, recall that Ber(α) denotes the Bernoulli
distribution with parameter α ∈ [0, 1] and s(u) = eu/(1+eu) is the cumulative distribution function
of the standard logistic distribution. The goal is to estimate the unknown parameters θ = (β,σ) ∈
Rp × (0,+∞) directly from {yi}

dy
i=1, without knowing the value of x, which we assume to follow a

standard Gaussian distribution, i.e. p(x) = exp{−‖x‖22 /2}/(2π)d/2. We estimate θ by MLE using
Algorithm 1 to maximize (1), with marginal likelihood given by

p(y|θ) =
∫
Rd

dy∏
i=1

s(vT
i β + σzT

i x)yi(1− s(vT
i β + σzT

i x))1−yip(x)dx ,

and we use the penalty function

g(θ) =
d∑
j=1

hλ(βj) , (13)

where hλ is the Huber function defined in (11).
We follow the procedure described in [2] to generate the observations {yi}

dy
i=1, with dy = 500,

p = 1000 and d = 53. The vector of regressors βtrue is generated from the uniform distribution on
[1, 5] and 98% of its coefficients are randomly set to zero. The variance σtrue of the random effect
is set to 0.1, and the projection interval for the estimated σ is [10−5,+∞). Finally, the parameter
λ in (13) is set to λ = 30. We emphasize at this point that θ is high-dimensional in this experiment
(dΘ = 1001), making the estimation problem particularly challenging.

The conditional log-likelihood function for this model is

log p(y|x, θ) =
dy∑
i=1

{
yi(vT

i β + σzT
i x)− log(1 + ev

T
i β+σzT

i x)
}
.

To implement Algorithm 1 we use the gradients

∇x log p(x|y, θ) =
dy∑
i=1

{
σzi(yi − s(vT

i β + σzT
i x))

}
− x ,

∇θ log p(x, y|θ) =
dy∑
i=1

{
(yi − s(vT

i β + σzT
i x))

[
vi
zT
i x

]}
.

Finally the gradient of the penalty function is given by

∂

∂βi
g(θ) =

{
βi |βi| ≤ λ
λ sign(βi), |βi| > λ

,
∂

∂σ
g(θ) = 0 ,

3We renamed some symbols for notation consistency. What we denote by vi, x, dy and d, is denoted in [2] by xi, U, N
and q respectively.
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where sign denotes the sign function, i.e. for any s ∈ R, sign(s) = |s|/s if s 6= 0, and sign(s) = 0
otherwise.

We use γn = 0.01, δn = n−0.95/d = 0.2× n−0.95, a fixed batch size mn = 1, β0 = 1p and σ0 = 1
as initial values. Moreover, we perform 104 burn-in iterations with a fixed value of θ0 = (β0,σ0) to
warm-up the Markov chain, and further 600 iterations of Algorithm 1 to warm-start the iterates.
Following on from this, we run N = 5× 104 iterations of Algorithm 1 to compute θ̂N . Computing
this estimates required 25 seconds in total.

Figure 6 shows the evolution of the iterates throughout iterations, where we used ‖β̂n‖0 as a
summary statistic to track the number of active components. Because the Huber penalty (11) does
not enforce exact sparsity on β, to estimate the number of active components we only consider
values that are larger than a threshold τ (we used τ = 0.005).
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Figure 6: Sparse Bayesian logistic regression with random effects - Evolution of the ‖β̂n‖0 and of the
iterate σ̂n for the proposed method. The true values are plotted in red as a reference.

From Figure 6 we observe that σ̂n converges to a value that is very close to σtrue, and that the
number of active components is also accurately estimated. Moreover, Figure 7 shows that most
active components were correctly identified. We also observe that β̂n stabilizes after approximately
6300 iterations, which correspond to 6300 Monte Carlo samples asmn=1. This is in close agreement
with the results presented in [2, Figure 5], where they observe stabilization after a similar number
of iterations of their highly specialised Polya-Gamma sampler.

It is worth emphasising at this point that [2] considers the non-smooth penalty g(θ) = λ‖β‖1
instead of (13). Consequently, instead of using the gradient of g, they resort to the so-called
proximal operator of g [14]. The generalisation of the SOUL methodology proposed in this paper
to models that have non-differentiable terms is addressed in Vidal and Pereyra [54], Vidal et al.
[53].
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Figure 7: Sparse Bayesian logistic regression with random effects - Support of the estimated β̂N compared
with the support of βtrue.

4 Theoretical convergence analysis for SOUL, and generali-
sation to other inexact MCMC kernels (SOUK)

In this section we state our main theoretical results for SOUL. For completeness, we first present
the results in a general stochastic optimisation setting and by considering a generic inexact MCMC
sampler, and then show that our results apply to the specific MLE optimisation problem (1), and
to the specific Langevin algorithm (6) used in SOUL.

4.1 Notations and convention
Denote by B(Rd) the Borel σ-field of Rd, F(Rd) the set of all Borel measurable functions on Rd and
for f ∈ F(Rd), ‖f‖∞ = supx∈Rd |f(x)|. For µ a probability measure on (Rd,B(Rd)) and f ∈ F(Rd)
a µ-integrable function, denote by µ(f) the integral of f with respect to µ. For f ∈ F(Rd), the V -
norm of f is given by ‖f‖V = supx∈Rd |f(x)|/V (x). Let ξ be a finite signed measure on (Rd,B(Rd)).
The V -total variation distance of ξ is defined as

‖ξ‖V = sup
f∈F(Rd),‖f‖V ≤1

∣∣∣∣∫
Rd
f(x)dξ(x)

∣∣∣∣ .
If V ≡ 1, then ‖ · ‖V is the total variation denoted by ‖ · ‖TV. Let µ be a finite signed measure, then
by the Hahn-Jordan theorem [19, Theorem D.1.3], there exists a pair of finite singular measures
µ+, µ− such that µ = µ+ − µ−. The total variation measure |µ| is given by |µ| = µ+ + µ−.

Let U be an open set of Rd. We denote by Ck(U,Rp) the set of Rp-valued k-differentiable
functions, respectively the set of compactly supported Rp-valued k-differentiable functions. Ck(U)
stands Ck(U,R). Let f : U → R, we denote by ∇f , the gradient of f if it exists. f is said to me
m-convex with m ≥ 0 if for all x, y ∈ Rd and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− (m/2) ‖x− y‖2 .

We recall that if f : U → R is twice differentiable at point a ∈ Rd, its Laplacian is given by
∆f(a) =

∑d
i=1(∂2f)/(∂x2

i )(a). For any A ⊂ Rd, we denote by ∂A the boundary of A. Let (Ω,F ,P)
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be a probability space. Denote by µ � ν if µ is absolutely continuous with respect to ν and
dµ/dν an associated density. Let µ, ν be two probability measures on (Rd,B(Rd)). Define the
Kullback-Leibler divergence of µ from ν by

KL (µ|ν) =
{∫

Rd
dµ
dν (x) log

(
dµ
dν (x)

)
dν(x) , if µ� ν

+∞ otherwise .

The complement of a set A ⊂ Rd, is denoted by Ac. We take the convention that
∏n
k=p = 1

and
∑n
k=p = 0 for n, p ∈ N, n < p. All densities are w.r.t. the Lebesgue measure unless stated

otherwise.

4.2 Stochastic Optimization with inexact MCMC methods
We consider the problem of minimizing a function f : Θ → R with Θ ⊂ RdΘ under the following
assumptions.

A1. Θ is a convex compact set and Θ ⊂ B(0,MΘ) with MΘ > 0.

A2. There exist an open set U ⊂ RdΘ and Lf ≥ 0 such that Θ ⊂ U, f ∈ C1(U,R) and satisfies for
any θ1, θ2 ∈ Θ

‖∇f(θ1)−∇f(θ2)‖ ≤ Lf‖θ1 − θ2‖ .

A3. For any θ ∈ Θ, there exist Hθ : Rd → RdΘ and a probability distribution πθ on (Rd,B(Rd))
satisfying that πθ(Hθ) < +∞ and for any θ ∈ Θ

∇f(θ) =
∫
Rd
Hθ(x)dπθ(x) .

In addition, (θ, x) 7→ Hθ(x) is measurable.

Note that for the maximum marginal likelihood estimation problem (1), f corresponds to θ 7→
− log(p(y|θ))+g(θ), for any θ ∈ Θ, Hθ : x 7→ ∇θ log(p(x, y|θ)) and πθ is the probability distribution
with density with respect to the Lebesgue measure x 7→ p(x|y, θ).

To minimize the objective function f we suggest the use of a SA strategy which extends the one
presented in Section 2. More precisely, motivated by the methodology described in Section 2, we
propose a SA scheme which relies on biased estimates of ∇f(θ) through a family of Markov kernels
{Kγ,θ, γ ∈ (0, γ̄] and θ ∈ Θ}, for γ̄ > 0, such that for any θ ∈ Θ and γ ∈ (0, γ̄], Kγ,θ admits an
invariant probability distribution πγ,θ on (Rd,B(Rd)). In the SOUL method, the Markov kernel
Kγ,θ stands for Rγ,θ for any γ ∈ (0, γ̄] and θ ∈ Θ, where Rγ,θ is the Markov kernel associated with
(6). We assume in addition that the bias associated to the use of this family of Markov kernels can
be controlled with respect to to γ uniformly in θ, i.e. for example there exists C > 0 such that for
all γ ∈ (0, γ̄] and θ ∈ Θ, ‖πγ,θ − πθ‖TV ≤ Cγα with α > 0.

Let now (δn)n∈N ∈ (R∗+)N and (mn)n∈N ∈ (N∗)N be sequences of stepsizes and batch sizes
which will be used to define the sequence relatively to the variable θ similarly to (2) and (3). Let
(γn)n∈N ∈ (R∗+)N be a sequence of stepsizes which will be used to get approximate samples from
πθn , similarly to (6). Starting from X0

0 ∈ Rd and θ0 ∈ Θ, we define on a probability space (Ω,F ,P),
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({Xn
k : k ∈ {0, . . . ,mn}}, θn)n∈N by the following recursion for n ∈ N and k ∈ {0, . . . ,mn − 1}

(Xn
k )k∈{0,...,mn} is a MC with kernel Kγn,θn and Xn

0 = Xn−1
mn−1

given Fn−1 ,

θn+1 = ΠΘ

[
θn −

δn+1

mn

mn∑
k=1

Hθn(Xn
k )
]
,

(14)

where ΠΘ is the projection onto Θ and Fn is defined as follows for all n ∈ N

Fn = σ
(
θ0, {(X`

k)k∈{0,...,m`} : ` ∈ {0, . . . , n}}
)
, F−1 = σ(θ0, X

0
0 ) (15)

where {(X`
k)k∈{0,...,m`} : ` ∈ {0, . . . , n}} is given by (14). Note that such a construction is always

possible by the Kolmogorov extension theorem [34, Theorem 5.16], and by (14), for any n ∈ N,
θn+1 is Fn-measurable. Then the sequence of approximate minimizers of f is given by (θ̂N )N∈N,
(8).

Under different sets of conditions on f,H, (δn)n∈N, (γn)n∈N and (mn)n∈N we obtain that (θn)n∈N
converges almost surely to an element of arg minΘ f . In particular in this section we consider the
case where f is assumed to be convex. We establish that if (γn)n∈N and (δn)n∈N go to 0 sufficiently
fast, E[f(θ̂N )]−minΘ f goes to 0 with a quantitative rate of convergence. In the case where (γn)n∈N
is held fixed, i.e. for all n ∈ N, γn = γ, we show that while E[f(θ̂N )] does not converge to 0, there
exists C,α > 0 such that lim supN→+∞ E[f(θ̂N )] − minΘ f ≤ Cγα. In the case where f is non-
convex, we apply some results from stochastic approximation [37] which establish that the sequence
(θn)n∈N converges almost surely to a stationary point of the projected ordinary differential equation
associated with ∇f and Θ. We postpone this result to Appendix B, since it involves a theoretical
background which we think is out of the scope of the main document.

4.3 Main results
We impose a stability condition on the stochastic process {(Xn

k )k∈{0,...,mn} : n ∈ N} defined by
(14) and that for any γ ∈ (0, γ̄] and θ ∈ Θ the iterates of Kγ,θ are close enough to πθ after a
sufficiently large number of iterations.

H1. There exists a measurable function V : Rd → [1,+∞) satisfying the following conditions.

(i) There exists A1 ≥ 1 such that for any n, p ∈ N, k ∈ {0, . . . ,mn}

E
[

Kp
γn,θn

V (Xn
k )
∣∣∣X0

0

]
≤ A1V (X0

0 ) , E
[
V (X0

0 )
]
< +∞ ,

where {(X`
k)k∈{0,...,m`} : ` ∈ {0, . . . , n}} is given by (14).

(ii) There exist A2, A3 ≥ 1, ρ ∈ [0, 1) such that for any γ ∈ (0, γ̄], θ ∈ Θ, x ∈ Rd and n ∈ N, Kγ,θ

has a stationary distribution πγ,θ and

‖δxKn
γ,θ − πγ,θ‖V ≤ A2ρ

nγV (x) , πγ,θ(V ) ≤ A3 .

(iii) There exists Ψ : R?+ → R+ such that for any γ ∈ (0, γ̄] and θ ∈ Θ

‖πγ,θ − πθ‖V 1/2 ≤ Ψ(γ) .
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H1-(ii) is an ergodicity condition in V -norm for the Markov kernel Kγ,θ uniform in θ ∈ Θ. There
exists an extensive literature on the conditions under which a Markov kernel is ergodic [41, 19]. H
1-(iii) ensures that the distance between the invariant measure πγ,θ of the Markov kernel Kγ,θ and
πθ can be controlled uniformly in θ. We show that this condition holds in the case of the Langevin
Monte Carlo algorithm in Proposition 23.

We now state our mains results.

Theorem 1 (Increasing batch size 1). Assume A1, A2, A3 hold and f is convex. Let (γn)n∈N,
(δn)n∈N be sequences of non-increasing positive real numbers and (mn)n∈N be sequences of positive
integers satisfying supn∈N δn < 1/Lf , supn∈N γn < γ̄ and

+∞∑
n=0

δn+1 = +∞ ,

+∞∑
n=0

δn+1Ψ(γn) < +∞ ,

+∞∑
n=0

δn+1/(mnγn) < +∞ . (16)

Let {(Xn
k )k∈{0,...,mn} : n ∈ N} and (θn)n∈N be given by (14). Assume in addition that H1 is

satisfied and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x). Then, the following statements
hold:

(a) (θn)n∈N converges almost surely to some θ? ∈ arg minΘ f ;

(b) furthermore, almost surely there exists C ≥ 0 such that for any n ∈ N∗{
n∑
k=1

δkf(θk)
/

n∑
k=1

δk

}
−min

Θ
f ≤ C

/(
n∑
k=1

δk

)
.

Proof. The proof is postponed to Appendix C.1.

Note that in (14), Xn
0 = Xn−1

mn−1
for n ∈ N∗. This procedure is referred to as warm-start in

the sequel. An inspection of the proof of Theorem 1 shows that Xn
0 could be any random variable

independent from Fn−1 for any n ∈ N with supn∈N∗ E [V (Xn
0 )] < +∞. It is not an option in the

fixed batch size setting of Theorem 3, where the warm-start procedure is crucial for the convergence
to occur.

We extend this theorem to non convex objective function see Theorem 8 in Appendix B. Under
the conditions of Theorem 1 with the additional assumption that ∂Θ is a smooth manifold we
obtain that (θn)n∈N converges almost surely to some point θ∗ such that ∇f(θ∗) + n = 0 with n = 0
if θ∗ ∈ int(Θ) and n ∈ T(θ∗, ∂Θ)⊥ if θ∗ ∈ ∂Θ, where T(θ, ∂Θ) is the tangent space of ∂Θ at point
θ ∈ ∂Θ, see [3, Chapter 2].

In the case where Kγ,θ = Rγ,θ is the Markov kernel associated with the Langevin update (6),
under appropriate conditions Proposition 23 shows that for any γ ∈ (0, γ̄] with γ̄ > 0, Ψ(γ) =
O(γ1/2). In that case, assume then that there exist a, b, c > 0 such that for any n ∈ N∗, δn = n−a,
γn = n−b and mn = dnce then (16) is equivalent to

a < 1 , a+ b/2 > 1 , a− b+ c > 1 . (17)

Suppose a ∈ [0, 1) is given, then the previous equation reads

b = 2(1− a) + ς1 , c = 3(1− a) + ς2 , ς2 > ς1 > 0 .
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This illustrates a trade-off between the intrinsic inaccuracy of our algorithm through the family of
Markov kernels (14) which do not exactly target πθ and the minimization aim of our scheme. Note
also that (δn)n∈N is allowed to be constant. This case yields γn = n−2−ς1 and mn =

⌈
n3+ς2

⌉
with

ς2 > ς1 > 0.
In our next result we derive an non-asymptotic upper-bound of (E[f(θ̂n)−minΘ f ])n∈N.

Theorem 2 (Increasing batch size 2). Assume A1, A2, A3 hold and f is convex. Let (γn)n∈N,
(δn)n∈N be sequences of non-increasing positive real numbers and (mn)n∈N be a sequence of positive
integers satisfying supn∈N δn < 1/Lf , supn∈N γn < γ̄. Let {(Xn

k )k∈{0,...,mn} : n ∈ N} be given by
(14). Assume in addition that H1 is satisfied and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤
V 1/2(x). Then, there exists (En)n∈N such that for any n ∈ N∗

E

[{
n∑
k=1

δkf(θk)
/

n∑
k=1

δk

}
−min

Θ
f

]
≤ En

/(
n∑
k=1

δk

)
,

with for any n ∈ N∗,

En = 2M2
Θ + 2B1MΘE

[
V 1/2(X0

0 )
] n−1∑
k=0

δk+1/(mkγk)

+ 2MΘ

n−1∑
k=0

δk+1Ψ(γk) + 4B2
1E
[
V (X0

0 )
] n−1∑
k=0

δ2
k+1/(mkγk)2

+ 4
n−1∑
k=0

δ2
k+1Ψ(γk)2 +B2

n−1∑
k=0

δ2
k+1/(mkγk)2 , (18)

where B1 and B2 are given in Lemma 11 and Lemma 12 respectively.

Proof. The proof is postponed to Appendix C.2.

We recall that in the case where Kγ,θ = Rγ,θ is the Markov kernel associated with the Langevin
update (6), under appropriate conditions Proposition 23 shows that for any γ ∈ (0, γ̄] with γ̄ > 0,
Ψ(γ) = O(γ1/2). In that case, if there exist a, b, c ≥ 0 such that for any n ∈ N∗, δn = n−a,
γn = n−b, mn = nc and (17) holds, the accuracy, respectively the complexity, of the algorithm
are of orders (

∑n
k=1 δk)−1 = O(na−1), respectively

∑n
k=0mk = O(n3(1−a)+ς2+1) for ς2 > 0.

Thus, for a fix target precision ε > 0, it requires that ε = O(na−1) and the complexity reads
O(ε−3 (log(1/ε)/(1− a))1+ς2). On the other hand, if we fix the complexity budget to N the accu-
racy is of order O(N−(3+(1+ς2)/(1−a))−1). These two considerations suggest to set a close to 0. In
the special case where a = 0, we obtain that the accuracy is of order O(n−1), which is similar to
the order identified in the deterministic gradient descent for convex functionals.

A case of interest is the fix stepsize setting, i.e. for all n ∈ N, γn = γ > 0. Assume that
(δn)n∈N is non-increasing limn→+∞ δn = 0 and limn→+∞mn = +∞. In addition, assume that∑
n∈N∗ δn = +∞ then, by [46, Problem 80, Part I], it holds that{

limn→+∞ [ (
∑n
k=1 δk/mk)/(

∑n
k=1 δk) ] = limn→+∞ 1/mn = 0 ;

limn→+∞
[(∑n

k=1 δ
2
k

)/
(
∑n
k=1 δk)

]
= limn→+∞ δn = 0 .
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Therefore, we obtain that

lim sup
n→+∞

E

[{
n∑
k=1

δkf(θk)
/

n∑
k=1

δk

}
−min f

]
≤ 2MΘΨ(γ) .

Similarly, if the stepsize is fixed and the number of Markov chain iterates is fixed, i.e. for all n ∈ N,
γn = γ and mn = m with γ > 0 and m ∈ N∗, we obtain that

lim sup
n→+∞

E

[{
n∑
k=1

δkf(θk)
/

n∑
k=1

δk

}
−min f

]
≤ Ξ1(γ) , (19)

with
Ξ1(γ) = 2B1MΘE

[
V 1/2(X0

0 )
]
/γ + 2MΘΨ(γ) .

However if (mn)n∈N is constant the convergence cannot be obtained using Theorem 1. Strengthening
the conditions of Theorem 1 and making use of the warm-start property of the algorithm we can
derive the convergence in that case.

We now are interested in the case where the batch size is fixed, i.e. mn = m0 for all n ∈ N.
For ease of exposition we only consider m0 = 1 and let X̃n+1 = Xn

1 for any n ∈ N. However the
general case can be adapted from the proof of the result stated below. More precisely we consider
the setting where the recursion (14) can be written for any n ∈ N as

X̃n+1 has distribution Kγn,θ̃n
(X̃n, ·) conditionally to F̃n ,

θ̃n+1 = ΠΘ
[
θ̃n − δn+1Hθ̃n

(X̃n+1)
]
,

(20)

with θ0 ∈ Θ, X̃0 ∈ Rd and where F̃n is given by

F̃n = σ
(
θ̃0, (X̃`)`∈{0,...,n}

)
. (21)

We consider the following assumption on the family {Hθ : θ ∈ Θ}.

A4. There exists LH ≥ 0 such that for any x ∈ Rd and θ1, θ2 ∈ Θ,

‖Hθ1(x)−Hθ2(x)‖ ≤ LH‖θ1 − θ2‖V 1/2(x) .

We consider a similar property as A4 on the family of Markov kernels {Kγ,θ, γ ∈ (0, γ̄] , θ ∈ Θ},
which weakens the assumption [2, H6].

H2. There exist a measurable function V : Rd → [1,+∞), Λ1 :
(
R∗+
)2 → R+ and Λ2 :

(
R∗+
)2 → R+

such that for any γ1, γ2 ∈ (0, γ̄] with γ2 < γ1, θ1, θ2 ∈ Θ, x ∈ Rd and a ∈ [1/4, 1/2]

‖δxKγ1,θ1 − δxKγ2,θ2‖V a ≤ [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖]V 2a(x) .

The following theorem ensures convergence properties for (θn)n∈N similar to the ones of Theo-
rem 1. The proof of this result is based on a generalization of [30, Lemma 4.2] for inexact MCMC
schemes.
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Theorem 3 (Fixed batch size 1). Assume A1, A2, A3, A4 hold and f is convex. Let γ̄ > 0,
(γn)n∈N and (δn)n∈N be sequences of non-increasing positive real numbers satisfying supn∈N δn <
1/Lf , supn∈N γn < γ̄, supn∈N |δn+1 − δn|δ−2

n < +∞,
∑+∞
n=0 δn+1 = +∞ and

+∞∑
n=0

δn+1Ψ(γn) < +∞ ,

+∞∑
n=0

δ2
n+1γ

−2
n < +∞ ,

+∞∑
n=0

δn+1γ
−2
n+1 [Λ1(γn, γn+1) + δn+1Λ2(γn, γn+1)] < +∞ .

(22)

Let (X̃n)n∈N be given by (20). Assume in addition that H1 and H2 are satisfied and that for any
θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/4(x). Then the following statements hold:

(a) (θ̃n)n∈N converges almost surely to some θ? ∈ arg minΘ f ;

(b) furthermore, almost surely there exists C ≥ 0 such that for any n ∈ N∗{
n∑
k=1

δkf(θ̃k)
/

n∑
k=1

δk

}
−min

Θ
f ≤ C

/(
n∑
k=1

δk

)
.

Proof. The proof is postponed to Appendix C.3.

In the case where Kγ,θ = Rγ,θ is the Markov kernel associated with the Langevin update (6),
under appropriate conditions Proposition 23 and Proposition 24 show that for any γ1, γ2 ∈ (0, γ̄]
with γ̄ > 0 and γ1 > γ2, Ψ(γ1) = C1γ

1/2, Λ1(γ1, γ2) = C2(γ1/γ2 − 1) and Λ2(γ1, γ2) = C3γ
1/2
2 , for

C1,C2,C3 ≥ 0. Thus we obtain that the following series should converge

+∞∑
n=0

δn+1γ
1/2
n < +∞ ,

+∞∑
n=0

δ2
n+1/γ

2
n+1 < +∞ ,

+∞∑
n=0

δn+1(γn − γn+1)/γ3
n+1 < +∞ .

(23)

If there exist a, b > 0 such that δn = n−a and γn = n−b, then (23) is satisfied if b ∈ (2(1− a), a− 1/2)
which is not empty if a > 5/6.

Theorem 4 (Fixed batch size 2). Assume A1, A2, A3, A4 hold and f is convex. Let (γn)n∈N,
(δn)n∈N be sequences of non-increasing positive real numbers and (mn)n∈N be a sequence of positive
integers satisfying supn∈N δn < 1/Lf and supn∈N γn < γ̄. Let (X̃n)n∈N be given by (20). Assume
in addition that H1 and H2 are satisfied and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/4(x).
Then, there exists (Ẽn)n∈N such that for any n ∈ N∗

E

[{
n∑
k=1

δkf(θk)
/

n∑
k=1

δk

}
−min

Θ
f

]
≤ Ẽn

/(
n∑
k=1

δk

)
,
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with for any n ∈ N∗,

Ẽn = 2MΘ + 2MΘ

n∑
k=0

δk+1Ψ(γk) + C3

n∑
k=0
|δk+1 − δk| γ−1

k

+ 2MΘC2

n∑
k=0

δk+1γ
−1
k+1

[
γ−1
k+1 {Λ1(γk, γk+1) + Λ2(γk, γk+1)δk+1}+ δk+1

]
+ C3

n∑
k=0

δ2
k+1γ

−1
k+1 + C3(δn+1/γn − δ0/γ0) + C1

n∑
k=0

δ2
k+1 .

where C1, C2 and C3 are given in Lemma 13, Lemma 16 and Lemma 15 respectively.

Proof. The proof is postponed to Appendix C.4.

Theorem 4 improves the conclusions of Theorem 2 in the case where γn = γ > 0 for any n ∈ N.
Indeed, in that case, similarly to (19), assuming that limn→+∞ δn = 0, supn∈N |δn+1 − δn| δ−2

n <
+∞, Λ1(t, t) = 0 for any t > 0, we obtain that for all n ∈ N

lim sup
n→+∞

E

[{
n∑
k=1

δkf(θk)
/

n∑
k=1

δk

}
−min f

]
≤ Ξ2(γ) ,

with Ξ2(γ) = 2MΘΨ(γ) ≤ Ξ1(γ) = 2B1MΘE
[
V 1/2(X0

0 )
]
/γ + 2MΘΨ(γ). In the case where

supγ∈(0,γ̄] Ψ(γ) < +∞, Ξ2(γ) is of order O(Ψ(γ)) and Ξ1(γ) is of order O(γ−1). Therefore if
limγ→0 Ψ(γ) = 0, even in the fixed batch size setting, the minimum of the objective function f can
be approached with arbitrary precision ε > 0 by choosing γ small enough.

4.4 Application to SOUL
We now apply our results to the SOUL methodology introduced in Section 2 where the Markov
kernel Rγ,θ with γ ∈ (0, γ̄] and θ ∈ Θ is given by a Langevin Markov kernel and associated with
recursion (6). Setting for any θ ∈ Θ, πθ = p(·|y, θ), we consider the following assumption on the
family of probability distributions (πθ)θ∈Θ.

L1. For any θ ∈ Θ, there exists Uθ : Rd → R such that πθ admits a probability density function with
respect to to the Lebesgue measure proportional to x 7→ exp(−Uθ(x)). In addition (θ, x) 7→ Uθ(x)
is continuous, x 7→ Uθ(x) is differentiable for all θ ∈ Θ and there exists L ≥ 0 such that for any
x, y ∈ Rd,

sup
θ∈Θ
‖∇xUθ(x)−∇xUθ(y)‖ ≤ L ‖x− y‖ ,

and {‖∇xUθ(0)‖ : θ ∈ Θ} is bounded.

In the case where Kγ,θ = Rγ,θ for any γ ∈ (0, γ̄] and θ ∈ Θ, the first line of (14) can be rewritten
for any n ∈ N and k ∈ {0, . . . ,mn − 1}

Xn
k+1 = Xn

k − γn∇xUθn(Xn
k ) +

√
2γnZnk+1 , with Xn

0 = Xn−1
mn−1

if n ≥ 1 , (24)

given (γn)n∈N ∈ (0, γ̄]N, (mn)n∈N ∈ (N∗)N and (Znk )n∈N,k∈{1,...,mn} a family of i.i.d d-dimensional
zero-mean Gaussian random variables with covariance matrix identity. In the following propositions,
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we show that the results above hold by deriving sufficient conditions under which H1 and H2 are
satisfied.

Under L1, the Langevin diffusion defined by (5) admits a unique strong solution for any θ ∈ Θ.
Consider now the following additional tail condition on Uθ which ensures geometric ergodicity of
Rγ,θ for any θ ∈ Θ and γ ∈ (0, γ̄], with γ̄ which will be specified below.

L2. There exist m1 > 0 and m2, c, R1 ≥ 0 such that for any θ ∈ Θ and x ∈ Rd,

〈∇xUθ(x), x〉 ≥ m1‖x‖1B(0,R1)c(x) + m2‖∇xUθ(x)‖2 − c .

L3. There exists LU ≥ 0 such that for any x ∈ Rd and θ1, θ2 ∈ Θ

‖∇xUθ1(x)−∇xUθ2(x)‖ ≤ LU‖θ1 − θ2‖V (x)1/2 .

The next theorems assert that under L1, L2 and L3 the SOUL algorithm introduced in Section 2
satisfy H1 and H2 and therefore Theorem 1, Theorem 2, Theorem 3 and Theorem 4 can be applied
if in addition A1, A2, A3 and A4 hold.

Under L2 define for any x ∈ Rd

Ve(x) = exp
[
m1

√
1 + ‖x‖2/4

]
.

Theorem 5. Assume L1 and L2. Then, H1 holds with V ← Ve, γ̄ ← min(1, 2m2) and Ψ(γ) =
D4
√
γ where D4 is given in Proposition 23.

Proof. The proof is postponed to Appendix C.5.

Theorem 6. Assume L1, L2, L3 and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V
1/4
e (x). H2

holds with V ← Ve and γ̄ ← min(1, 2m2) and for any γ1, γ ∈ (0, γ̄], γ2 < γ1,

Λ1(γ1, γ2) = D5(γ1/γ2 − 1) , Λ2(γ1, γ2) = D5γ
1/2
2 ,

where D5 is given in Proposition 24 in Appendix C.6.

Proof. The proof is postponed to Appendix C.6.
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A Posterior convexity
Lemma 7. For any y ∈ {0, 1}dy , θ 7→ p(y|θ) given by (9) is log-concave.

Proof. Let θ ∈ R, then by (9), for any y ∈ R we have p(y|θ) =
∫
Rd p(y, β|θ)dβ with

p(y, β|θ) = (2πσ2)−d/2


dy∏
i=1

s(xT
i β)yi(1− s(xT

i β))1−yi

 e−
‖β−θ1d‖2

2σ2 .
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Therefore we have using that for any t ∈ R, 1− s(t) = s(−t)

log p(y, β|θ) = (−d/2) log(2πσ2)

+


dy∑
i=1

yi log(s(xT
i β)) + (1− yi) log(s(−xT

i β))

− ‖β − θ1d‖22σ2 .

Since yi ≥ 0, 1 − yi ≥ 0, (β, θ) 7→ ‖β − θ1d‖2, t 7→ log(s(t)) and t 7→ log(s(−t)) are convex, we
obtain that (β, θ) 7→ p(y, β|θ) is log-concave. Using the Prékopa–Leindler inequality [31, Theorem
7.1] we obtain that θ 7→ p(y|θ) is log-concave which concludes the proof.

B Non-convex objective function
In this section we turn to the case where f is non-convex. We recall that the normal space of a
sub-manifoldM⊂ RdΘ at point θ is given by

N(θ,M) =
{

T(θ,M)⊥ if θ ∈M ;
{0} otherwise ,

where T(θ,M) is the tangent space of the sub-manifoldM at point x, see [3].

Theorem 8. Assume A1, A2, A3 and that Θ is a dΘ dimensional connected differentiable man-
ifold with boundary and continuously differentiable outer normal. Let γ̄ > 0, (γn)n∈N, (δn)n∈N be
sequences of non-increasing positive real numbers and (mn)n∈N be a sequence of positive integers
such that supn∈N δn < 1/Lf , supn∈N γn < γ̄ and (16) are satisfied. Let {(Xn

k )k∈{0,...,mn} : n ∈ N}
be given by (14). Assume in addition that H1 is satisfied. Then (θn)n∈N defined by (14) converges
almost surely to some θ? ∈ {θ ∈ Θ : ∇f(θ) + n = 0, n ∈ N(θ, ∂Θ)}.

Proof. The proof is an application of [37, Chapter 5, Theorem 2.3] using the decomposition of the
error term considered in the proof of Theorem 1 and Theorem 3. Indeed we decompose the error
term ηn defined by (25) as ηn = δMn + Bn, where δMn is a martingale increment. Then, we only
need to show that the following sums converge

n∑
k=0

δ2
k+1E

[
‖δMk‖2

]
,

n∑
k=0

δk+1E [‖Bk‖] ,

which is established in Lemma 11 and Lemma 12.

C Postponed proofs
We first derive the following technical lemmas.

Lemma 9. Let t ∈ (0, 1) and γ ∈ (0, γ̄] with γ̄ > 0 then
∑
n∈N t

nγ ≤ t−γ̄ log−1(1/t)γ−1 and∑
n∈N nt

nγ ≤ t−γ̄ log−2(1/t)γ−2.
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Proof. Let t ∈ (0, 1) and γ ∈ (0, γ̄] with γ̄ > 0. Using that eu − 1 ≤ ueu for all u ≥ 0, we have∑
n∈N

tnγ = −(tγ − 1)−1 ≤ −γ−1 log−1(t) exp(− log(t)γ) ≤ t−γ̄ log−1(1/t)γ−1 ,

and ∑
n∈N

ntnγ = tγ(tγ − 1)−2 ≤ tγ{γ−1 log−1(t) exp(− log(t)γ)}2 ≤ t−γ̄ log−2(1/t)γ−2 ,

which completes the proof.

Lemma 10. For any probability measures µ, ν on B(Rd), measurable function V : Rd → [1,+∞)
such that µ(V ) + ν(V ) < +∞ and a ∈ (0, 1), we have

‖µ− ν‖V a ≤ 2‖µ− ν‖aV .

Proof. Let a ∈ (0, 1]. The statement is trivial if µ = ν. We just need to consider the case where
µ 6= ν. Define ξ = |µ− ν| /(|µ− ν| (Rd)). Using [19, Definition D.3.1] we get that

‖µ− ν‖V a = (1/2)ξ(V a)× |µ− ν| (Rd)
≤ (1/2)ξ(V )a × |µ− ν| (Rd)
≤ 2a−1‖µ− ν‖aV × [|µ− ν| (Rd)]1−a ,

which concludes the proof using that a ≤ 1.

Jensen’s inequality implies that H1-(i) holds for V ← V a with a ∈ (0, 1] since A1 ≥ 1. Lemma 10
implies that H1-(ii) holds replacing V by V a, ρ by ρa and A2 by 2A2. Similarly H1-(iii) holds
replacing V by V a and Ψ(γ) by 2Ψ(γ).

C.1 Proof of Theorem 1
Consider (ηn)n∈N defined for any n ∈ N by

ηn = m−1
n

mn∑
k=1
{Hθn(Xn

k )− πθn(Hθn)} . (25)

The proof of Theorem 1 relies on the two following lemmas. We consider the following decomposition
for any n ∈ N, ηn = η

(1)
n + η

(2)
n , where

η(1)
n = E [ηn|Fn−1 ] , η(2)

n = ηn − E [ηn|Fn−1 ] . (26)

We now give upper bounds on E[‖η(1)
n ‖], E[‖η(1)

n ‖2] and E[‖η(2)
n ‖2].

Lemma 11. Assume A1, A2, A3, H1 and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x).
Then we have for any n ∈ N

E
[
‖η(1)
n ‖

]
≤ B1E

[
V 1/2(X0

0 )
]
/(mnγn) + Ψ(γn) ;

E
[
‖η(1)
n ‖2

]
≤ 2B2

1E
[
V (X0

0 )
]
/(mnγn)2 + 2Ψ(γn)2 ,

with
B1 = 2A1A2ρ

−γ̄/ log(1/ρ) .
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Proof. Using the definition of (Fn)n∈N, see (15), the Markov property, H1-(ii)-(iii), Lemma 10,
Jensen’s inequality and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x), we have for any n ∈ N∗

‖E [ηn|Fn−1 ] ‖ ≤ m−1
n

mn∑
k=1

∥∥Kk
γn,θnHθn(Xn

0 )− πθn (Hθn)
∥∥

≤ m−1
n

mn∑
k=1

∥∥∣∣δXn0 Kk
γn,θn − πθn

∣∣ (Hθn)
∥∥

≤ m−1
n

mn∑
k=1

∣∣δXn0 Kk
γn,θn − πθn

∣∣ (‖Hθn‖)

≤ m−1
n

mn∑
k=1

{
‖δXn0 Kk

γn,θn − πγn,θn‖V 1/2
}

+ ‖πγn,θn − πθn‖V 1/2

≤ m−1
n

mn∑
k=1

{
2A2ρ

kγnV 1/2(Xn
mn) + Ψ(γn)

}
≤

2A2ρ
−γ̄V 1/2(Xn

mn)
log(1/ρ)γnmn

+ Ψ(γn) ,

where for the last inequality we have used Lemma 9. In a similar manner, we have∥∥E [η0
∣∣X0

0
]∥∥ ≤ 2A2ρ

−γ̄V 1/2(X0
0 )

log(1/ρ)γ0m0
+ Ψ(γ0) .

We conclude using H1-(i) and that (a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ R.

Lemma 12. Assume A1, A2, A3, H1 and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x).
Then we have for any n ∈ N

E
[
‖η(2)
n ‖2

]
≤ B2m

−2
n γ−1

n

(
mn + γ−1

n E
[
V (X0

0 )
])

) ,

with B2 = 2(1 + γ̄)2 max(B2,1, B2,2) and

B2,1 = 24A2
2(1− ρ1/2)−2A3 ,

B2,2 = 4A1

[
1 + 6A2

2(1− ρ1/2)−2 {A2(1− ρ)−1 + 2
}

+A2
2 log−2(1/ρ) +A2

3

]
.

Proof. Let n ∈ N∗. We have using the Cauchy-Schwarz inequality

E

∥∥∥∥∥
mn∑
k=1
{Hθn(Xn

k )− E [Hθn(Xn
k )|Fn−1 ]}

∥∥∥∥∥
2


≤ 2E

∥∥∥∥∥
mn∑
k=1
{Hθn(Xn

k )− πγn,θn(Hθn)}

∥∥∥∥∥
2


+ 2E

∥∥∥∥∥
mn∑
k=1
{E [Hθn(Xn

k )|Fn−1 ]− πγn,θn(Hθn)}

∥∥∥∥∥
2
 (27)
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Using the Markov property, H1-(i)-(ii), Lemma 10, Lemma 9 and that for any θ ∈ Θ and x ∈ Rd,
‖Hθ(x)‖ ≤ V 1/2(x) we obtain that

E

∥∥∥∥∥
mn∑
k=1
{E [Hθn(Xn

k )|Fn−1 ]− πγn,θn(Hθn)}

∥∥∥∥∥
2


≤ E

∣∣∣∣∣
mn∑
k=1

E
[
‖δXn0 Rγn,θn − πγn,θn‖V 1/2

∣∣Fn−1
]∣∣∣∣∣

2


≤ 4A2
2E

∣∣∣∣∣E [V 1/2(Xn
0 )
∣∣∣Fn−1

] mn∑
k=1

ρkγn/2

∣∣∣∣∣
2


≤ 4A1A
2
2γ
−2
n ρ−2γ̄ log−2(1/ρ)E

[
V (X0

0 )
]
. (28)

We now give an upper-bound on the first term in the right-hand side of (27). Consider for any
n ∈ N the Euclidean division of mn by d1/γne there exist qn ∈ N and rn ∈ {0, . . . , d1/γne − 1}
such that mn = qn d1/γne+ rn. Therefore using the Cauchy-Schwarz inequality we can derive the
following decomposition

E

∥∥∥∥∥
mn∑
k=1

Hθn(Xn
k )− πγn,θn(Hθn)

∥∥∥∥∥
2
 ≤ 2E


∥∥∥∥∥∥
rn∑
j=1

Hθn(Xn
j+qnd1/γne)− πγn,θn(Hθn)

∥∥∥∥∥∥
2


+ 2E


∥∥∥∥∥∥
d1/γne∑
j=1

qn−1∑
k=0

Hθn(Xn
j+kd1/γne)− πγn,θn(Hθn)

∥∥∥∥∥∥
2


≤ 2E


∥∥∥∥∥∥
rn∑
j=1

Hθn(X̄j,n
qn )− πγn,θn(Hθn)

∥∥∥∥∥∥
2


+ 2 d1/γne
d1/γne∑
j=1

E

∥∥∥∥∥
qn−1∑
k=0

Hθn(X̄j,n
k )− πγn,θn(Hθn)

∥∥∥∥∥
2
(29)

Setting for any j ∈ {1, . . . , d1/γne} and k ∈ {0, . . . , qn − 1}, X̄j,n
k = Xn

j+kd1/γne. We now bound
the two terms in the right-hand side. First, using the Cauchy-Schwarz inequality and H1-(i)-(iii),
the fact that rn ≤ d1/γne and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x) we have

E


∥∥∥∥∥∥
rn∑
j=1

Hθn(X̄j,n
qn )− πγn,θn(Hθn)

∥∥∥∥∥∥
2
 ≤ rn rn∑

j=1
E
[∥∥Hθn(X̄j,n

qn )− πγn,θn(Hθn)
∥∥2]

≤ d1/γne2
(
2A1E

[
V (X0

0 )
]

+ 2A2
3
)
. (30)

Now consider the solution of the Poisson equation [39, Section 17.4.1] associated with Kd1/γneγn,θn
,
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x 7→ Ĥγn,θn(x) defined for any x ∈ Rd by

Ĥγn,θn(x) =
∑
`∈N

(
K`d1/γne
γn,θn

Hθn(x)− πγn,θn(Hθn)
)
.

Note that by H1-(ii), Lemma 10 and since for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x), we have
that for any x ∈ Rd ∥∥∥Ĥγn,θn(x)

∥∥∥ ≤ 2A2(1− ρ1/2)−1V 1/2(x) , (31)

and in addition for any x ∈ Rd

Ĥγn,θn(x)−Kd1/γneγn,θn
Ĥγn,θn(x) = Hθn(x)− πγn,θn(Hθn) .

Therefore, we have for any j ∈ {1, . . . , d1/γne}

qn−1∑
k=0

(
Hθn(X̄j,n

k )− πγn,θn(Hθn)
)

=
qn−1∑
k=0

(
Ĥγn,θn(X̄j,n

k )−Kd1/γneγn,θn
Ĥγn,θn(X̄j,n

k )
)

=
qn−2∑
k=0

(
Ĥγn,θn(X̄j,n

k+1)−Kd1/γneγn,θn
Ĥγn,θn(X̄j,n

k )
)

+ Ĥγn,θn(X̄j,n
0 )−Kd1/γneγn,θn

Ĥγn,θn(X̄j,n
qn−1) . (32)

Combining the Cauchy-Schwarz inequality and (32) we obtain that

E

∥∥∥∥∥
qn−1∑
k=0

Hθn(X̄j,n
k )− πγn,θn(Hθn)

∥∥∥∥∥
2 ≤ 3(C1 + C2) , (33)

with
C1 = E

[∥∥∥Ĥγn,θn(X̄j,n
0 )
∥∥∥2

+ Kd1/γneγn,θn

∥∥∥Ĥγn,θn(X̄j,n
qn−1)

∥∥∥2
]

;

C2 = E

∥∥∥∥∥
qn−2∑
k=0

Ĥγn,θn(X̄j,n
k+1)−Kd1/γneγn,θn

Ĥγn,θn(X̄j,n
k )

∥∥∥∥∥
2 .

First, using (31) and H1-(i) we get that

C1 ≤ 4A2
2(1− ρ1/2)−2 {E [V (Xn

j )
]

+ E
[
Kγn,θnV (Xn

qn+j−1
]}

≤ 8A1A
2
2(1− ρ1/2)−2E

[
V (X0

0 )
]
. (34)

We now give an upper-bound on C2. For any j ∈ {1, . . . , rn} let (Gj,k)k∈{0,qn−2} generated by Fn−1
and the sequence of random variables Xn

0 , . . . , X
n
kd1/γne+j . Using the Markov property we have for

any k ∈ {0, . . . , qn − 2} and j ∈ {1, . . . , rn}

E
[
Ĥγn,θn(Xj,n

k+1)
∣∣∣Gj,k ] = Kd1/γneγn,θn

Ĥγn,θn(Xj,n
k ) .
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Therefore, for any j ∈ {1, . . . , rn}, Ĥγn,θn(Xj,n
k+1)−Kd1/γneγn,θn

Ĥγn,θn(Xj,n
k ) is a martingale increment

with respect to (Gj,k)k∈{0,qn−2}, Combining this result with the Markov property implies that for
any k ∈ {0, . . . , qn − 2} and j ∈ {1, . . . , rn},

C2 =
qn−2∑
k=0

E
[
Kd1/γneγn,θn

∥∥∥Ĥγn,θn(X̄j,n
k )−Kd1/γneγn,θn

Ĥγn,θn(X̄j,n
k )
∥∥∥2
]

=
qn−2∑
k=0

E
[
Kd1/γneγn,θn

∥∥∥Ĥγn,θn(X̄j,n
k )
∥∥∥2
−
∥∥∥Kd1/γneγn,θn

Ĥγn,θn(X̄j,n
k )
∥∥∥2
]
. (35)

Define for any x ∈ Rd, gn(x) = ‖Ĥγn,θn(x)‖2. Using (35), H1-(ii)-(iii) and (31) we obtain that

C2 =
qn−2∑
k=0

E
[
Kd1/γneγn,θn

∥∥∥Ĥγn,θn(X̄j,n
k )
∥∥∥2
−
∥∥∥Kd1/γneγn,θn

Ĥγn,θn(X̄j,n
k )
∥∥∥2
]

≤
qn−2∑
k=0

E
[
Kd1/γneγn,θn

∥∥∥Ĥγn,θn(X̄j,n
k )
∥∥∥2
]

≤ E

[
qn−2∑
k=0

E
[

K(k+1)d1/γne
γn,θn

gn(X̄j,n
0 )− πγn,θn(gn)

∣∣∣Gj,0 ]]+
qn−2∑
k=0

πγn,θn(gn)

≤ 4A2
2

(1− ρ1/2)2

{
qn−2∑
k=0

E
[
E
[
‖δXn

j
K(k+1)d1/γne
γn,θn

− πγn,θn‖V
∣∣∣Gj,0 ]]+

qn−2∑
k=0

πγn,θn(V )
}

≤ 4A2
2(1− ρ1/2)−2 {A2(1− ρ)−1E

[
V (Xn

j )
]

+ qnA3
}

≤ 4A2
2(1− ρ1/2)−2 {A1A2(1− ρ)−1E

[
V (X0

0 )
]

+ qnA3
}
. (36)

Therefore, using (34) and (36) in (33) we obtain that

E

∥∥∥∥∥
qn−1∑
k=0

Hθn(X̄j,n
k )− πγn,θn(Hθn)

∥∥∥∥∥
2

≤ 12A2
2(1− ρ1/2)−2 [{A1A2(1− ρ)−1E

[
V (X0

0 )
]

+ qnA3
}

+ 2E
[
V (X0

0 )
]]
. (37)

As a consequence, using (30) and (37) in (29) we get that

E

∥∥∥∥∥
mn∑
k=1

Hθn(Xn
k )− πγn,θn(Hθn)

∥∥∥∥∥
2
 ≤ 4 d1/γne2 (A1E

[
V (X0

0 )
]

+A2
3)

+ 24 d1/γne2A2
2(1− ρ1/2)−2 {A1E

[
V (X0

0 )
]

(A2(1− ρ)−1 + 2) + qnA3
}

≤
[
γ−2
n

(
A1E

[
V (X0

0 )
] [

24A2
2(1− ρ1/2)−2 {A2(1− ρ)−1 + 2

}
+ 4
]

+ 4A2
3

)
+24A2

2(1− ρ1/2)−2A3mn/γn

]
(1 + γ̄)2 (38)
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Combining (28) and (38) in (27) we obtain that

E

∥∥∥∥∥
mn∑
k=1

Hθn(Xn
k )− E [Hθn(Xn

k )]

∥∥∥∥∥
2
 ≤ 8γ−2

n A1A
2
2ρ
−2γ̄ log−2(1/ρ)E

[
V (X0

0 )
]

+ 2
[
γ−2
n

(
A1E

[
V (X0

0 )
] [

24A2
2(1− ρ1/2)−2 {A2(1− ρ)−1 + 2

}
+ 4
]

+ 4A2
3

)
+24A2

2(1− ρ1/2)−2A3mn/γn

]
(1 + γ̄)2

≤ 2(1 + γ̄)2
(
A1E

[
V (X0

0 )
] [

24A2
2(1− ρ1/2)−2 {A2(1− ρ)−1 + 2

}
+4
{

1 +A2
2 log−2(1/ρ)

}]
+ 4A2

3
)
γ−2
n + 48A2

2(1− ρ1/2)−2A3(1 + γ̄)2(mn/γn) ,

which concludes the proof for n 6= 0. The same inequality holds in the case where n = 0.

We now turn to the proof of Theorem 1.

Proof of Theorem 1. The proof is an application of [2, Theorem 2, Theorem 3].

(a) To apply [2, Theorem 2], it is enough to show that the following series converge almost surely

+∞∑
n=0

δn+1〈ΠΘ(θn − δn+1∇f(θn)), η(i)
n 〉 ,

+∞∑
n=0

δn+1η
(i)
n ,

+∞∑
n=0

δ2
n+1‖η(i)

n ‖2 .

where i ∈ {1, 2} and the sequences (η(1)
n )n∈N and (η(2)

n )n∈N are given in (27).
In the case where i = 1, since (ΠΘ(θn−δn+1∇f(θn)))n∈N is bounded, we are reduced to proving

that almost surely
∑+∞
n=0 δn+1‖η(1)

n ‖ < +∞. Using (16), Lemma 11 and Fubini-Tonelli’s theorem
we obtain that

E

[∑
n∈N

δn+1‖η(1)
n ‖

]
=
∑
n∈N

δn+1E
[
‖η(1)
n ‖

]
< +∞ . (39)

We consider the case where i = 2. Let (Sn)n∈N and (Tn)n∈N be defined for any n ∈ N by
Sn =

∑n
k=0 δk+1〈ΠΘ(θk − δk+1∇f(θk)), η(2)

k 〉 and Tn =
∑n
k=0 δk+1η

(2)
n are (Fn)n∈N-martingale by

definition of (η(2)
n )n∈N in (27) and (Fn)n∈N in (15). Therefore, using [56, Section 12.5], the Cauchy-

Schwarz inequality and that the sequence (ΠΘ(θn−δn+1∇f(θn)))n∈N is bounded, it suffices to show
that

∑+∞
n=0 δ

2
n+1E[‖η(2)

n ‖2] < +∞. Using Lemma 12 we get that

+∞∑
n=0

δ2
n+1E[‖η(2)

n ‖2] ≤ B2

(+∞∑
n=0

δ2
n+1/(mnγn) + E

[
V (X0

0 )
] +∞∑
n=0

δ2
n+1/(mnγn)2

)
.

Combining this result and (39) implies the stated convergence applying [2, Theorem 2].
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(b) Applying [2, Theorem 3], the Cauchy-Schwarz inequality and using A1 we obtain that almost
surely for any n ∈ N

n∑
k=1

δk

{
f(θk)−min

Θ
f
}

≤ ‖θ0 − θ?‖2

2 −
n−1∑
k=0

δk+1〈ΠΘ(θk − δk+1∇f(θk))− θ?, ηk〉+
n−1∑
k=0

δ2
k+1‖ηk‖2

≤ 2M2
Θ −

2∑
i=1

n−1∑
k=0

δk+1〈ΠΘ(θk − δk+1∇f(θk))− θ?, η(i)
k 〉+ 2

2∑
î=1

n−1∑
k=0

δ2
k+1‖η

(i)
k ‖

2 . (40)

which implies by the proof of (a) that supn∈N[
∑n
k=1 δk {f(θk)−minΘ f}] < +∞ almost surely. The

proof is then completed upon dividing (40) by
∑n
k=1 δk.

C.2 Proof of Theorem 2
Proof. Taking the expectation in (40) and using that η(2)

n is a martingale increment with respect
to (Fn)n∈N, we get that for every n ∈ N

E

[
n∑
k=1

δk

{
f(θk)−min

Θ
f
}]

≤ E

[
2M2

Θ −
n−1∑
k=0

δk+1〈ΠΘ(θk − δk+1∇f(θk))− θ?, ηk〉+
n−1∑
k=0

δ2
k+1‖ηk‖2

]

≤ 2M2
Θ + 2MΘ

n−1∑
k=0

δk+1E
[∥∥∥η(1)

k

∥∥∥]+ 2
n−1∑
k=0

δ2
k+1E

[∥∥∥η(1)
k

∥∥∥2
]

+ 2
n−1∑
k=0

δ2
k+1E

[∥∥∥η(2)
k

∥∥∥2
]

Combining this result, Lemma 11 and Lemma 12 completes the proof.

C.3 Proof of Theorem 3
We now introduce some tools needed for the proof. By A4 and H1-(i)-(ii), for any θ ∈ Θ and
γ ∈ (0, γ̄], there exists a function Ĥγ,θ : Rd → Rdθ solution of the Poisson equation,

(Id−Kγ,θ)Ĥγ,θ = Hθ − πγ,θ(Hθ) , (41)

defined for any x ∈ Rd by

Ĥγ,θ(x) =
∑
j∈N
{Kj

γ,θHθ(x)− πγ,θ(Hθ)} . (42)

Note that using H1-(ii) and Lemma 10 we have for any θ ∈ Θ and x ∈ Rd∥∥∥Ĥθ(x)
∥∥∥ ≤ CĤγ−1V 1/4(x) , CĤ = 8A2 log−1(1/ρ)ρ−γ̄/4 . (43)
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Define for any n ∈ N
η̃n = Hθn(X̃n+1)− πθ̃n(Hθ̃n

) . (44)
Using (41) an alternative expression of (η̃n)n∈N is given for any n ∈ N by

η̃n = Ĥγn,θ̃n
(X̃n+1)−Kγn,θ̃n

Ĥγn,θ̃n
(X̃n+1) + πγn,θ̃n(Hθ̃n

)− πθ̃n(Hθ̃n
)

= η̃(a)
n + η̃(b)

n + η̃(c)
n + η̃(d)

n ,

where
η̃(a)
n = Ĥγn,θ̃n

(X̃n+1)−Kγn,θ̃n
Ĥγn,θ̃n

(X̃n) ,

η̃(b)
n = Kγn,θ̃n

Ĥγn,θ̃n
(X̃n)−Kγn+1,θ̃n+1

Ĥγn+1,θ̃n+1
(X̃n+1) ,

η̃(c)
n = Kγn+1,θ̃n+1

Ĥγn+1,θ̃n+1
(X̃n+1)−Kγn,θ̃n

Ĥγn,θ̃n
(X̃n+1) ,

η̃(d)
n = πγn,θ̃n(Hθ̃n

)− πθ̃n(Hθ̃n
) .

(45)

To establish Theorem 3 we need to get estimates on moments of
∥∥∥η̃(i)
n

∥∥∥ for i ∈ {a, b, c, d}. It is the
matter of the following technical results.

Lemma 13. Assume A1, A2, A3, H1 and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/4(x).
Then we have for any n ∈ N, E

[
‖η̃n‖2

]
≤ C1, with

C1 = 2A1E
[
V 1/2(X̃0)

]
+ 2 sup

θ∈Θ
‖∇f(θ)‖2 .

Proof. Using (44), that ‖x+ y‖2 ≤ 2(‖x‖2 + ‖y‖2) for any x, y ∈ Rd, A1, A2, A3 and H1-(i) and
that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x), we get for any k ∈ N,

E
[
‖η̃k‖2

]
≤ 2E[‖Hθ̃k

(X̃k+1)‖2] + 2
[
πθ̃k(‖Hθ̃k

‖)
]2

≤ 2A1E
[
V 1/2(X̃0)

]
+ 2 sup

θ∈Θ
‖∇f(θ)‖2 .

Lemma 14. Assume A1, A2, A3, A4, H1, H2 and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤

V 1/4(x). Then we have for any n ∈ N, E
[∥∥∥η̃(a)

n

∥∥∥2
]
≤ C̃1γ

−2
n , with

C̃1 = A1C
2
Ĥ
E
[
V 1/2(X̃0)

]
.

Proof. By (45), using (43) and H1-(i) we get that for any n ∈ N∗

E
[
E
[∥∥∥η̃(a)

n

∥∥∥2
∣∣∣∣Fn ]]

≤ E
[
E
[∥∥∥Ĥγn,θ̃n

(X̃n+1)
∥∥∥2
∣∣∣∣Fn ]]− E

[∥∥∥Kγn,θ̃n
Ĥγn,θ̃n

(X̃n)
∥∥∥2
]

≤ A1C
2
Ĥ
γ−2
n E

[
V 1/2(X̃0)

]
,

which concludes the proof.
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Lemma 15. Assume A1, A2, A3, H1 and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/4(x).
Then the following statements hold.

(a) There exists C3 ≥ 0 such that for any n ∈ N and θ ∈ Θ

E

[∥∥∥∥∥
n∑
k=0

δk+1〈ak+1, η̃
(b)
k 〉

∥∥∥∥∥
]
≤ C3

[
n∑
k=0
|δk+1 − δk| γ−1

k +
n∑
k=0

δ2
k+1γ

−1
k + (δn+1/γn+1 − δ1/γ1)

]
.

with ak+1 = ΠΘ
[
θ̃k − δk+1∇f(θ̃k)

]
− θ?, θ? ∈ arg minΘ f and

C3 = A1CĤ(4MΘ + sup
θ∈Θ
‖∇f(θ)‖+ 1 + δ1Lf )E

[
V 1/4(X̃0)

]
.

(b) If (22) holds then
∑n
k=0 δk+1〈ak+1, η̃

(b)
k 〉 converges almost surely.

Proof. By (45) we have for any n ∈ N and θ ∈ Θ
n∑
k=0

δk+1〈ak+1, η̃
(b)
k 〉

=
n∑
k=0
〈δk+1ak+1,Kγk,θ̃k

Ĥγk,θ̃k
(X̃k)−Kγk+1,θ̃k+1

Ĥγk+1,θ̃k+1
(X̃k+1)〉

=
n∑
k=1
〈δk+1ak+1 − δkak,Kγk,θ̃k

Ĥγk,θ̃k
(X̃k)〉

− 〈δn+1an+1,Kγn+1,θ̃n+1
Ĥγn+1,θ̃n+1

(X̃n+1)〉

+ 〈δ1a1,Kγ0,θ̃0
Ĥγ0,θ̃0

(X̃0)〉 , (46)

In addition, we have for any n ∈ N, θ ∈ Θ using A1, A2, that ΠΘ is non-expansive, (20), H1-(i)
and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/4(x)

‖δn+1an+1 − δnan‖ ≤ 2MΘ |δn+1 − δn|+ δn+1 ‖an+1 − an‖
≤ 2MΘ |δn+1 − δn|+ (1 + δnLf ) ‖θn+1 − θn‖+ |δn+1 − δn| ‖∇f(θn+1)‖
≤ (2MΘ + sup

θ∈Θ
‖∇f(θ)‖) |δn+1 − δn|+ δ2

n+1(1 + δn+1Lf )V 1/4(X̃n+1) . (47)

(a) Combining (46), (47), (43), the Cauchy-Schwarz inequality and H1-(i) we get that

E

[∥∥∥∥∥
n∑
k=0

δk+1〈ak, η̃(b)
k 〉

∥∥∥∥∥
]
≤ (2MΘ + sup

θ∈Θ
‖∇f(θ)‖)A1CĤE

[
V 1/4(X̃0)

] n∑
k=0
|δk+1 − δk| γ−1

k

+A1CĤ(1 + δ1Lf )E
[
V 1/4(X̃0)

] n∑
k=0

δ2
k+1γ

−1
k

+ 2A1MΘCĤE
[
V 1/4(X̃0)

]
{δn+1/γn+1 + δ1/γ1} ,

which concludes the proof of Lemma 15-(a).
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(b) Assume now (22). We show that almost surely the first term in (46) is absolutely convergence
and the second term converges to 0.

Using (47), (43), the Cauchy-Schwarz inequality and (22) we get that

E

[+∞∑
k=1

∣∣∣〈δk+1ak+1 − δkak,Kγk,θ̃k
Ĥγk,θ̃k

(X̃k)〉
∣∣∣]

≤ (2MΘ + sup
θ∈Θ
‖∇f(θ)‖)A1CĤE

[
V 1/4(X̃0)

] +∞∑
k=0
|δk+1 − δk| γ−1

k

+A1CĤ(1 + δ1Lf )E
[
V 1/4(X̃0)

] +∞∑
k=0

δ2
k+1 < +∞ ,

which implies that (〈δk+1ak+1−δkak,Kγk,θ̃k
Ĥγk,θ̃k

(X̃k)〉)k∈N is absolutely convergent almost surely.

We have that Kγn+1,θ̃n+1
‖Ĥγn+1,θ̃n+1

(X̃n+1)‖ is upper-bounded using (43) by γ−1
n+1CĤKγn+1,θ̃n+1

V 1/4(X̃n+1).
It follows that we have for any θ ∈ Θ, ε > 0, using the Markov inequality, the Cauchy-Schwarz
inequality, (43) and (22)∑

n∈N
P
(
‖an+1‖ δn+1Kγn+1,θ̃n+1

‖Ĥγn+1,θ̃n+1
(X̃n+1)‖ ≥ ε

)
≤
∑
n∈N

P
(

2CĤMΘ δn+1 γ
−1
n+1 Kγn+1,θ̃n+1

V 1/4(X̃n+1) ≥ ε
)

≤ 4ε−2M2
ΘC

2
Ĥ
A1E

[
V 1/2(X̃0)

]∑
n∈N

δ2
nγ
−2
n < +∞ ,

Using the Borel-Cantelli lemma, we get limn→+∞〈δnanKγn,θ̃n
Ĥγn,θ̃n

(X̃n)〉 = 0 almost surely. This
completes the proof of convergence of the series

∑
k∈N δk+1〈ak+1, η̃

(b)
k 〉 for any θ ∈ Θ.

Lemma 16. Assume A1, A2, A3, A4, H1, H2 and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤
V 1/4(x). Then we have for any n ∈ N

E
[∥∥∥η̃(c)

n

∥∥∥] ≤ C2γ
−1
n+1

[
γ−1
n+1 {Λ1(γn, γn+1) + Λ2(γn, γn+1)δn+1}+ δn+1

]
,

with
C2 = 4A1A2 log−1(1/ρ)ρ−γ̄/2 max

[
LH , Cc,1 + 2A2 log−1(1/ρ)ρ−γ̄/2

]
, (48)

where Cc,1 is given by
Cc,1 = 4A1A2 log−1(1/ρ)ρ−γ̄/2E

[
V (X̃0)

]
. (49)

Proof. We start by giving an upper-bound on ‖πγ1,θ1 − πγ2,θ2‖V 1/2 for γ1, γ2 ∈ (0, γ̄] with γ1 > γ2
and, θ1, θ2 ∈ Θ. Let g : Rd → Rdθ be a measurable function satisfying supx∈Rd{‖g(x)‖ /V 1/2(x)} ≤
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1. Using H1-(i)-(ii), H2, Lemma 9 and Lemma 10, we get that for any γ1, γ2 ∈ (0, γ̄] with γ1 > γ2,
θ1, θ2 ∈ Θ and ` ∈ N∗

E
[∥∥K`

γ1,θ1g(X̃0)−K`
γ2,θ2g(X̃0)

∥∥]
=

∥∥∥∥∥∥
`−1∑
j=0

Kj
γ1,θ1

(Kγ1,θ1 −Kγ2,θ2)
{

K(`−1−j)
γ2,θ2

g(x)− πγ2,θ2(f)
}∥∥∥∥∥∥

≤ 2A2

`−1∑
j=0

ρ(`−1−j)γ2/2
∥∥∥Kj

γ1,θ1
(Kγ1,θ1 −Kγ2,θ2)V 1/2(x)

∥∥∥
≤ 2A2

`−1∑
j=0

ρ(`−1−j)γ2/2 [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖] sup
k∈N

E
[
Kk
γ1,θ1V (X̃0)

]
≤ 4A1A2 log−1(1/ρ)ρ−γ̄/2γ−1

2 [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖]E
[
V (X̃0)

]
.

Taking ` → +∞ and using H1-(ii), we obtain that for any θ1, θ2 ∈ Θ and γ1, γ2 ∈ (0, γ̄] with
γ1 > γ2,

‖πγ1,θ1 − πγ2,θ2‖V 1/2 ≤ Cc,1γ−1
2 [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖] , (50)

with Cc,1 given by(49). In what follows we give an upper bound on
∥∥∥Kγ1,θ1Ĥγ1,θ1(x)−Kγ2,θ2Ĥγ2,θ2(x)

∥∥∥
for any θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄] with γ1 > γ2 and x ∈ Rd. By (42) we have for any θ1, θ2 ∈ Θ,
γ1, γ2 ∈ (0, γ̄] with γ1 > γ2 and x ∈ Rd,∥∥∥Kγ1,θ1Ĥγ1,θ1(x)−Kγ2,θ2Ĥγ2,θ2(x)

∥∥∥
=

∥∥∥∥∥∑
`∈N∗

{
K`
γ1,θ1Hθ1(x)− πγ1,θ1(Hθ1)

}
−
∑
`∈N∗

{
K`
γ2,θ2Hθ2(x)− πγ2,θ2(Hθ2)

}∥∥∥∥∥
≤
∑
`∈N∗

∥∥{K`
γ1,θ1Hθ1(x)− πγ1,θ1(Hθ1)

}
−
{

K`
γ2,θ2Hθ2(x)− πγ2,θ2(Hθ2)

}∥∥ .
We now bound each term of the series in the right hand side. For any measurable functions g1, g2
with gi : Rd → Rdθ and such that supx∈Rd ‖gi(x)‖ /V 1/4(x) < +∞ with i ∈ {1, 2}, θ1, θ2 ∈ Θ,
γ1, γ2 ∈ (0, γ̄] with γ1 > γ2, x ∈ Rd and ` ∈ N∗, it holds that

K`
γ1,θ1g1(x)−K`

γ2,θ2g2(x) = K`
γ1,θ1g1(x)−K`

γ2,θ2g1(x) + K`
γ2,θ2(g1(x)− g2(x))

=
`−1∑
j=0

{
Kj
γ1,θ1

− πγ1,θ1

}
(Kγ1,θ1 −Kγ2,θ2)

{
K`−1−j
γ2,θ2

g1(x)− πγ2,θ2(g1)
}

+
`−1∑
j=0

πγ1,θ1

{
K`−1−j
γ2,θ2

g1(x)−K`−j
γ2,θ2

g1(x)
}

+ K`
γ2,θ2(g1(x)− g2(x))

=
`−1∑
j=0

{
Kj
γ1,θ1

− πγ1,θ1

}
(Kγ1,θ1 −Kγ2,θ2)

{
K`−1−j
γ2,θ2

g1(x)− πγ2,θ2(g1)
}

− πγ1,θ1(K`
γ2,θ2g1(x)− g1(x)) + K`

γ2,θ2(g1(x)− g2(x)) .
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Setting g1 = Hθ1 − πγ1,θ1(Hθ1) and g2 = Hθ2 − πγ2,θ2(Hθ2), we obtain that

K`
γ1,θ1g1(x)−K`

γ2,θ2g2(x)

=
`−1∑
j=0

{
Kj
γ1,θ1

− πγ1,θ1

}
(Kγ1,θ1 −Kγ2,θ2)

{
K`−1−j
γ2,θ2

Hθ1(x)− πγ2,θ2(Hθ1)
}

+ Ξ` , (51)

where

Ξ` = −πγ1,θ1(K`
γ2,θ2Hθ1(x)−Hθ1(x))

+ K`
γ2,θ2

[
Hθ1(x)−Hθ2(x) + πγ2,θ2(Hθ2)− πγ1,θ1(Hθ1)

]
= −πγ1,θ1K`

γ2,θ2Hθ1(x) + K`
γ2,θ2

[
Hθ1(x)−Hθ2(x) + πγ2,θ2(Hθ2)

]
= (πγ2,θ2 − πγ1,θ1)(K`

γ2,θ2Hθ1(x)− πγ2,θ2(Hθ1))− πγ2,θ2(Hθ1)
+ K`

γ2,θ2

[
Hθ1(x)−Hθ2(x) + πγ2,θ2(Hθ2)

]
= (πγ2,θ2 − πγ1,θ1)(K`

γ2,θ2Hθ1(x)− πγ2,θ2(Hθ1)) (52)
+ K`

γ2,θ2(Hθ1 −Hθ2)(x)− πγ2,θ2(Hθ1 −Hθ2) .

For the first term in (51), using H1-(ii), H2, Lemma 10 and and that for any θ ∈ Θ and x ∈ Rd,
‖Hθ(x)‖ ≤ V 1/4(x) we obtain for any θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄] with γ1 > γ2, x ∈ Rd and ` ∈ N∗∥∥∥∥∥∥

`−1∑
j=0

{
Kj
γ1,θ1

− πγ1,θ1

}
(Kγ1,θ1 −Kγ2,θ2)

{
K`−1−j
γ2,θ2

Hθ1(x)− πγ2,θ2(Hθ1)
}∥∥∥∥∥∥

≤ 2A2

`−1∑
j=0

ρ(`−1−j)γ1/2
∥∥∥{Kj

γ1,θ1
− πγ1,θ1

}
(Kγ1,θ1 −Kγ2,θ2)V 1/2(x)

∥∥∥
≤ 4A2

2 [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖]
`−1∑
j=0

ρ(j+(`−1−j))γ2/2V 1/2(x)

≤ 4A2
2 [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖] `ρ(`−1)γ2/2V 1/2(x) . (53)

For the first term in (52), using H1-(ii), Lemma 10, (50) and that for any θ ∈ Θ and x ∈ Rd,
‖Hθ(x)‖ ≤ V 1/4(x) ≤ V 1/2(x), we obtain for any θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄] with γ1 > γ2, x ∈ Rd
and ` ∈ N∗ ∥∥(πγ1,θ1 − πγ2,θ2)(K`

γ2,θ2Hθ1(x)− πγ2,θ2(Hθ1))
∥∥

≤ 2A2ρ
`γ2/2‖πγ1,θ1 − πγ2,θ2‖V 1/2

≤ 2A2Cc,1 ρ
`γ2/2γ−1

2 {Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖} . (54)

For the second term in (52), using A4, H 1-(ii) and Lemma 10, we obtain for any θ1, θ2 ∈ Θ,
γ1, γ2 ∈ (0, γ̄] with γ1 > γ2, x ∈ Rd and ` ∈ N∗∥∥K`

γ2,θ2(Hθ1 −Hθ2)(x)− πγ2,θ2(Hθ1 −Hθ2)
∥∥ ≤ 2A2LHρ

`γ2/2‖θ1 − θ2‖V 1/2(x) . (55)
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Combining (52), (53), (54), (55) in (51) and using Lemma 9, we obtain that for any θ1, θ2 ∈ Θ,
γ1, γ2 ∈ (0, γ̄] with γ1 > γ2, x ∈ Rd that∥∥∥Kγ1,θ1Ĥγ1,θ1(x)−Kγ2,θ2Ĥγ2,θ2(x)

∥∥∥
≤ Cc,2 γ−1

2
[
γ−1

2 {Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖}+ ‖θ1 − θ2‖
]
V 1/2(x) ,

with
Cc,2 = 4A2 log−1(1/ρ)ρ−γ̄/2 max

[
LH , Cc,1 + 2A2 log−1(1/ρ)ρ−γ̄/2

]
.

Since for any k ∈ N,
∥∥θ̃k+1 − θ̃k

∥∥ ≤ δk+1V
1/2(X̃k+1) by (20) and the fact that for any θ ∈ Θ and

x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x) and that ΠΘ is non-expansive, we get that for any k ∈ N,∥∥∥Kγk,θ̃k
Ĥγk,θ̃k

(X̃k+1)−Kγk+1,θ̃k+1
Ĥγk+1,θ̃k+1

(X̃k+1)
∥∥∥

≤ Cc,2γ−1
k+1

[
γ−1
k+1 {Λ1(γk, γk+1) + Λ2(γk, γk+1)δk+1}+ δk+1

]
V (X̃k+1) ,

which implies by (45) and using H1-(i) that

E
[∥∥∥η̃(c)

∥∥∥] ≤ C2γ
−1
k+1

[
γ−1
k+1 {Λ1(γk, γk+1) + Λ2(γk, γk+1)δk+1}+ δk+1

]
,

with C2 given by (48).

Lemma 17. Assume A1, A2, A3, H1 and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/4(x).
Then we have for any n ∈ N

E
[∥∥∥η̃(d)

n

∥∥∥] ≤ Ψ(γn) .

Proof. By a straightforward application of H1-(iii) and by (45) along with the fact that for any
θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/4(x) we have for any n ∈ N, E

[∥∥η̃dn∥∥] ≤ Ψ(γn).

We now turn to the proof of Theorem 3.

Proof of Theorem 3. (a) To apply [2, Theorem 2], it is enough to show that the following series
converge almost surely

+∞∑
n=0

δn+1〈ΠΘ(θn − δn+1∇f(θn))− θ?, η̃(i)
n 〉 ,

+∞∑
n=0

δ2
n+1‖η̃n‖2 ,

with θ? ∈ arg minθ∈Θ f(θ).
∑+∞
n=0 δ

2
n+1‖η̃n‖2 < +∞ almost surely by Lemma 13 since

∑
n∈N δ

2
n+1 <

+∞. Since (〈ΠΘ(θn− δn+1∇f(θn))− θ?, η̃(a)
n 〉)n∈N is a (F̃n)n∈N-martingale increment, see (21) and

by Lemma 14 and
∑
n∈N δ

2
n+1/γ

2
n < +∞

E

[+∞∑
n=0

δ2
n+1〈ΠΘ(θn − δn+1∇f(θn))− θ?, η̃(a)

n 〉2
]
< +∞ ,

we obtain using [56, Section 12.5] that
∑+∞
n=0 δn+1〈ΠΘ(θn−δn+1∇f(θn))−θ?, η̃(a)

n 〉 converges almost
surely. Using A1, (22) and Lemma 16 and Lemma 17 we get that

∑+∞
n=0 δn+1〈ΠΘ(θn−δn+1∇f(θn))−

θ?, η̃
(i)
n 〉 is absolutely convergent almost surely for i ∈ {c, d}. Finally

∑+∞
n=0 δn+1〈ΠΘ(θn−δn+1∇f(θn))−

θ?, η̃
(b)
n 〉 converges almost surely by Lemma 15-(b).
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(b) The proof of is identical to the one of Theorem 1-(b).

C.4 Proof of Theorem 4
The proof is similar to the one of Theorem 2, using Lemma 13, Lemma 15, Lemma 16, Lemma 17
and the fact that η̃(a)

n is a (F̃n)n∈N-martingale increment, see (21).

C.5 Proof of Theorem 5
In this section, we give the proof of Theorem 5 by showing that H1 holds. First of all in Ap-
pendix C.5.1, we establish under L 1 and L 2 stability results uniform in the parameter θ ∈ Θ
for the Langevin diffusion (5) and the associated Euler-Maruyama discretization (6) based on a
Foster-Lyapunov drift condition with constants independent of θ. Then, in Appendix C.5.2, we
show that the stability conditions that we derive, are sufficient to prove that H1 holds. The proof
of Theorem 5 then consists in combining all these results and is presented in Appendix C.5.3.

Under L1 and L2, for any θ ∈ Θ, (5) defines a Markov semi-group (Pt,θ)t≥0 for any x ∈ Rd and
A ∈ B(Rd) by Pt,θ(x,A) = P(Y θt ∈ A) where (Y θt )t≥0 is the solution of (5) with Y θ0 = x. Consider
now the generator of (Pt,θ)t≥0 for any θ ∈ Θ, defined for any f ∈ C2(Rd) by

Aθf = −〈∇xf,∇xUθ(x)〉+ ∆xf . (56)

We say that a Markov kernel R on Rd×B(Rd) satisfies a discrete Foster-Lyapunov drift condition
Dd(V, λ, b) if there exist λ ∈ (0, 1), b ≥ 0 and a measurable function V : Rd → [1,+∞) such that
for all x ∈ Rd

RV (x) ≤ λV (x) + b .

We say that a Markov semi-group (Pt)t≥0 on Rd × B(Rd) with extended infinitesimal gener-
ator (A,D(A)) (see e.g. [42] for the definition of (A,D(A))) satisfies a continuous drift condition
Dc(V, ζ, β) if there exist ζ > 0, β ≥ 0 and a measurable function V : Rd → [1,+∞) with V ∈ D(A)
such that for all x ∈ Rd

AV (x) ≤ −ζV (x) + β .

C.5.1 Foster-Lyapunov drift conditions uniform on θ

Define Ve : Rd → [1,+∞) for all x ∈ Rd by

Ve(x) = exp(m̃1φ(x)) , with φ(x) =
√

1 + ‖x‖2 and m̃1 = m1/4 . (57)

Proposition 18. Assume L1 and L2. Let γ̄ < min(1, 2m2). Then there exist λe ∈ (0, 1) and be ≥ 0
such that for all γ ∈ (0, γ̄] and θ ∈ Θ the Markov kernel Rγ,θ associated with the recursion (6)
satisfies the discrete drift condition Dd(V, λγ , bγ), i.e. for all x ∈ Rd

Rγ,θVe(x) ≤ λγeVe(x) + beγ1B(0,re)(x) , (58)

with

λe = e−m̃2
1(21/2−1) , re = max(1, 2(d+ c)/m1, R1) ,

be = m̃1(d+ c+ 21/2m̃1) exp
[
m̃1

{
(d+ c+ m̃1)γ̄ +

√
1 + r2

e

}]
.
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Proof. Since φ is 1-Lipschitz, by the log-Sobolev inequality [4, Proposition 5.4.1], we have for any
x ∈ Rd and θ ∈ Θ,

Rγ,θVe(x) ≤ exp
[
m̃1Rγ,θφ(x) + m̃2

1γ
]

(59)

≤ exp
[
m̃1
√
‖x− γ∇xUθ(x)‖2 + 2γd+ 1 + m̃2

1γ
]
,

where we have used Jensen’s inequality in the last line. Second, using L2 and γ < 2m2, we obtain
that for any x ∈ Rd and θ ∈ Θ,

‖x− γ∇xUθ(x)‖2 ≤ ‖x‖2 − 2γ〈x,∇xUθ(x)〉+ γ2‖∇xUθ(x)‖2

≤ ‖x‖2 − 2m1γ‖x‖1B(0,R1)c(x) + γ(γ − 2m2)‖∇xUθ(x)‖2 + 2γc

≤ ‖x‖2 − 2m1γ‖x‖1B(0,R1)c(x) + 2γc .

Therefore, using for any a > 0,
√

1 + a− 1 ≤ a/2, we get for any x ∈ Rd and θ ∈ Θ,√
‖x− γ∇xUθ(x)‖2 + 2γd+ 1− φ(x)

≤ φ(x)
{√

1 + 2γφ−2(x)(d+ c− m1‖x‖1B(0,R1)c(x))− 1
}

(60)

≤ γφ−1(x)(d+ c− m1‖x‖1B(0,R1)c(x)) .

Therefore, combining this result with (59) and using that for any x̃ ∈ B(0, re)c, φ(x̃)2/ ‖x̃‖2 ≤ 2
and d+ c ≤ m1 ‖x‖ /2, we obtain for any x ∈ B(0, re)c and θ ∈ Θ,

Rγ,θVe(x) ≤ exp
[
m̃1φ
−1(x)(d+ c− m1‖x‖) + m̃2

1γ
]
Ve(x)

≤ exp
[
−2m̃2

1γφ
−1(x)‖x‖+ m̃2

1γ
]
Ve(x) ≤ λγeVe(x) .

Using (59), (60), and the fact that φ(x̃) ≥ 1 for any x̃ ∈ Rd, we have for any x ∈ B(0, re) and θ ∈ Θ,

Rγ,θVe(x) ≤ λγeVe(x) +
(

em̃1(d+c+m̃1)γ − λγe
)

exp
[
m̃1
√

1 + r2
e

]
.

The proof of (58) for x ∈ B(0, re) and θ ∈ Θ is then completed upon using that ea − eb ≤ (a− b)ea
for all a, b ∈ R with a ≥ b.

Proposition 19. Assume L1 and L2. Then for any θ ∈ Θ, (Pt,θ)t≥0 associated with (5) satisfies
the continuous drift condition Dc(Ve, ζe, βe) for Ve defined in (57) and

ζe = 3m̃2
1/21/2 , βe = m̃1 exp

[
m̃1
√

1 + r̃2
e

]
(1 + m̃1 + c + d) , r̃e = max(1, R1) .

Proof. First, by definition, for any x ∈ Rd, we have

∇xV (x) = m̃1xV (x)/φ(x)
∆xV (x) = {m̃1V (x)/φ(x)}{m̃1 ‖x‖2 /φ(x) + d− ‖x‖2 /φ2(x)} .
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Therefore, by (56) and L2, we get for any θ ∈ Θ and x ∈ Rd,

AθV (x) = {m̃1V (x)/φ(x)}
[
−〈∇xUθ(x), x〉+ m̃1 ‖x‖2 /φ(x) + d− ‖x‖2 /φ2(x)

]
≤ {m̃1V (x)/φ(x)}

[
−m1 ‖x‖1B(0,R1)c(x) + c + m̃1 ‖x‖2 /φ(x) + d− ‖x‖2 /φ2(x)

]
≤ {m̃1V (x)/φ(x)}

[
−(3m1/4) ‖x‖1B(0,R1)c(x) + c + m̃1 ‖x‖1B(0,R1)(x) + d

]
.

The proof is then complete upon using that for any x ∈ B(0, r̃e)c, ‖x‖ /φ(x) ≥ 2−1/2, for any
y ∈ Rd, ‖y‖ /φ(y) ≤ 1.

C.5.2 Checking H1

Lemma 20. Assume L 1 and let V : Rd → [1,+∞) satisfying lim‖x‖→+∞ V (x) = +∞ and
V ∈ D(Aθ), for any θ ∈ Θ, where Aθ is defined by (56). .
(a) Assume that there exist λ ∈ (0, 1), b ≥ 0 and γ̄ > 0 such that for any θ ∈ Θ and γ ∈ (0, γ̄],

Rγ,θ associated with the recursion (24), satisfies Dd(V, λγ , bγ). Then for any θ ∈ Θ and
γ ∈ (0, γ̄], Rγ,θ admits an invariant probability measure πγ,θ on (Rd,B(Rd)) and there exists
D3 ≥ 0 such that for any x ∈ Rd and k ∈ N

δxRk
γ,θV ≤ D3 + V (x) , πγ,θ(V ) ≤ D3 , D3 = bλ−γ̄/ log(1/λ) .

In addition, for all θ ∈ Θ and x ∈ Rd, limk→+∞ ‖δxRk
γ,θ − πγ,θ‖V = 0.

(b) Assume that there exist ζ > 0 and β ≥ 0 such that for any θ ∈ Θ, (Pt,θ)t≥0 associated with
(5) satisfies Dc(V, ζ, β). Then for any θ ∈ Θ, the diffusion is non-explosive, Aθ admits πθ as
an invariant probability measure and

πθ(V ) ≤ D0 , D0 = β/ζ .

In addition, for all θ ∈ Θ and x ∈ Rd, limt→+∞ ‖δxPt,θ − πθ‖V = 0.
Proof. (a) for any γ ∈ (0, γ̄] and θ ∈ Θ, Rγ,θ is irreducible with respect to the Lebesgue measure
on Rd, has the Feller property and satisfies Dd(V, λγ , bγ) then [41, Section 4.4] applies and Rγ,θ

admits an invariant probability measure πγ,θ. The discrete drift condition and [21, Lemma 1] give
that for any γ ∈ (0, γ̄] and θ ∈ Θ

Rk
γ,θV (x) ≤ V (x) + bλ−γ̄/ log(1/λ) , πγ,θ(V ) ≤ bλ−γ̄/ log(1/λ) .

We obtain that for all θ ∈ Θ and x ∈ Rd, limk→+∞ ‖δxRk
γ,θ − πγ,θ‖V = 0 using [39, Theorem

16.0.1].

(b) Using Dc(V, ζ, β) and [42, Theorem 2.1] we get that the diffusion process is non-explosive and
thus (Pt,θ)t≥0 is defined for any θ ∈ Θ and t ≥ 0. Using [52, Corollary 10.1.4] for any θ ∈ Θ,
(Pt,θ)t≥0 is strongly Feller continuous, therefore any compact sets is petite for the Markov kernel
Ph,θ, for any h > 0 and θ ∈ Θ, by [39, Theorem 6.0.1]. Using [47, Chapter 7, Proposition 1.5], [27,
Chapter 4, Theorem 9.17], and the fact that πθ(Aθf) = 0 for any θ ∈ Θ and f ∈ C2

c(Rd), we obtain
that for any θ ∈ Θ, πθ is an invariant measure for (Pt,θ)t≥0. Using Dc(V, ζ, β) and [42, Theorem
4.5] we get that for all θ ∈ Θ, πθ(V ) ≤ β/ζ. Finally, the convergence is ensured using [40, Theorem
5.1].
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As an immediate corollary we obtain that under the conditions of Lemma 20 for any θ ∈ Θ,
γ ∈ (0, γ̄] and k ∈ N,

πθRk
γ,θV ≤ β/ζ + bλ−γ̄/ log(1/λ) . (61)

Lemma 21. Let V : Rd → [1,+∞). Assume there exist λ ∈ (0, 1), b ≥ 0 and γ̄ > 0 such that
for any θ ∈ Θ and γ ∈ (0, γ̄], Rγ,θ associated with the recursion (6) satisfies Dd(V, λγ , bγ). Let
(γn)n∈N, (δn)n∈N be sequences of non-increasing positive real numbers and (mn)n∈N be a sequence
of positive integers satisfying supn∈N γn < γ̄. Then, (Xn

k )n∈N,k∈{0,...,mn} given by (14) with {Kγ,θ :
γ ∈ (0, γ̄] , θ ∈ Θ} = {Rγ,θ : γ ∈ (0, γ̄] , θ ∈ Θ} satisfies for all p, n ∈ N and k ∈ {0, . . . ,mn}

E
[

Rp
γn,θn

V (Xn
k )
∣∣∣X0

0

]
≤ D1V (X0

0 ) , D1 = 1 + 2bλ−γ̄/ log(1/λ) .

Proof. By induction we obtain that

E
[
V (Xn+1

k )
∣∣Fn ] = Rk

γn+1,θn+1
V (Xn+1

0 ) ≤ λkγn+1V (Xn+1
0 ) + bγn+1

k∑
i=1

λγn+1(k−i) , (62)

where (Fn)n∈N is defined by (15). Similarly, we obtain for any k ∈ {0, . . . ,m0},

E
[
V (X0

k)
∣∣X0

0
]

= Rk
γ0,θ0V (X0

0 ) ≤ λkγ0V (X0
0 ) + bγ0

k∑
i=1

λγ0(k−i) . (63)

Define for ` ∈ N, k ∈ N and i ∈ N∗, q`,k =
∑`−1
j=0mj + k, qn = q`,0 and γ̃i =

∑+∞
j=0 γj1(qj ,qj+1](i).

In addition, consider for any p, q ∈ N∗, Γp,q =
∑q
i=p γ̃i and Γp = Γ1,p. Combining (62), (63) and

Lemma 9 we get for any n ∈ N and k ∈ {0, . . . ,mn}

E
[

Rp
γn,θn

V (Xn
k )
∣∣∣X0

0

]
≤ λγnpE

[
V (Xn

k )
∣∣X0

0
]

+ b log(1/λ)λ−γ̄ (64)

≤ λΓqn,kV (X0
0 ) + b

qn,k∑
i=1

γ̃iλ
Γi+1,qn,k + b log(1/λ)λ−γ̄ .

Since (γ̃i)i∈N is nonincreasing and for all t ≥ 0, 1− λt ≥ −tλt log(λ), we have for all q ∈ N∗,
q∑
i=1

γ̃iλ
Γi+1,q ≤

q∑
i=1

γ̃i

q∏
j=i+1

(1 + λγ̃1 log(λ)γ̃j)

≤ (−λγ̃1 log(λ))−1
q∑
i=1


q∏

j=i+1
(1 + λγ̃1 log(λ)γ̃j)−

q∏
j=i

(1 + λγ̃1 log(λ)γ̃j)


≤ (−λγ̃1 log(λ))−1 .

Combining this result and (64) completes the proof.

Lemma 22. Let V : Rd → [1,+∞) measurable andMV ≥ 0 such that supx∈Rd
{

(1 + ‖x‖)2/V (x)
}
≤

MV . Assume L1 and that for any θ ∈ Θ, γ ∈ (0, γ̄] and k ∈ N,

πθRk
γ,θ(V ) ≤ D̃1 , πθPγmγ ,θV ≤ D̃1 , (65)
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with mγ = d1/γe. Then for any θ ∈ Θ and γ ∈ (0, γ̄]

‖πθR
mγ
γ,θ − πθPγmγ ,θ‖

2
V 1/2

≤ 2D̃1L2γ(1 + γ̄)
{
d+ 2γ̄(sup

θ∈Θ
‖∇xUθ(0)‖2 + L2MV D̃1)

}
,

Proof. The proof follows the lines of [21, Theorem 10]. Let θ ∈ Θ and γ ∈ (0, γ̄]. We have, using a
generalized Pinsker inequality [21, Lemma 24], that

‖πθR
mγ
γ,θ − πθPγmγ ,θ‖

2
V 1/2 ≤ 2(πθR

mγ
γ,θV + πθPγmγ ,θV )KL

(
πθR

mγ
γ,θ |πθPγmγ ,θ

)
.

≤ 4D̃1KL
(
πθR

mγ
γ,θ |πθPγmγ ,θ

)
.

Using L 1, [21, Equation (15)], [36, Theorem 4.1, Chapter 2], (65) and that for any a, b ∈ R,
(a+ b)2 ≤ 2(a2 + b2) we obtain that

KL
(
πθR

mγ
γ,θ |πθPγmγ ,θ

)
≤ L2mγγ

2(d+ γ̄ sup
k∈N

πθRk
γ,θ ‖∇xUθ(x)‖2)

≤ L2(1 + γ̄)γ(d+ 2γ̄(sup
θ∈Θ
‖∇xUθ(0)‖2 + L2MV D̃1)) ,

which concludes the proof.

Proposition 23. Let V : Rd → [1,+∞) measurable andMV ≥ 0 such that supx∈Rd
{

(1 + ‖x‖)2/V (x)
}
≤

MV . Assume L1 and that there exist λ ∈ (0, 1), b ≥ 0 and γ̄ > 0 such that for any θ ∈ Θ and
γ ∈ (0, γ̄] Rγ,θ satisifies Dd(V, λγ , bγ). Assume that there exists D0 ≥ 0 such that for any θ ∈ Θ,
πθ(V ) ≤ D0. Then there exists D4 ≥ 0 such that for any θ ∈ Θ and γ ∈ (0, γ̄]

‖πγ,θ − πθ‖V 1/2 ≤ D4γ
1/2 .

Proof. Using Lemma 20 we obtain that for any θ ∈ Θ

lim
k→+∞

‖πθRk
γ,θ − πθPγk,θ‖V 1/2 = ‖πγ,θ − πθ‖V 1/2 . (66)

We now give an upper bound on ‖πθRk
γ,θ−πθPγk,θ‖V 1/2 for k = qγmγ with mγ = d1/γe and qγ ∈ N.

Using [16, Theorem 6] and that πθ is invariant for Pt,θ with t ≥ 0, see Lemma 20, we obtain for all
θ ∈ Θ, γ ∈ (0, γ̄] and k ∈ N

‖πθRk
γ,θ − πθPγk,θ‖V 1/2

≤
qγ−1∑
`=0
‖πθPγ(`+1)mγ ,θR

(qγ−(`+1))mγ
γ,θ − πθPγ`mγ ,θR

(qγ−`)mγ
γ,θ ‖V 1/2

≤
qγ−1∑
`=0

Cξγmγ(qγ−(`+1))‖πθPγ`mγ ,θPmγγ,θ − πθPγ`mγ ,θR
mγ
γ,θ ‖V 1/2

≤ ‖πθPmγγ,θ − πθR
mγ
γ,θ ‖V 1/2

qγ∑
`=1

Cξ`γmγ , (67)
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where C ≥ 0, ξ ∈ (0, 1) are the constants given by [16, Theorem 6] with minorization condition given
by [16, Proposition 8a] with m = −L since L1 holds and drift condition Dd(V 1/2, λγ , bλ−γ̄/2γ/2),
since for all θ ∈ Θ and γ ∈ (0, γ̄] we have that Rγ,θ satisfies Dd(V, λγ , bγ) and therefore using
Jensen’s inequality that Rγ,θ satisfies Dd(V 1/2, λγ/2, bλ−γ̄/2γ/2).

We now give an upper bound on error ‖πθPmγγ,θ − πθR
mγ
γ,θ ‖V 1/2 . Indeed, since Aθ satisfies a

Dc(V, ζ, β) and Rγ,θ satisfies Dd(V, λγ , bγ) for any θ ∈ Θ and γ ∈ (0, γ̄], we obtain using (61) that
for any θ ∈ Θ and γ ∈ (0, γ̄]

πθPγmγ ,θ(V ) ≤ D0 , πθR
mγ
γ,θ (V ) ≤ D̃1 , D̃1 = D0 + bλ−γ̄ log(1/λ)−1 ,

Combining this result and Lemma 22 we have for any θ ∈ Θ and γ ∈ (0, γ̄]

‖πθPγmγ ,θ − πθR
mγ
γ,θ ‖V 1/2 ≤ D̃2γ

1/2 , (68)

with

D̃2 = 2D̃1/2
1 (1 + γ̄)1/2

{
d+ 2γ̄(L2MV + sup

θ∈Θ
‖∇xUθ(0)‖2)D̃1

}1/2
L .

Combining (67) and (68) we get for any k ∈ N, θ ∈ Θ and γ ∈ (0, γ̄]

‖πθRk
γ,θ − πθPγk,θ‖V 1/2 ≤ CD̃2

qγ∑
`=1

ξγmγ`γ1/2 ≤ CD̃2(1− ξ)−1γ1/2 ,

where we used that ξγmγ ≤ ξ. The conclusion follows from this result and (66).

C.5.3 Proof of Theorem 5

Combining Proposition 18 and Lemma 21 we get that H1-(i) is satisfied with constant A1 ← D1.
L1, L2, Proposition 18 and Lemma 20-(a) ensure that H1-(ii) is satisfied by [16, Theorem 14] with
A3 ← D3. H1-(iii) is satisfied combining Proposition 18, Proposition 19 and Proposition 23 with
Ψ(γ)← D4γ

1/2.

C.6 Proof of Theorem 6
We preface the proof by a technical lemma.

Proposition 24. Let V : Rd → [1,+∞) and MV,4 ≥ 0 such that supx∈Rd
{

(1 + ‖x‖4)/V (x)
}
≤

MV,4. Assume that there exists M ≥ 1 such that for any θ ∈ Θ, γ ∈ (0, γ̄], with γ̄ > 0 and x ∈ Rd,
Rγ,θV (x) ≤ MV (x). Assume L1 and L3, then we have for any θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄] with
γ2 < γ1, a ∈ [1/4, 1/2] and x ∈ Rd

‖δxRγ1,θ1 − δxRγ2,θ2‖V a ≤ D5

[
γ1/γ2 − 1 + γ

1/2
2 ‖θ1 − θ2‖

]
V (x)2a ,

where {Rγ,θ, γ ∈ (0, γ̄] , θ ∈ Θ} is the sequence of Markov kernels associated with the recursion (6)
and

D5 = max
(

2M1/2
[
d/4 + sup

θ∈Θ
‖∇xUθ(0)‖2 + L2M

1/2
4,V

]1/2
, (2M)1/2LU

)
.
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Proof. Let x ∈ Rd, θ1, θ2 ∈ Θ and γ1, γ2 ∈ (0, γ̄], γ2 < γ1. Using [21, Lemma 24] we have that

‖δxRγ1,θ1 − δxRγ2,θ2‖V a

≤
√

2
(
Rγ1,θ1V

2a(x) + Rγ2,θ2V
2a(x)

)1/2 KL (δxRγ1,θ1 |δxRγ2,θ2)1/2

≤ 2MaV a(x)KL (δxRγ1,θ1 |δxRγ2,θ2)1/2 (69)

Denote for any µ ∈ Rd and σ2 > 0, γµ,σ2 the d-dimensional Gaussian distribution with mean µ
and covariance matrix σ2 Id. Using that for any µ1,µ2 ∈ Rd and σ1,σ2 > 0,

KL (Υµ1,σ1 Id|Υµ2,σ2 Id) = ‖µ1 − µ2‖2 /(2σ2
2) + (d/2)

{
− log(σ2

1/σ
2
2)− 1 + σ2

1/σ
2
2
}
.

In addition, if σ1 ≥ σ2

KL (Υµ1,σ1 Id|Υµ2,σ2 Id) ≤ ‖µ1 − µ2‖2 /(2σ2
2) + (d/2)(1− σ2

1/σ
2
2)2 .

Therefore, we obtain that

KL (δxRγ1,θ1 |δxRγ2,θ2) ≤ Ξ/(4γ2) + (d/2)(1− γ1/γ2)2 , (70)

where Ξ satisfies

Ξ = ‖γ1∇xUθ1(x)− γ2∇xUθ2(x)‖2

= ‖γ1∇xUθ1(x)− γ2∇xUθ1(x) + γ2∇xUθ1(x)− γ2∇xUθ2(x)‖2

≤ 2‖γ1∇xUθ1(x)− γ2∇xUθ1(x)‖2 + 2‖γ2∇xUθ1(x)− γ2∇xUθ2(x)‖2

≤ 2(γ1 − γ2)2‖∇xUθ1(x)‖2 + 2γ2
2‖∇xUθ1(x)−∇xUθ2(x)‖2

≤ 2(γ1 − γ2)2‖∇xUθ1(x)‖2 + 2γ2
2L

2
U‖θ1 − θ2‖2V 2a(x) , (71)

where we have used L3 in the last line. Using L3 again and that supθ∈Θ ‖∇xUθ(0)‖ < +∞ by L1,
we get for any a ∈ [1/4, 1/2]

‖∇xUθ(x)‖2 ≤ 2(‖∇xUθ(x)−∇xUθ(0)‖2 + sup
θ∈Θ
‖∇xUθ(0)‖2) ≤ CΘV

2a(x) ,

with CΘ = 2 supθ∈Θ ‖∇xUθ(0)‖2 + 2L2M
1/2
4,V . Combining this result, log(γ2/γ1) ≤ 0 and and (71)

in (70), it follows that

KL (δxRγ1,θ1 |δxRγ2,θ2) ≤ d(1− γ1/γ2)2/2
+ γ−1

2 (γ1 − γ2)2‖∇xU(θ1, x)‖2/2 + γ2L
2
U‖θ1 − θ2‖2V 2a(x)/2

≤
[
dγ−1

2 (1− γ2/γ1)/4 + γ−1
2 (γ1 − γ2)2CΘ/2 + γ2L

2
U‖θ1 − θ2‖2/2

]
V 2a(x) .

This result substituted in (69) completes the proof with the fact that for any a, b ∈ R+, (a+b)1/2 ≤
a1/2 + b1/2.

Proof of Theorem 6. L1 and L2 ensure a uniform drift condition on Rγ,θ, see Proposition 18 . Note
that the Lyapunov function V defined by Proposition 18 satisfies supx∈Rd(1 + ‖x‖4)/V (x) < +∞.
H2 is then a direct consequence of Proposition 24
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