A Hybrid High-Order method for finite elastoplastic deformations within a logarithmic strain framework

Abstract : We devise and evaluate numerically a Hybrid High-Order (HHO) method for finite plasticity within a logarithmic strain framework. The HHO method uses as discrete unknowns piecewise polynomials of order k 1 on the mesh skeleton, together with cell-based polynomi-als that can be eliminated locally by static condensation. The HHO method leads to a primal formulation, supports polyhedral meshes with non-matching interfaces, is free of volumetric locking, the integration of the behavior law is performed only at cell-based quadrature nodes, and the tangent matrix in Newton's method is symmetric. Moreover, the principle of virtual work is satisfied locally with equilibrated tractions. Various two-and three-dimensional benchmarks are presented, as well as comparison against known solutions with an industrial software using conforming and mixed finite elements.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01978385
Contributeur : Nicolas Pignet <>
Soumis le : vendredi 11 janvier 2019 - 14:39:19
Dernière modification le : vendredi 25 janvier 2019 - 21:51:18

Fichier

Article_HHO_gdeflog.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01978385, version 1

Citation

Mickaël Abbas, Alexandre Ern, Nicolas Pignet. A Hybrid High-Order method for finite elastoplastic deformations within a logarithmic strain framework. 2019. 〈hal-01978385〉

Partager

Métriques

Consultations de la notice

106

Téléchargements de fichiers

58