Co-Clustering of ordinal data via latent continuous random variables and a classification EM algorithm

Abstract : This paper is about the co-clustering of ordinal data. Such data are very common on e-commerce platforms where customers rank the products/services they bought. More in details, we focus on arrays of ordinal (possibly missing) data involving two disjoint sets of individuals/objects corresponding to the rows/columns of the arrays. Typically, an observed entry (i, j) in the array is an ordinal score assigned by the individual/row i to the object/column j. A generative model for arrays of ordinal data is introduced along with an inference algorithm for parameters estimation. The model relies on latent continuous random variables and the fitting allows to simultaneously co-cluster the rows and columns of an array. The estimation of the model parameters is performed via a classification expectation maximization (C-EM) algorithm. A model selection criterion is formally obtained to select the number of row and column clusters. In order to show that our approach reaches and often outperforms the state of the art, we carry out numerical experiments on synthetic data. Finally, applications on real datasets highlight the model capacity to deal with very sparse arrays.
Type de document :
Pré-publication, Document de travail
2019
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01978174
Contributeur : Marco Corneli <>
Soumis le : vendredi 11 janvier 2019 - 12:41:21
Dernière modification le : vendredi 1 février 2019 - 15:50:14

Fichier

OrdinalLBM.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01978174, version 1

Citation

Marco Corneli, Charles Bouveyron, Pierre Latouche. Co-Clustering of ordinal data via latent continuous random variables and a classification EM algorithm. 2019. 〈hal-01978174〉

Partager

Métriques

Consultations de la notice

135

Téléchargements de fichiers

61