G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan et al., Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury, Adv Funct Mater, vol.19, pp.842-852, 2009.

G. Applerot, J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart et al., Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress, Small, vol.8, pp.3326-3337, 2012.

A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, S. S. Habib et al., Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study, Int J Nanomed, vol.7, pp.6003-6009, 2012.

G. E. Brown, . Jr, V. E. Henrich, W. H. Casey, D. L. Clark et al., Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms, Chem Rev, vol.99, pp.77-174, 1999.

C. Campanac, L. Pineau, A. Payard, G. Baziard-mouysset, and C. Roques, Interactions between biocide cationic agents and bacterial biofilms, Antimicrob Agents Chemother, vol.46, pp.1469-1474, 2002.

R. Dobrucka, Application of nanotechnology in food packaging, J Microbiol Biotechnol Food Sci, vol.3, pp.353-359, 2014.

M. F. Elkady, H. Shokry-hassan, E. E. Hafez, and A. Fouad, Construction of zinc oxide into different morphological structures to be utilized as antimicrobial agent against multidrug resistant bacteria, Bioinorg Chem Appl, p.536854, 2015.

F. Cdc and U. , The national antimicrobial resistance monitoring system: NARMS integrated report, 2015.

M. Fiedot, I. Maliszewska, O. Rac-rumijowska, P. Suchorskawozniak, A. Lewinska et al., The relationship between the mechanism of zinc oxide crystallization and its antimicrobial properties for the surface modification of surgical meshes, Materials, vol.10, p.353, 2017.

A. Furiga, B. Lajoie, S. El-hage, G. Baziard, and C. Roques, Impairment of Pseudomonas aeruginosa biofilm resistance to antibiotics by combining the drugs with a New Quorum-sensing inhibitor, Antimicrob Agents Chemother, vol.60, pp.1676-1686, 2015.

F. Furno, K. S. Morley, B. Wong, B. L. Sharp, P. L. Arnold et al., Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection?, J Antimicrob Chemother, vol.54, pp.1019-1024, 2004.

G. Gogniat, M. Thyssen, M. Denis, C. Pulgarin, and S. Dukan, The bactericidal effect of TiO 2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity, FEMS Microbiol Lett, vol.258, pp.18-24, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00092800

C. Gorzelanny, R. Kmeth, A. Obermeier, A. T. Bauer, N. Halter et al., Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties, Biomaterials, vol.6, pp.5547-5556, 2004.

D. Gumy, A. G. Rincon, R. Hajdu, and C. Pulgarin, Solar photocatalysis for detoxification and disinfection of water: different types of suspended and fixed TiO 2 catalysts study, Sol Energy, vol.80, pp.1376-1381, 2005.

N. Harrasser, S. Jussen, I. J. Banke, R. Kmeth, R. Von-eisenhartrothe et al., Antibacterial efficacy of titanium-containing alloy with silver-nanoparticles enriched diamond-like carbon coatings, AMB Express, vol.5, p.77, 2015.

Y. He, S. Ingudam, S. Reed, A. Gehring, T. P. Strobaugh et al., Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens, J Nanobiotechnol, vol.14, p.54, 2016.

T. Jin and Y. He, Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens, J Nanopart Res, vol.13, pp.6877-6885, 2011.

T. Jin, D. Sun, J. Y. Su, H. Zhang, and H. J. Sue, Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7, J Food Sci, vol.74, pp.46-52, 2009.

, Antibacterial Products-Test for Antibacterial Activity and Efficacy, vol.2801, 2010.

L. F. Liu, J. Barford, K. L. Yeung, and G. Si, Non-UV based germicidal activity of metal-doped TiO 2 coating on solid surfaces, J Environ Sci (China), vol.19, pp.745-750, 2007.

L. Marchin, Individualised inorganic particles. Patent WO2015170060(A1). Patent WO2015170060(A1), 2015.

L. Marchin, Use of materials incorporating microparticles for avoiding the proliferation of contaminants. Patent WO2015197992, 2015.

M. J. Mcguffie, J. Hong, J. H. Bahng, E. Glynos, P. F. Green et al., Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth, Nanomedicine-UK, vol.12, pp.33-42, 2016.

, Plan national d'alerte sur les antibiotiques, National alert plan on antibiotics 2011-2016). Available at, pp.2011-2016, 2011.

S. Nair, A. Sasidharan, V. V. Divya-rani, D. Menon, K. Manzoor et al., Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells, J Mater Sci Mater Med, vol.20, pp.235-241, 2009.

N. F. En, Chemical Disinfectants and AntisepticsPreservation of Test Organisms Used for the Determination of Bactericidal (inclusing Legionella), Mycobactericidal, Sporicidal, Fungicidal and Virucidal (including bacteriophages) Activity, 2013.

N. F. En, Chemical Disinfectants and AntisepticsQuantitative Suspension Test for the Evaluation of Virucidal Activity in the Medical Area-Test Method and Requirements (phase 2/step 1), 2015.

Y. J. Oh, M. Hubauer-brenner, and P. Hinterdorfer, Influence of surface morphology on the antimicrobial effect of transition metal oxides in polymer surface, J Nanosci Nanotechnol, vol.15, pp.7853-7859, 2015.

A. E. Oprea, L. M. Pandel, A. M. Dumitrescu, E. Andronescu, V. Grumezescu et al., Bioactive ZnO coatings deposited by MAPLE-an appropriate strategy to produce efficient antibiofilm surfaces, Molecules, vol.21, p.220, 2016.

J. Pasquet, Y. Chevalier, E. Couval, D. Bouvier, G. Noizet et al., Antimicrobial activity of zinc oxide particles on five micro-organisms of the Challenge Tests related to their physicochemical properties, Int J Pharm, vol.460, pp.92-100, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01950978

J. Pasquet, Y. Chevalier, E. Couval, D. Bouvier, and M. A. Bolzinger, Zinc oxide as a new antimicrobial preservative of topical products: interactions with common formulation ingredients, Int J Pharm, vol.479, pp.88-95, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01946914

R. Pati, R. K. Mehta, S. Mohanty, A. Padhi, M. Sengupta et al., Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages, NanomedicineUK, vol.10, pp.1195-1208, 2014.

P. E. Petrochenko, S. A. Skoog, Q. Zhang, D. J. Comstock, J. W. Elam et al., Cytotoxicity of cultured macrophages exposed to antimicrobial zinc oxide (ZnO) coatings on nanoporous aluminum oxide membranes, vol.3, 2013.

Y. De-rancourt, B. Couturaud, A. Mas, and J. J. Robin, Synthesis of antibacterial surfaces by plasma grafting of zinc oxide based nanocomposites onto polypropylene, J Colloid Interface Sci, vol.402, pp.320-326, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00823189

L. B. Rice, Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE, J Infect Dis, vol.197, pp.1079-1081, 2008.

N. Sabtu, D. A. Enoch, and N. M. Brown, Antibiotic resistance: what, why, where, when and how, Br Med Bull, vol.116, pp.105-113, 2015.

D. Salarbashi, S. A. Mortazavi, M. S. Noghabi, B. S. Fazly-bazzaz, N. Sedaghat et al., Development of new active packaging film made from a soluble soybean polysaccharide incorporating ZnO nanoparticles, Carbohydr Polym, vol.140, pp.220-227, 2016.

J. Sawai and T. Yoshikawa, Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay, J Appl Microbiol, vol.96, pp.803-809, 2004.

C. Silvestre, S. Cimmino, M. Pezzuto, A. Marra, V. Ambrogi et al., Preparation and characterization of isotactic polypropylene/zinc oxide microcomposites with antibacterial activity, Polymer J, vol.45, pp.938-945, 2013.

A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. Kaus, L. C. Ann et al., Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism, vol.7, pp.219-252, 2015.

I. Sondi and B. Salopek-sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J Colloid Interface Sci, vol.275, pp.177-182, 2004.

Z. X. Tang and B. F. Lv, MgO nanoparticles s antibacterial agent: preparation and activity, Braz J Chem Eng, vol.31, pp.591-601, 2014.

M. Veerapandian and K. Yun, Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications, Appl Microbiol Biotechnol, vol.90, pp.1655-1667, 2011.

T. Verdier, M. Coutand, A. Bertron, and C. Roques, Antibacterial activity of TiO 2 photocatalyst alone or in coatings on E. coli: the influence of methodological aspects, Coatings, vol.4, pp.670-686, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01850791

R. R. Watkins and R. A. Bonomo, Overview: global and local impact of antibiotic resistance, Infect Dis Clin North Am, vol.30, pp.313-322, 2016.