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Abstract: This work aims at developing an efficient method to compute the compliance due to a crack
modeled as a flat ellipsoid of any shape in an infinite elastic matrix of arbitrary anisotropy (Eshelby problem)
when no closed-form solution seems currently available. Whereas the solution of this problem usually requires
the calculation of the so-called fourth-order Hill polarization tensor if the ellipsoid is not singular, it is shown
that the crack compliance can be derived from the first-order term in the Taylor expansion of the Hill tensor
with respect to the smallest aspect ratio of the ellipsoidal inclusion. For a 3D ellipsoidal crack model, this
first-order term is expressed as a simple integral thanks to the Cauchy residue theorem. A similar method
allows to express the same term in the case of a cylindrical crack model without any integral. A numerical
example is finally treated.
Keywords: flat ellipsoidal inclusion, aspect ratio, anisotropy, Hill polarization tensor, Eshelby problem

1 Introduction

The presence of cracks at any scale of a continuous medium can considerably affect the physical properties of
the latter, for instance the permeability, the thermal or electrical conductivities or the mechanical properties
on which this paper focuses more particularly. The determination of the macroscopic behavior of a cracked
medium has been a topic of great interest in the last decades. In order to satisfy the basic assumptions
of scale separation allowing to implement an homogenization method, two types of fracture networks are
often considered: the case of a dense network of large joints cross-cutting the r.v.e. (representative volume
element) [29] or the case of micro-cracks much smaller than the size of the r.v.e.. The present paper deals
with the calculation of the mechanical effect of this second type of cracks. An abundant literature is devoted
to the modeling of a medium with pervasive micro-cracks considering various characteristics of the latter,
whether they are open or closed nonfrictional ([22], [23], [26], [36], [9]), frictional ([28], [20], [1]), dilatant
([3], [30]), propagating ([21], [14], [2], [44]), dry or fluid filled ([8], [35]) or combining several characteristics
in the cited papers and many others.
It has been shown that, in the elastic framework, the contribution to the overall behavior of any crack family
in an elastic solid phase simply arises as an additional compliance ([23], [39]). This is also the case for
frictional cracks in an incremental formulation ([3], [30]). The determination of this additional compliance
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can be obtained by homogenization methods allowing to estimate the relative displacement of the crack lips
when the r.v.e. is loaded. Many of them are based on the solution of the auxiliary problem of a single
open crack embedded in an infinite matrix with boundary conditions defined either on the crack lips or
by a remote strain or stress state. Closed-form solutions of this problem can be obtained by the theory of
fracture mechanics under the assumption of isotropy of the matrix ([5], [34], [27]). Alternatively, the Eshelby
problem [10] considering a flat ellipsoidal inclusion as a crack representation in an infinite elastic matrix also
provides the strain state i.e. the displacement jump across the crack lips ([4], [33], [34]).
In the Eshelby problem, the strain state is uniform within the ellipsoidal inclusion whatever its aspect ratios.
The concentration tensor which relates the inclusion strain tensor to the remote boundary condition (stress
or strain tensor) writes by means of the fourth-order Hill polarization tensor ([18], [42]). The latter only
depends on the shape of the inclusion and on the stiffness of the surrounding matrix and writes as a double
integral ([12], [33]). Only some special cases of matrix anisotropy and inclusion shape allow to derive closed-
form expressions of this tensor ([33], [37], [40], [38]). For a fully anisotropic matrix and any ellipsoidal shape
of the inclusion, it is necessary to resort to a numerical evaluation of the double integral ([16], [15], [6],
[7]). After recalling several cubature methods already used by other authors, [31] presents a new complete
procedure to speed up the calculation thanks to the Cauchy theory of residues allowing to reduce the double
integral to a single one. This theorem has also been recently applied in [13] for a prolate inclusion and in [17]
for a 2D crack in an orthotropic matrix.
The case of an open flat inclusion is slightly different because the combination of a geometrical singularity
(flat domain) with a physical singularity (infinite compliance) induces large strain in the vicinity of the crack.
Consequently, the problem should be considered in an incremental form. Besides, the additional macroscopic
compliance due to the cracks can be explicitely obtained for simple cases of material symmetries ([24], [25],
[34]) but not for the general anisotropic case. This paper presents a method allowing to numerically compute
this additional compliance in the full anisotropic case. The computation requires a Taylor expansion of the
Hill tensor up to the first order with respect to the aspect ratio. A procedure similar to that of [31] is
implemented to compute the first order of this expansion also appearing as a double integral [19]. The
solution of [17] in 2D is retrieved and extended to the full anisotropic 3D case. A r.v.e. containing two crack
families is finally considered and numerical computations are presented.

2 Macroscopic crack compliance

2.1 Definition of the macroscopic crack compliance in a r.v.e.

Consider a r.v.e. Ω made up with a matrix phase occupying the domain Ωs and N families of cracks. The
ith family (domain Ωi) contains a large number of cracks which are similar up to a translation. This means
that a family gathers cracks having the same shape and orientation. As regards the shape, cracks constitute
degenerate geometrical objects since one dimension is very small compared to the others. They can therefore
be modeled either as surfaces allowing displacement discontinuities or as three-dimensional objects. This
last point of view allows to treat cracks as any volume inclusion and thus to define their volume fraction
fi, which can be considered as infinitesimal. More precisely it writes as the product of a finite density and
the infinitesimal ratio between the aperture (smallest dimension) and the characteristic length of the crack
surface.
Whatever the conditions applied on the r.v.e. boundary, either uniform stress or strain rate condition [42],
the consistency rules imply the following relationships between the macroscopic and microscopic stress and
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strain rates:

Σ̇ = < σ̇ >Ω=

(

1−
N∑

i=1

fi

)

< σ̇ >Ωs +
N∑

i=1

fi < σ̇ >Ωi (1)

D = < d >Ω=

(

1−
N∑

i=1

fi

)

< d >Ωs +

N∑

i=1

fi < d >Ωi (2)

where < · >Ωα denotes the volume average over the domain Ωα. Since the stress rate is zero within the
crack domain (or at least bounded if the crack is not open) and the volume fractions fi are infinitesimal, the
macroscopic stress rate (1) becomes:

Σ̇ =< σ̇ >Ωs (3)

The macroscopic strain rate (2) is composed of the solid phase contributions and the crack ones. The latter
can not be neglected because, despite the infinitesimal character of the volume fractions, some components
of < d >Ωi are expected to tend towards infinity, so that the product fi < d >Ωi tends towards finite values.
Moreover, the linearity of all equations at stake in the elasticity problem implies that this product can be
linearly related to the macroscopic stress rate:

fi < d >Ωi= si : Σ̇ (4)

The tensor si appearing in (4) is called the crack compliance but there should not be any confusion with
the compliance that could be confered to the material occupying the crack domain. For instance, in the
case of an open empty crack, the compliance within the crack is infinite whereas si is finite and depends on
the surrounding material. Finally, the combination of (2), (3), (4) and the constitutive law of the matrix of
compliance ss allows to get the additive decomposition of the macroscopic compliance ([23], [39]):

D = Shom : Σ̇ with Shom = ss +

N∑

i=1

si (5)

The aim of any homogenization scheme will then consist in providing estimates or even bounds for the
tensors si [42]. As the following developments will concern each crack family separately, the reference to the
index i will be omitted.

2.2 Eshelby problem

Some schemes are based on the solution of the Eshelby problem [10]. The latter consists of an ellipsoidal
inclusion embedded in an infinite reference medium of stiffness c submitted to a stress rate Σ̇

∞
as a remote

boundary condition. The strain and stress rates are shown to be uniform in the inclusion. Considering an
auxiliary Eshelby problem for each phase composing the actual r.v.e., those uniform tensors can eventually
be used as estimates of the strain or stress rate averages in the r.v.e. provided that the reference medium
stiffness c be adequately chosen with respect to the microstructure [42]. The relationship between Σ̇

∞
and

the stress rate applied on the r.v.e. Σ̇ is determined by (3), in which the average over the solid phase is also
estimated by an auxiliary problem.
The crack is represented by a flat ellipsoid. Many studies are based upon the assumption of a circular
shape in the crack plane (flat spheroid in 3D) for mathematical convenience. However, to take into account
anisotropic crack extensions, an ellipse should be more realistic, as proved by stereological studies [43], and
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would still be convenient for the method developed hereafter. The ellipsoid radii are denoted by a, b, c with
a ≥ b≫ c and the following aspect ratios are introduced:

ω =
c

a
≪ 1 ; η =

b

a
; ρ =

c

b
=
ω

η
(6)

The general crack model requires here that ω ≪ 1 but two cases can be considered depending on the order of
magnitude of η. On the one hand, the model corresponds to a 3D ellipsoidal crack if η remains of the order
of magnitude of 1, which means that ω is still the aspect ratio governing the crack aperture (see Fig. 1). On
the other hand, it corresponds to a cylindrical crack if η ≪ 1 (see Fig. 2). It can also be interpreted as a 2D
crack model in the plane perpendicular to the axis of the cylinder. The crack aperture is then controled by
the aspect ratio ρ.

b = η a
a

c = ω a

Figure 1: Ellipsoidal crack

b

c = ρ b

Figure 2: Cylindrical crack

The orientation is characterized by an orthogonal frame of R3, including the normal n of the crack plane
and the major l and minor m axes in the plane such that the equation of the ellipsoid writes:

∥
∥A

−1 · x
∥
∥ ≤ 1 with







A
−1 = 1

a

(

l ⊗ l + 1
η m⊗m+ 1

ω n⊗ n
)

3D crack

A
−1 → 1

b

(

m⊗m+ 1
ρ n⊗ n

)

cylindrical crack
(7)

The general solution of the strain rate within the ellipsoidal inclusion embedded in an infinite medium of
stiffness c writes [42]:

d = Λ−1 : Σ̇
∞

with Λ = c − c : P : c (8)

where the so-called Hill polarization tensor P only depends on c and A. This tensor can be expressed using
the Green function of the infinite medium [42] or by means of an integral over the unit sphere at the end
of a reasoning involving the Fourier transform of the Green function. In fact, two such integral expressions
can be written, one being deduced from the other by a simple change of variable [33]:

P =
detA

4 π

∫

‖ξ‖=1

Γ(ξ)
∥
∥A · ξ

∥
∥
3 dSξ =

1

4 π

∫

‖ζ‖=1

Γ(A−1 · ζ) dSζ (9)

with the operator

Γ(ξ) = ξ
s
⊗ K−1 s

⊗ ξ with K(ξ) = ξ · c · ξ (10)

It is worth noting that the operator Γ is homogeneous of degree 0, which means Γ(λξ) = Γ(ξ) for all λ 6= 0.
Furthermore, it comes from (7) that limω,ρ→0 Γ(A−1 · ζ) = Γ(n) (ω or ρ applies for respectively 3D and
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cylindrical crack models) and therefore, using the second expression of P in (9), that limω,ρ→0 P = Γ(n).
Introducing this limit in (8), it follows that:

lim
ω,ρ→0

Λ = Λo = c − c : Γ(n) : c = c − (c · n) · (n · c · n)−1 · (n · c) (11)

The operator Λo in (11) is obviously singular and its kernel is given by:

kerΛo = span
(

n
s
⊗ l, n

s
⊗ m, n⊗ n

)

(12)

The singularity of Λo implies that some components of d in (8) tend towards infinite values. Nevertheless, as
already stated in particular cases by some authors ([24], [34], [9]), the relevant quantity that could be used
to build the estimate (4) (up to a density factor) is not d but the product ωd (ρd for a cylindrical crack)
and thus the following limit

lim
ω→0

ωd = H : Σ̇
∞

where H = lim
ω→0

ωΛ−1 = lim
ω→0

ω(c − c : P : c)−1 (13)

where ω is replaced by ρ for a cylindrical crack. Another point of view could be to observe that ωd (resp.
ρd) can be related to the average velocity jump between the crack lips if the crack is represented by a
discontinuity surface S (resp. line L in a plane perpendicular to a cylindrical crack). Indeed, thanks to the
theory of distributions, the consistency between the volume and the discontinuity surface models allows to
write locally the contribution of the strain rate of the crack as:

d = [[u ]]
s
⊗ n δS (3D) ; d = [[u ]]

s
⊗ n δL (2D) (14)

where δS (resp. δL) denotes the surface (resp. line) Dirac distribution over S (resp. L) and [[u ]] the velocity
jump. Recalling that, in the Eshelby problem, the strain rate is uniform within the ellipsoid, the integration
of (14) finally gives:

ω d =
3

4 a η

∫

S [[u ]] dS

π a2
s
⊗ n (3D) ; ρd =

2

π b

∫

L[[u ]] dl

2 b

s
⊗ n (2D) (15)

The tensor H in (13) can be given the status of crack compliance in the Eshelby problem.

2.3 Computation of the crack compliance in the Eshelby problem

This paragraph aims at presenting a method allowing the effective computation of the tensor H (13) in the
anisotropic case i.e., when closed-form expressions can not be easily obtained. The following developments
will be done in the context of a 3D crack but they can apply to a 2D crack by replacing ω by ρ. The
procedure starts from the Taylor expansion of P (9) with respect to the aspect ratio:

P = Γ(n)− ωΠ + o (ω) (16)

The determination of the tensor Π will be the object of the next section. The present paragraph focuses on
its role in the calculation of H. Inserting (16) in (13) allows to write:

H = lim
ω→0

ω (Λo + ω Λ1)
−1 with Λ1 = c : Π : c (17)

The limit (17) can now be calculated by a block matrix reasoning. First, it is recalled that the vector space
of symmetric second-order tensors is spanned by the basis composed of the six tensors:

B = (l ⊗ l, m⊗m,
√
2 l

s
⊗ m,

√
2n

s
⊗ l,

√
2n

s
⊗ m, n⊗ n) (18)
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Consequently, any fourth-order tensor having the minor symmetries and thus seen as an operator acting on
symmetric second-order tensors can be represented by a square matrix of R6 in this basis. Furthermore,
this matrix can be decomposed in four square block matrices of R3 according to the order in which the six
tensors have been enumerated in (18). Adopting this convention, (12) shows that only the top left block of
Λo has non-zero terms and the following decomposition in block matrices of R3 is adopted:

Mat(Λo,B) =
(
X 0
0 0

)

; Mat(Λ1,B) =
(

Y11 Y12
tY12 Y22

)

(19)

where X and Y22 are invertible matrices of R3. The limit (17) finally comes from the following result:

lim
ω→0

ω

[(
X 0
0 0

)

+ ω

(
Y11 Y12
tY12 Y22

)]−1

=

(
0 0
0 Y −1

22

)

(20)

This result, proved in Appendix A., can easily be numerically implemented. If Λ1 is seen as a quadratic
form applying on symmetric second-order tensors, (20) shows that only the restriction of Λ1 to the subspace

spanned by n
s
⊗ l, n

s
⊗ m and n⊗ n plays a role in the computation of H.

3 Taylor expansion of the Hill polarization tensor

Some authors have shown that the numerical evaluation of the Hill polarization tensor P using one of the
integrals of (9) is all the more costly than the aspect ratio is small ([15], [31]). Nevertheless, it has been
put in evidence in the previous section that the estimate of the concentration tensor for a crack does not
require the full tensor P but the term of the first order Π in its Taylor expansion with respect to the aspect
ratio (16). This tensor has been analytically determined only in a few cases: for a penny-shaped crack in
an isotropic matrix ([34], [36]), in the symmetry plane of a transversely isotropic matrix ([24], [25], [33]) or
more recently in 2D for an arbitrarily oriented crack in an orthotropic matrix [17]. This section aims at
presenting a method allowing a numerical evaluation of Π for any ellipsoidal crack in a matrix of arbitrary
anisotropy. This tensor can be used to compute the crack compliance in the Eshelby problem by the method
presented in section 2.3 or simply to estimate the Hill tensor up to the first order with respect to the aspect
ratio (16).

3.1 3D crack model

This paragraph focuses on a 3D crack of the type of Fig. 1. Let us identify Π from the first integral form
of (9) in which the following parametrization of the unit sphere is adopted:

ξ = sin θ (t n+ uφ) with uφ = cosφ l + sinφm and t = cot θ (21)

Exploiting the properties of Γ (10), the Hill tensor can then be written in the form (see Appendix B. for a
complete proof):

P = Γ(n) +
ω η

8 π

∫ 2 π

φ=0

∫ +∞

t=−∞

L(t, φ)

(ω2 t2 + cos2 φ+ η2 sin2 φ)3/2
dt dφ (22)

with
L(t, φ) = Γ(t n+ uφ) + Γ(−t n+ uφ)− 2Γ(n) (23)
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The application of the dominated convergence theorem on the integral term of (22) when ω tends towards
0 shows then that Π can be identified as

Π =
η

8 π

∫ 2 π

φ=0

R(φ)

(cos2 φ+ η2 sin2 φ)3/2
dφ with R(φ) = −

∫ +∞

t=−∞
L(t, φ) dt (24)

where R(φ) in (24) is convergent. This can be shown using the classical decomposition of K ([41], [31])

K(t, φ) = t2 Q+ tS + T with







Q = n · c · n
S = n · c · uφ + uφ · c · n
T = uφ · c · uφ

(25)

and eventually the expression of Γ as a rational fraction with polynomial numerator and denominator both
of degree 6 with respect to the variable t

Γ(t n+ uφ) =
pφ(t)

qφ(t)
with







pφ(t) = (t n+ uφ)
s
⊗ K̃(t, φ)

s
⊗ (t n+ uφ) =

6∑

i=0

piφ t
i

qφ(t) = detK(t, φ) =

6∑

i=0

qiφ t
i

(26)

where K̃ is the tensor of cofactors of K which are polynoms of t of degree 4. Observing that Γ(n) = p6
φ/q

6
φ

and using (26), it is straightforward to show that L(t, φ) (23) can write as a rational fraction with a numerator
of degree 10 and a denominator of degree 12 with non real roots, which ensures that R(φ) (24) converges.
For practical implementation, the expressions of the coefficients piφ and qiφ can be found in [31]. For a given
value of φ, the three complex roots of qφ(z) with a positive imaginary part are denoted by z1, z2 and z3. If
the latter are distinct, Γ(zn+ uφ) and L(z, φ) can be decomposed in the following elementary fractions:

Γ(z n+ uφ) = Γ(n) +

3∑

i=1

ai

z − zi
+

āi

z − z̄i
with ai = Res

(
Γ(z n+ uφ); zi

)
=

pφ(zi)

q′φ(zi)
(27)

and

L(z, φ) =

3∑

i=1

ai

z − zi
− ai

z + zi
+

āi

z − z̄i
− āi

z + z̄i
(28)

where Res (f ; zo) denotes the residue of the function f at point zo. The decomposition (28) shows once again
that L(z, φ) varies as 1/z2 when |z| tends towards infinity, as another proof of the convergence of R(φ) (24).
Moreover, the only poles of positive imaginary part of L(z, φ) are zi and −z̄i. Hence, by a classical application
of the Cauchy residue theorem, R(φ) and Π are expressed as:

R(φ) = 4 π
∑

Im zi>0

ImRes
(
Γ(z n+ uφ); zi

)
= 4 π

∑

Im zi>0

ImRes

(
pφ(z)

qφ(z)
; zi

)

(29)

and

Π =
η

2

∫ 2 π

φ=0

∑

Im zi>0 ImRes
(

pφ(z)
qφ(z)

; zi

)

(cos2 φ+ η2 sin2 φ)3/2
dφ (30)

The evaluation of Π is finally achieved by applying a quadrature algorithm on the integral over φ (30)
(gaussian quadrature, Newton-Cotes formula...).
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In the case of double or triple roots of qφ(z) occurring in presence of material symmetries, (29) and (30)
still apply with a summation over the single, two or three roots of qφ(z) of positive imaginary part but the
expression of the residue of a double or triple pole is given by:

qφ(z) = (z − zi)
n r(z) , r(zi) 6= 0 ⇒ Res

(
pφ(z)

qφ(z)
; zi

)

=
1

(n− 1)!

dn−1

dzn−1

(
pφ(z)

r(z)

)

|z=zi
(31)

However, for some cases of material symmetries at the origin of double or triple roots [31], the present
procedure may be inadequate since closed-form solutions may already exist ([24], [25], [34]). By the way, in
the case of a flat spheroid aligned with the isotropy plane of a transverse isotropic matrix, (30) leads to the
same closed-form solution as that obtained in [25] (see Appendix C.).
Another expression of Π, coming from an integration by parts of the first integral of (9), can be found in [19]:

Π = − η

4 π

∫ 2π

φ=0

∫ 1

x=−1

x√
1−x2

∂G
∂x (x, φ)

(cos2 φ+ η2 sin2 φ)3/2
dxdφ with G(x, φ) = Γ(xn+

√

1− x2 uφ) (32)

The integrand in (32) shows some singularities in x = ±1 and may not be convergent in the neighborhood
of these two bounds considered separately. So as to ensure the convergence at both x = −1 and x = 1, a
better writing should be to replace ∂G

∂x (x, φ) by
(
∂G
∂x (x, φ) − ∂G

∂x (−x, φ)
)
/2. The integrand remains singular

but behaves as a function of finite integral at each bound of x. Whereas some cubature algorithm such
as [11] could be used to perform the double integral of such a singular integrand, it is worth remarking that
the change of variable t = x/

√
1− x2 leads to (24) and thus to (30). As a single integral, the latter is far

more efficient in terms of CPU time.

3.2 Cylindrical crack model

The crack is considered here as a flat cylinder (see Fig. 2). When the axis of the cylinder is aligned with
a material symmetry axis, the closed-form solution of [17] should be used. If the cylinder is arbitrarily
oriented, the following generalizing procedure can be considered.
First, P is conveniently expressed by means of the second integral of (9) with A

−1 written in (7) for a
cylindrical crack. Using the polar angle ψ in the plane spanned by n and m as integration parameter and
the change of variable t = tanψ/ρ, P becomes [31]:

P =
1

π

∫ π
2

ψ=−π
2

Γ

(
tanψ

ρ
n+m

)

dψ =
ρ

π

∫ +∞

t=−∞

Γ (t n+m)

1 + (ρ t)2
dt (33)

Following a reasoning similar as that of the 3D case, (33) is rearranged in:

P = Γ(n) +
ρ

2 π

∫ +∞

t=−∞

L(t, π/2)

1 + (ρ t)2
dt (34)

with L(t, φ) already defined in (23). Here again, L(t, π/2) is preferred to the simple difference Γ(tn+m)− Γ(n)
in (34) because the integral of the latter diverges whereas that of L(t, π/2) converges, behaving as 1/t2 when
|t| tends towards infinity. This remark is of major interest for an application of the dominated convergence
theorem on the integral in (34) leading to:

Π = − 1

2 π

∫ +∞

t=−∞
L(t, π/2) dt (35)
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It follows that the tensor Π of a cylindrical crack is directly related to R(φ) defined in (24) for the particular
value φ = π/2. Hence, the reasoning leading to the evaluation (29) of R can be reproduced here and thus Π

simply writes:

Π =
R(π/2)

2 π
= 2

∑

Im zi>0

ImRes (Γ(z n+m); zi) = 2
∑

Im zi>0

ImRes

(
pπ/2(z)

qπ/2(z)
; zi

)

(36)

The evaluation of Π is straightforward here and does not require any quadrature method. In Appendix D.,
(36) is shown to be consistent with a first order Taylor expansion with respect to the aspect ratio of the
2D Hill tensor expressed in [31]. Moreover, (36) also corresponds to the extension to arbitrary anisotropy of
the formulation provided in [17] in the framework of an orthotropic medium. This last reference highlights
in particular that (36) allows to derive the analytical expressions of [24] when the crack is aligned with the
orthotropy axes.

4 A numerical illustration of the effect of cracks in an anisotropic

matrix

This section is devoted to an application of the preceding results in the case of two orthogonal families of
aligned open cracks embedded in an anisotropic matrix. The first family of cracks is such that the normal is
oriented along the axis 3, the aspect ratio in the crack plane is η1 = 1/2 and the major axis is oriented along
the axis 1, i.e. (l1,m1, n1) = (e1, e2, e3). The characteristics of the second family are (l2,m2, n2) = (e3, e2, e1)
and η2 = 1/2.
A Mori-Tanaka scheme [32] is applied to this cracked medium. This scheme consists in estimating the
contribution of each crack family to the macroscopic strain rate by means of Eshelby problems in which
the reference medium is the matrix itself of stiffness cs and the remote stress rate is the macroscopic one
applied on the r.v.e.. The stiffness of the matrix is represented by the following matrix in the basis E =

(e1 ⊗ e1, e2 ⊗ e2, e3 ⊗ e3,
√
2 e2

s
⊗ e3,

√
2 e3

s
⊗ e1,

√
2 e1

s
⊗ e2) (Kelvin notation)

Mat(cs, E) =





4.560000 1.020000 0.840000 0.056569 −0.141421 0.169706

1.020000 3.900000 0.460000 0.155563 −0.028284 0.395980

0.840000 0.460000 11.510000 −1.074802 0.155563 0.466690

0.056569 0.155563 −1.074802 2.760000 0.940000 −0.120000

−0.141421 −0.028284 0.155563 0.940000 4.140000 0.020000

0.169706 0.395980 0.466690 −0.120000 0.020000 4.380000



 (37)

The application of (30) on each family yields the following Π tensors represented in the local frames Fi =
(li ⊗ li,mi ⊗mi, ni ⊗ ni,

√
2mi

s
⊗ ni,

√
2ni

s
⊗ li,

√
2 li

s
⊗ mi)

Mat(Π1,F1) =





−0.266121 0.060069 0.044677 0.019666 −0.014473 0.025887

0.060069 −0.897852 0.104656 0.088988 −0.031537 0.104459

0.044677 0.104656 0.064694 0.143029 −0.048666 0.018696

0.019666 0.088988 0.143029 1.472115 −0.430500 −0.024400

−0.014473 −0.031537 −0.048666 −0.430500 0.728681 0.009860

0.025887 0.104459 0.018696 −0.024400 0.009860 −0.553016



 (38)

and

Mat(Π2,F2) =





−0.185696 0.012371 0.079993 0.026262 0.013859 −0.022785

0.012371 −0.745871 0.332796 0.065037 −0.003201 0.011170

0.079993 0.332796 0.131657 −0.046649 0.017253 0.013159

0.026262 0.065037 −0.046649 0.498895 −0.010021 −0.014716

0.013859 −0.003201 0.017253 −0.010021 0.651768 0.131371

−0.022785 0.011170 0.013159 −0.014716 0.131371 −0.589168



 (39)

Subsequently, the compliance H tensors defined in (13) and (17) are computed according to the limit (20)
and write in the local frames

Mat(H1,F1) =





0 0 0 0 0 0

0 0 0 0 0 0

0 0 0.119438 0.006672 −0.001577 0

0 0 0.006672 0.114542 −0.016136 0

0 0 −0.001577 −0.016136 0.098187 0

0 0 0 0 0 0



 (40)
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and

Mat(H2,F2) =





0 0 0 0 0 0

0 0 0 0 0 0

0 0 0.181671 −0.007636 0.001940 0

0 0 −0.007636 0.102904 0.000817 0

0 0 0.001940 0.000817 0.085825 0

0 0 0 0 0 0



 (41)

The matrices (40) and (41) illustrate the crucial role of the orientation of the crack with respect to the
surrounding material if the latter is anisotropic. Indeed, the two crack families have the same shape but
different orientations. In the present case, the second family shows a higher compliance in the direction of
its normal n2 i.e. along the axis 1. Moreover, unlike materials of higher symmetries, the crack compliances
have non-zero components out of the diagonal, thus inducing sliding in a traction experiment in the normal
direction or dilatancy in a pure shear experiment along the crack plane.
According to the Mori-Tanaka scheme, the macroscopic stiffness of the cracked medium is estimated by (5)
together with (4) and (13)

Chom =

(

ss +
4

3
π ǫ1 η1 H1 +

4

3
π ǫ2 η2 H2

)−1

(42)

in which ǫi denotes the Budiansky density of the ith family, namely ǫi = Nia
3
i where Ni is the number of

cracks per volume unit and ai the major radius. In Fig. 3, the evolutions of some components of Chom are
plotted against the total density ǫ, given that each family has the same density ǫi = ǫ/2.
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Figure 3: Evolution of the normalized macroscopic moduli with the crack density (the absolute values for
ǫ = 0 i.e. uncracked matrix are given in (37))

5 Conclusion

After recalling that crack families in an elastic matrix manifest themselves at the macroscopic scale by
additional compliances, the paper focused on the Eshelby problem of a single ellipsoidal or cylindrical crack
embedded in an infinite matrix on which are based many homogenization schemes. In this problem, it was
shown that the crack compliance, expressed as a limit when the aspect ratio tends towards zero, could easily
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be computed from the first-order term in the Taylor expansion of the Hill polarization tensor with respect to
the crack aspect ratio. The second part of the work consisted in providing an optimized method to compute
this first-order term. The latter was first written as a double integral for a 3D ellipsoidal crack and as a
single integral for a cylindrical crack. The application of the Cauchy residue theorem, inspired from [31],
allowed then to reduce respectively the double integral to a single one adapted for quadrature algorithms
and the single integral to a simple expression. In both cases, the computation only required to compute the
roots of positive imaginary part of a sextic polynom built as the determinant of the acoustic tensor.
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Appendix A. Proof of the limit (20)

The following block matrix limit is considered

M = lim
ω→0

ω

[(
X 0
0 0

)

+ ω

(
Y11 Y12
tY12 Y22

)]−1

(I 1)

where X and Yij are square matrices of R3. Moreover X and Y22 are assumed invertible. Simple algebraic
calculations on (I 1) lead to:

M = lim
ω→0

ω

[(
X 0
0 ω Y22

)

+ ω

(
Y11 Y12
tY12 0

)]−1

(I 2)

= lim
ω→0

(
ωX−1 0

0 Y22
−1

) [

I +

(
Y11 Y12
tY12 0

) (
ωX−1 0

0 Y22
−1

)]−1

(I 3)

Applying the limit on (I 3), M successively becomes:

M =

(
0 0
0 Y22

−1

) [

I +

(
Y11 Y12
tY12 0

) (
0 0
0 Y22

−1

)]−1

(I 4)

=

(
0 0
0 Y22

−1

) [

I +

(
0 Y12 Y22

−1

0 0

)]−1

=

(
0 0
0 Y22

−1

) [

I −
(

0 Y12 Y22
−1

0 0

)]

(I 5)

=

(
0 0

0 Y22
−1

)

(I 6)

which achieves the proof of (20).

Appendix B. Proof of the expression (22)-(23)

Subtracting the constant tensor Γ(n) to P in (9) gives:

P − Γ(n) =
detA

4 π

∫

‖ξ‖=1

Γ(ξ)− Γ(n)
∥
∥A · ξ

∥
∥
3 dSξ =

1

4 π

∫

‖ζ‖=1

(
Γ(A−1 · ζ)− Γ(n)

)
dSζ (II 7)
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Thanks to the properties of Γ (10) and the parametrization (21), the first expression of (II 7) becomes

P − Γ(n) =
ω η

4 π

∫ 2 π

φ=0

∫ π

θ=0

Γ(cot θ n+ uφ)− Γ(n)

(ω2 cot2 θ + cos2 φ+ η2 sin2 φ)3/2 sin2 θ
dθ dφ (II 8)

then, with the change of variable t = cot θ

P − Γ(n) =
ω η

4 π

∫ 2 π

φ=0

∫ +∞

t=−∞

Γ(t n+ uφ)− Γ(n)

(ω2 t2 + cos2 φ+ η2 sin2 φ)3/2
dt dφ (II 9)

By the change t 7→ −t, (II 9) can also write

P − Γ(n) =
ω η

4 π

∫ 2 π

φ=0

∫ +∞

t=−∞

Γ(−t n+ uφ)− Γ(n)

(ω2 t2 + cos2 φ+ η2 sin2 φ)3/2
dt dφ (II 10)

The expression (22) is finally obtained as the half-sum of (II 9) and (II 10).

Appendix C. Derivation of Π for a spheroid in a transverse isotropic

matrix

In this section, the procedure exposed in 3.1 leading to the formula (30) is applied and adapted to the case
of a flat spheroid (η = 1) embedded in a transverse isotropic matrix such that the crack plane is aligned
with the matrix isotropy plane. The latter is spanned by the orthonormal vectors e1 and e2 whereas e3
corresponds to the axis of revolution of both the spheroid and the matrix stiffness.
The symmetry of revolution of the problem allows to simplify (30) in so far as η = 1 and the dependence of
Γ(t e3 + uφ) (26) on φ is very simple. Indeed, it is straightforward to show that

Γ(t e3 + uφ) = Rφ [Γ(t n+ e1)] (III 11)

where Rφ is a rotation operator applied on fourth-order tensors defined by

Rφ [T]ijkl = Ωip Ωjq Ωkr Ωls Tpqrs with Ω =





cosφ − sinφ 0
sinφ cosφ 0
0 0 1



 (III 12)

It follows from the linearity of Rφ that R(φ) in (24) is also obtained from R(0) by the rotation (III 12).
Consequently the determination of the residues of Γ(t e3 +uφ) needed to compute R(φ) in (29) requires here
the only case φ = 0.
The transverse isotropy of the matrix means that c is defined by the five independent moduli c1111, c1122,
c1133, c3333 and c2323 and is such that c1212 = (c1111 − c1122)/2. Hence K(z, φ = 0) (25) is simply represented
by the following matrix in the basis (e1, e2, e3)

Mat(K(z, 0), {ei}) =





z2 c2323 + c1111 0 z (c2323 + c1133)
0 z2 c2323 + c1212 0

z (c2323 + c1133) 0 z2 c3333 + c2323



 (III 13)

12



The inverse of K(z, φ = 0) can then be represented as a matrix with rational polynoms as components:

Mat(K−1(z, 0), {ei}) =










z2 c3333 + c2323
q(z)

0 −z (c2323 + c1133)

q(z)

0
1

z2 c2323 + c1212
0

−z (c2323 + c1133)

q(z)
0

z2 c2323 + c1111
q(z)










(III 14)

where q(z) is the quartic (not sextic here) polynom:

q(z) = z4 c3333 c2323 + z2 (c1111 c3333 − 2 c1133 c2323 − c21133) + c1111 c2323 (III 15)

This polynom admits two pairs of non real conjugate roots (z1, z̄1) and (z2, z̄2) with z1 and z2 of positive
imaginary part. Because of the bi-square character of (III 15), two cases can occur:

zu = ρu e
iθu = iγu (u = 1, 2) with

{
(1) γu ∈ R

∗
+ (θu = π/2)

(2) γ2 = γ̄1 ∈ C \ R (ρ2 = ρ1, θ2 = π − θ1)
(III 16)

where γ1 and γ2 correspond exactly to the roots defined in [25].
The application of (29) to the present case to obtain R(0) from the residues of Γ(z e3 + e1) requires the
calculation of the following elementary expressions

λk =

2∑

u=1

zku
q′(zu)

=
1

c3333 c2323 |z1 − z̄2|2
(

zk1
z1 − z̄1

+
zk2

z2 − z̄2
− zk2 − zk1
z2 − z1

)

, 0 ≤ k ≤ 4 (III 17)

After straightforward calculations taking (III 16) into account, the λk coefficients write:

λ0 = i µ0 with µ0 = − 1

2 c3333 c2323

1

γ1 γ2 (γ1 + γ2)
∈ R (III 18)

λ1 = 0 (III 19)

λ2 = i µ2 with µ2 = − 1

2 c3333 c2323

1

γ1 + γ2
∈ R (III 20)

λ3 =
1

2 c3333 c2323
(III 21)

λ4 = i µ4 with µ4 =
1

2 c3333 c2323

γ21 + γ1 γ2 + γ22
γ1 + γ2

∈ R (III 22)
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Applying (29), it follows that the non-zero components of R(0) are:

R1111 = − 2 π

γ1 + γ2

(
1

c2323
+

1

γ1 γ2 c3333

)

(III 23)

R1133 =
2 π

γ1 + γ2

(

1 +
c1133
c2323

)
1

c3333
(III 24)

R3333 =
2 π

γ1 + γ2

(

γ21 + γ1 γ2 + γ22 − c1111
c2323

)
1

c3333
(III 25)

R2323 =
π

2

√
c1212
c32323

(III 26)

R3131 =
π

2 (γ1 + γ2)

(

γ21 + γ1 γ2 + γ22 + 2
c1133
c3333

− c1111
γ1 γ2 c3333

)
1

c2323
(III 27)

R1212 = −π
2

1√
c2323 c1212

(III 28)

The calculation of Π can eventually be obtained by applying the integration over φ (24) in the particular case
of η = 1 and R(φ) deduced from R(0) by the rotation Rφ (III 12). The symmetry of the problem obviously
implies that Π is a transverse isotropic tensor defined by the following components:

Π1111 =
3R1111 + 4R1212

32
= − π

16

[
3

γ1 + γ2

(
1

c2323
+

1

γ1 γ2 c3333

)

+
1√

c2323 c1212

]

(III 29)

Π1122 =
R1111 − 4R1212

32
=

π

16

[

− 1

γ1 + γ2

(
1

c2323
+

1

γ1 γ2 c3333

)

+
1√

c2323 c1212

]

(III 30)

Π1133 =
R1133

8
=

π

4 (γ1 + γ2)

(

1 +
c1133
c2323

)
1

c3333
(III 31)

Π3333 =
R3333

4
=

π

2 (γ1 + γ2)

(

γ21 + γ1 γ2 + γ22 − c1111
c2323

)
1

c3333
(III 32)

Π2323 = Π3131 =
R2323 +R3131

8

=
π

16

[
1

γ1 + γ2

(

γ21 + γ1 γ2 + γ22 + 2
c1133
c3333

− c1111
γ1 γ2 c3333

)
1

c2323
+

√
c1212
c32323

]

(III 33)

Π1212 =
Π1111 −Π1122

2
(III 34)

The expressions (III 29)- (III 34) are identical to the results obtained by another method in [25], except that,
in this last reference, the term (γ21 + γ1 γ2 + γ22)/(γ1 γ2) should be corrected in (γ21 + γ1 γ2 + γ22)/(γ1 + γ2)
in the Taylor expansion of the coefficient I1.

14



Appendix D. Consistency between (36) and the Taylor expansion
of P in [31]

The expression of P in [31] to which (36) can be compared writes with the notation of the present paper:

P =
p( iρ)

q( iρ)
+

2 i

ρ

2∑

u=1

p(zu)
(

1
ρ2 + z2u

)

q′(zu)
(IV 35)

where the index π/2 on p and q, refering to the specific orientation of the angle φ for a cylindrical crack,
has been omitted to simplify the expression. It should be first emphasized that in [31], the 2D case leading
to (IV 35) involves quartic polynoms p(z) and q(z) and not sextic polynoms as in the present paper. This
is due to the fact that (IV 35) concerns a 2D matrix i.e., such that the stiffness of the matrix admits the
cylinder axis as a symmetry axis. Consequently, in this particular case, Γ(zn + uπ/2) actually writes as
a reduced rational fraction with polynomial numerator and denominator of degree 4 in the same way as
in Appendix C. but with other expressions since the symmetries are different. Indeed, if the index 3 refers
to the cylinder axis, the symmetry property of c here implies that cijkl = 0 if 3 appears an odd number of
times among the four indices. It follows then that the symmetric acoustic tensor K(ξ) defined in (10) is
such that K13 = K23 = 0 since ξ3 = 0. Therefore, it is straightforward to deduce that the sextic polynoms
pπ/2 and qπ/2 of the general case have here a pair of conjugate roots in common, say (z3, z̄3), which allows
to reduce them to the quartic polynoms of [31]. Thus, the summation in (36) concerns only two poles since
the third root of positive imaginary part is not a singularity anymore.
A Taylor expansion of (IV 35) to the first order with respect to ρ gives:

P =
p4

q4
︸︷︷︸

Γ(n)

−ρ
[

2

2∑

u=1

Im

(
p(zu)

q′(zu)

)]

︸ ︷︷ ︸

Π

+i ρ

[

2

2∑

u=1

Re

(
p(zu)

q′(zu)

)

− p3

q4
+
q3 p4

q24

]

︸ ︷︷ ︸

Φ

+O
(
ρ2
)

(IV 36)

The two first terms of the right hand side of (IV 36) correspond to (36). It is then necessary to show that the
third term, i.e. the one inside the brackets Φ, is null. A simple argument could be to recall that P is real as
well as Φ. The factor i before the latter allows then to conclude that Φ is actually null and the consistency
between (36) and (IV 35) is satisfied. Another proof could also come from the following elementary algebraic
results which can easily be obtained from calculations similar to those leading to (III 17) and (III 18)- (III 22)
(adapted to the case of a quartic but not bi-square polynom q):

q(z) = q4

2∏

u=1

(z − zu) (z − z̄u), q4 ∈ R ⇒







Re

2∑

u=1

zαu
q′(zu)

= 0, ∀α ∈ {0, 1, 2}

Re

2∑

u=1

z3u
q′(zu)

=
1

2 q4

Re

2∑

u=1

z4u
q′(zu)

=
Re (z1 + z2)

q4
= − q3

2 q24

(IV 37)
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