Spiking and collapsing in large noise limits of SDE's

Abstract : We analyze strong noise limit of some stochastic differential equations. We focus on the particular case of Belavkin equations, arising from quantum measurements, where Bauer and Bernard pointed out an intriguing behavior. As the noise grows larger, the solutions exhibits locally a collapsing, that is to say converge to jump processes, very reminiscent of a metastability phenomenon. But surprisingly the limiting jump process is decorated by a spike process. We completely prove these statements for an archetypal one dimensional diffusion. The proof is robust and can easily be adapted to a large class of one dimensional diffusions.
Type de document :
Pré-publication, Document de travail
17 pages, 2 figures, Preliminary version. 2019
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01976435
Contributeur : Reda Chhaibi <>
Soumis le : jeudi 10 janvier 2019 - 09:33:36
Dernière modification le : lundi 18 mars 2019 - 16:03:48

Lien texte intégral

Identifiants

Citation

C. Bernardin, R. Chetrite, Reda Chhaibi, J. Najnudel, C. Pellegrini. Spiking and collapsing in large noise limits of SDE's. 17 pages, 2 figures, Preliminary version. 2019. 〈hal-01976435〉

Partager

Métriques

Consultations de la notice

21