Borel Kernels and their Approximation, Categorically

Abstract : This paper introduces a categorical framework to study the exact and approximate semantics of probabilistic programs. We construct a dagger symmetric monoidal category of Borel kernels where the dagger-structure is given by Bayesian inversion. We show functorial bridges between this category and categories of Banach lattices which formalize the move from kernel-based semantics to predicate transformer (backward) or state transformer (forward) semantics. These bridges are related by natural transformations, and we show in particular that the Radon-Nikodym and Riesz representation theorems-two pillars of probability theory-define natural transformations. With the mathematical infrastructure in place, we present a generic and endogenous approach to approximating kernels on standard Borel spaces which exploits the involutive structure of our category of kernels. The approximation can be formulated in several equivalent ways by using the func-torial bridges and natural transformations described above. Finally, we show that for sensible discretization schemes, every Borel kernel can be approximated by kernels on finite spaces, and that these approximations converge for a natural choice of topology. We illustrate the theory by showing two examples of how approximation can effectively be used in practice: Bayesian inference and the Kleene * operation of ProbNetKAT.
Type de document :
Article dans une revue
Electronic Notes in Theoretical Computer Science, Elsevier, 2018, 341, pp.91-119
Liste complète des métadonnées
Contributeur : Vincent Danos <>
Soumis le : jeudi 10 janvier 2019 - 09:24:24
Dernière modification le : vendredi 8 février 2019 - 10:50:39


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01976416, version 1


Fredrik Dahlqvist, Alexandra Silva, Vincent Danos, Ilias Garnier. Borel Kernels and their Approximation, Categorically. Electronic Notes in Theoretical Computer Science, Elsevier, 2018, 341, pp.91-119. 〈hal-01976416〉



Consultations de la notice


Téléchargements de fichiers