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Abstract

Cells derive resources from their environments and use them to fuel the biosynthetic processes that determine
cell growth. Depending on how responsive the biosynthetic processes are to the availability of intracellular
resources, cells can build up different levels of resource storage. Here we use a recent mathematical model
of the coarse-grained mechanisms that drive cellular growth to investigate the effects of cellular resource
storage on growth. We show that, on the one hand, there is a cost associated with high levels of storage
resulting from the loss of stored resources due to dilution. We further show that, on the other hand,
high levels of storage can benefit cells in variable environments by increasing biomass production during
transitions from one medium to another. Our results thus suggest that cells may face trade-offs in their
maintenance of resource storage based on the frequency of environmental change.

Keywords: metabolites, storage, mechanistic cell models, evolutionary strategies, gene regulation, cell
physiology

1 Introduction

Growing cells have to constantly balance the uptake of extracellular resources with

the intracellular demands of biosynthetic processes. Depending on how they co-

ordinate uptake and consumption cells can adapt the build up, or storage, of in-
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tracellular resources. Storage has been proposed as an evolutionary strategy to

cope with variable environments, by storing the gains of favourable environmental

periods to survive unfavourable ones. The so called ‘storage effect’ was originally

proposed to explain behavioural diversity [5]. Under the assumption that no one

strategy can perform best in all environmental conditions, it explains coexistence

of diverse responses in fluctuating environments and counters the competitive ex-

clusion principle, which states that two species exploiting the same set of resources

cannot coexist in a closed environment [13]. Here we investigate how cellular con-

straints bear on the evolutionary success of various storage strategies in terms of

cell growth.

To grow, cells have to perform different tasks that are each carried out by differ-

ent proteins. These proteins can be roughly classified into enzymes, which take up

extracellular resources and convert them into biosynthetic precursors, biosynthetic

proteins, most notably the ribosomes, which are responsible for protein production

itself, and other house-keeping proteins (cf. Fig. 1). Bacterial cells are known to

adapt their allocation of available resources to produce the different proteins de-

pending on their growth media [8,14], which allows them to maximise their growth

rate in a given (constant) environment [19,17]. Previous modeling work has shown

that during environmental up-shifts, i.e. transitions to a more favourable growth

medium, a near-optimal control strategy (in terms of growth rate maximisation) to

reallocate cellular resources can be attained by sensing the concentrations of im-

mediate precursors to protein synthesis [12]. In our study of cellular storage we

therefore focus on resources that are immediate precursors to protein synthesis.

We base our analysis on a recent model [22] that determines growth in terms

of coarse-grained cellular mechanisms. The mechanisms considered comprise re-

source uptake and conversion into cellular precursors, and how the latter fuel pro-

tein biosynthesis and thus growth. Importantly, the model predicts growth rate

from the way cells allocate their resources to the production of different types of

proteins. We start with a brief review of the model from [22]. We then define a

generic scaling transformation of Chemical Reaction Networks (CRNs) that allows

one to tune the concentration of one chemical species while preserving this CRN’s

behaviour at stationary state. We apply this scaling in the cell model to the protein

precursor in order to tune storage capacity. We then go on to show that within

our framework (i) storage of our protein precursor is detrimental to exponential

growth rate, (ii) that storage capacity can be modulated over several order of mag-

nitudes without affecting exponential growth rate, (iii) the cost of storage, in terms

of reduced growth, is condition-dependent and higher in rich growth conditions,

(iv) storage results in smoother physiological transitions during environmental up-

shifts and increases biomass during such transitions, and (v) evolutionary benefits

of storage increase with the frequency and magnitude of environmental fluctuations.
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2 Review of the cell model:

In the following we revisit the cellular growth model from [22] with a schematic

shown in Fig. 1. We provide the parameters we used for simulations in the ap-

pendix B. The model recapitulates the allocation of cellular resources to different

Fig. 1. Schematic of the cellular growth model considered (adapted from Ref. [22]). Four types of proteins
are considered: et are transporters, em are metabolic enzymes, r are ribosomes and q are house-keeping
proteins, the function of which is not accounted for in the model. External sugar s is imported into the cell by
the transporters et, internalised sugar si is processed into proteins precursor a by the metabolic enzymes em,
see reactions (r1,r2). Messenger RNAs (mRNAs) are produced through transcription, see reactions (r3,r4).
Dashed arrows indicate that the transcription rates depend on a’s concentration but do not consume it.
mRNAs mx compete for the same pool of ribosomes and bind them to form mRNA-Ribosome complexes
cx, see reaction (r5). mRNA-Ribosome complexes incorporate a to produce the protein x, see reaction (r6).
The growth rate is defined as the rate at which cells reproduce their own proteic mass, see reaction (r7).

functions in different growth media. Units of the 14 model variables are expressed

in: numbers of molecules per 108 units of proteic mass. One unit of proteic mass

corresponds to one amino acid polymerised within a protein. Four classes of genes

are represented. Housekeeping proteins q, the function of which is not represented

in the model, account for roughly half of the cell proteic mass across different growth

conditions [19]. This relatively constant level of expression is achieved in the model

through a negative auto-regulation of their gene expression. Ribosomes r are the

sole proteins capable of protein production and are thus necessary in order to repli-

cate the mass. We show now the different reactions taking place in the cell model

and their associated rate functions.
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Nutrient Uptake:

Transporters t import extracellular nutrients s into the cell. Metabolic enzymes

m transform imported nutrients si into a metabolite a with a stoichiometry ns. The

stoichiometry represents the quality of the medium, i.e. the yield of a from s. A

biological interpretation of ns is that it is a measure of how many metabolic steps

or anabolic effort are/is needed by a cell to turn the nutrients present in the envi-

ronment into protein precursors. The higher ns, the less metabolic work is needed.

This translates in the model into a higher yield of a from si for the same metabolic

enzyme number. The transport and metabolic reactions write respectively as:

s
νimp(t)−−−−→ si, (r1)

si
νcat(m)−−−−−→ ns · a, (r2)

with the rates given by

νimp = t · vt s

Kt + s
, (f1)

νcat = m · vm si
Km + si

. (f2)

Transcription:

mRNAs convey genetic information from DNA to the ribosomes. In model there

is one type of mRNA mx for each gene x ∈ {r, t,m, q}. Let ωx be the transcrip-

tion rate of mx and d the degradation rate, assumed to be identical for all mx.

Production and consumption are described by the following reactions:

∅
ωx−→ mx (r3)

mx
d−→ ∅ (r4)

ATP is the main energy currency for most cellular processes. Transcription has

been estimated to cost ≈ 20 times less ATP than translation [16]. RNA polymerases

are the proteins responsible for transcription. In E.coli, their mass fraction is ten

times smaller than that of the ribosomes [3]. We assume that in comparison to

translation, the cost of transcription is negligible, both in terms of energetic cost

and proteins. Therefore in the model transcription is assumed to be free of any cost:

(i) no proteins are needed to produce them, (ii) their production doesn’t consume

metabolites. However, the mRNA transcription rate depends on the amount a of

protein precursors as follows:

ωx(a) =
wx

θx
a

+ 1

, ∀x ∈ {t,m, q}, (f3)

ωq(a) =
wq

θq
a

+ 1

· I(q), with I(q) = 1(
q

Kq

)αq

+ 1

. (f3)
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In order to fit experiments measuring the ribosomal mass fraction and the

growth-rate in different growth-conditions from [19], the transcriptional threshold

of the ribosomes θr must be such that θr � θx, ∀x ∈ {t,m, r}. Consequently, for
high values of the protein precursor a, the composition of the transcriptome shifts

to one that accommodates more ribosomal mRNAs. This regulation mechanism

ensures the balance between a production and a consumption. Indeed, it promotes

the consuming processes (ribosome-dependent) when a is high and the production

processes (metabolic/transporter-dependent) when a is low.

Competitive binding:

The different types of mRNAs mx compete for the same pool of free ribosomes

r in order to form the mRNA-ribosome complex cx. We assume that the different

mRNAs mx have the same binding constant for the ribosomes kb and that cx have

the same dissociation constant ku:

r +mx
kb←→
ku

cx (r5)

Translation:

The metabolite a is the precursor for synthesising new proteins. The mRNA-

ribosome complexes cx consume a to produce the corresponding protein x and after

completion of one translation reaction, the mRNA-ribosome complex cx dissociates

into mx and r:

cx + nx · a νx−→ r + x+mx. (r6)

Here nx denotes the amount of a required to produce one protein x and the rate of

translation νx is:

νx = cx · γ(a)
nx

, with γ(a) =
γmax

Kγ

a
+ 1

, (f6)

where γ(a) is the rate of elongation per translating ribosome (a incorporated per

unit of time per cx complex), see [22] for a derivation.

Growth:

All intracellular species x get diluted due to growth at rate λ, i.e.

xi
λ−→ ∅. (r7)

The growth rate λ is defined as the proteic mass produced per unit of time

relative to the typical mass M of an exponentially growing cell, or in other words,

the rate at which a cell reproduces its own mass:

λ =

∑
x νx · nx

M
. (f7)
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At stationary state, the equality between the parametrized mass M and the

total proteic mass is verified: M =
∑

x nx · x+ nr ·
∑

x cx.

3 Formal Definition of Storage Capacity

The storage capacity in the model is defined as a scaling factor of the protein

precursor amount a at stationary state. We propose here a formal definition of

the scaling procedure we perform in order to tune the storage capacity without

impacting on the cell model behaviour. We then show how to apply this scaling

procedure to reactions following different types of kinetic rate functions: Mass-

Action, Michaelis-Menten or Hill. We also apply the scaling to a model of a toggle-

switch - a synthetic, bistable gene-regulatory network - published in [11] and show

that it behaves as expected from our analysis.

Definition 3.1 A chemical reaction network (CRN) is a tuple A = 〈S,R, f, κ〉,
where:

• S = {S1, . . . , Sn} is a finite set of species; the state of CRN A can be

represented as a multiset of the species’ concentrations, denoted by x =

(x1, . . . , xn) ∈ R
n
≥0

• R = {r1, . . . , rr} is a finite set of reactions, each reaction being a pair rj ≡
(yj → y′j) ∈ Z

n
≥0 × Z

n
≥0 (yj and y′j are respectively the consumption and

production vectors of reaction rj)

• f = {f1, . . . , fr} is the set of rate functions describing the chemical kinetics of

the reactions; each such function fj is parametrized by κj , the set of reaction

rate constants associated with reaction rj : ∀rj ∈ R, fj(x;κj) denotes the

kinetic law of reaction rj (e.g.: mass action, Michaelis-Menten,etc)

More precisely, reaction rj is written down in the following form:

y1jS1, . . . , ynjSn
fj(x;κj)−−−−−→ y′1jS1, . . . , y

′
njSn.

Define δij = y′ij − yij ; ∀Si ∈ S, rj ∈ R.

Then the (deterministic) dynamics of species Si in CRN A in state x is given

by: (
dASi
dt | x

)
=

∑r
j=1 δijfj(x;κj)

Definition 3.2 Let A = 〈S,R, f, κ〉 be a CRN and Si ∈ S a species we want

to scale. Define dα,i : R
n
≥0 → R

n
≥0, the state expansion of species Si, as

dα,i(x1, . . . , xi, . . . , xn) = (x1, . . . , αxi, . . . , xn). Then A is said to be scalable

along species Si, if the reaction kinetics allows rescaling, that is to say if for any

rescaling factor α in R>0, and for any reaction rj in R, there exists κ′j such that

fj(x;κj) = fj(dα,i(x);κ
′
j).

The condition ensures that the initial reaction fluxes can be retrieved through

the scaling of the rates of reactions containing the species of interest (Si). Evidently,
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if Si is not a reactant species of rj , there is no need for scaling and one can simply

take κ′j = κj .

We note that the scaling is parametrized by reactions, rather than reaction rates.

In models where a reaction rate name κ appears in several reactions, what is scaled

is κ’s value in a certain reaction rj , rather than a scaling of its value across every

reaction it appears in. In terms of model variables, it can be interpreted as every

κj being defined locally in reaction rj , rather than globally (i.e., across the whole

model).

Definition 3.3 Let A = 〈S,R, f, κ〉 be a CRN that is scalable along species Si ∈ S.
We define the scaling of A along species Si by a factor of α as follows:

A = 〈S,R, f, κ〉 α,Si−−→ 〈S,R, f, κ′〉 = B,
where each κ′j satisfies the condition of Def. 3.2.

A multi-species scaling of a CRN can be achieved by sequentially applying the

transformation described above, along different species.

Theorem 3.4 Let A = 〈S,R, f, κ〉 be a CRN scalable along Si ∈ S, and let B be

its scaling according to the transformation of Def. 3.3: A α,Si−−→ B. Then:

∀x = (x1, . . . , xn) ∈ Rn
≥0, ∀Si ∈ S :

(
dASi

dt
| x

)
=

(
dBSi

dt
| dα,i(x)

)
(1)

Proof of Theorem 3.4 is obtained directly via the definition of the network dy-

namics in Def.1, and the scalability condition.

Corollary 3.5 If A scalable along Si, A α,Si−−→ B, and x is a steady state of A, then

dα,i(x) is a steady state of B.
We note that neither Theorem 3.4, nor its corollary should be interpreted as

meaning trajectory homothety, but rather steady state equivalence, as can be

observed in Fig. 2.

We now show how to apply the scaling transformation for the most commonly

used kinetic laws:

• if reaction rj has a mass action kinetics: fj(x;κj) = κj ·
∏

k x
ykj
k , the reaction

rate scales to κ′j =
κj

αyij , s.t. the reaction dynamics remains unchanged after

the scaling: fj(x;κj) = fj(dα,i(x);κ
′
j)

• if reaction rj has a Michaelis-Menten kinetics: fj(xi; vmax,KM ) = vmax·xi
KM+xi

, the

reaction rates scale to v′max = vmax and K ′
M = αKM , s.t. the reaction dynam-

ics remains unchanged after the scaling: fj(xi; vmax,KM ) = fj(αxi; v
′
max,K

′
M )

• if reaction rj has a Hill kinetics: fj(xi; vmax, n,Kh) =
vmax·xn

i
Kn

h+xn
i
, the reaction

rates scale to n′ = n, v′max = vmax and K ′
h = αKh, s.t. fj(xi; vmax, n,Kh) =
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[A] original model

[A] scaled model

[A] 2−homothety

[B] original model

[B] scaled model

Fig. 2. Simulation of a simple CRN (A
1∗[A]−−−−→ ∅;B

2∗[B]−−−−→ ∅) and its scaling along species A, by a factor of
2. As stated by our theorem, the dynamics of species B remains unchanged. The trajectory of the scaled
species is not homothetic to the original trajectory (homothety plotted in red, for comparison), but rather
the two models (original and scaled) exhibit steady state equivalence.

fj(αxi; v
′
max, n

′,K ′
h). A concrete example of the results of scaling such a rate

function is given in Fig. 3.

Example 3.6 Consistent with the notations used in Theorem 3.4, consider a CRN

A =< {a∗, b}, {r1, r2}, {f1, f2}, {k1, k2} >, with reactions:

r1 : ∅
f1(k1)−−−−→ a∗ (E1)

r2 : a
∗ f2(a∗;k2)−−−−−→ b

and mass-action kinetics:

f1(k1) = k1

f2(a
∗; k2) = k2 · a∗

meaning that:

⎧⎨
⎩
(
dAa∗
dt | (a∗, b)

)
= f1 − f2 = k1 − k2 · a∗(

dAb
dt | (a∗, b)

)
= f2 = k2 · a∗

Construct A α,a∗−−−→ B =< {a∗, b}, {r1, r2}, {f1, f2}, {k′1, k′2} >, with:
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Fig. 3. An example of scaling a Hill-kinetic rate function: simulation of the toggle switch (model adapted
from [11]) before and after scaling species A by a factor of 3. The genetic toggle switch is a synthetic, bistable
gene-regulatory network, composed of two repressors: proteins A and B, and two constitutive promoters.
Each promoter is inhibited by the repressor which mRNA is transcribed from the opposing promoter. The
concentrations of proteins A and B are denoted by [A] and [B]. The plotted ratio is the concentration of a
protein in the rescaled model divided by the concentration of the same protein in the non rescaled model.
As expected, the rescaling preserves the stationary state value of [B] (ratio is equal to 1) while rescaling by
3 the stationary state value of [A]. Note that even though the stationary state values for [A] and [B] are
preserved by the rescaling, it is not necessarily the case for transitions. The description of the model and
the parameters used for the simulations are given in the appendix A.

r1 : ∅
f1(k′1)−−−−→ a∗

r′2 : a
∗ f2(αa∗;k′2)−−−−−−→ b

and mass-action kinetics.

Then we can scale the reaction rates using

{
k′1 = k1

k′2 =
k2
α

, which satisfies Eq. (1)

of Theorem 3.4.

Example 3.7 Consider the same two CRNs as above, but for which reaction r2
follows a Michaelis-Menten kinetics:

f2(a
∗; v,KM ) =

v · a∗
KM + a∗

(E2)

Once again, scaling the reaction rates using

{
K ′

M = αKM

v′ = v
, satisfies Eq. (1)
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of Theorem 3.4.

4 Metabolite storage slows down exponential growth
rate

Storage capacity in the growth model:

We adjust the stationary state concentration of the proteins precursor a following

the method presented in the previous section. For convenience we denote with ∗

the reference parameters and concentrations, i.e. their values when α = 1. We list

the reaction rates in which a is an input and scale the parameters so that model’s

behaviour is preserved:

(i) Consumption of a by translation follows a Michaelis-Menten kinetics, see rate

(f6). Following example (E2), we scale the affinity of the ribosome for a when

translating proteins by α: Kγ = α ·K∗
γ .

(ii) Transcriptional rate ωx also follows Michaelis-Menten kinetics, see rate (f3).

Therefore we scale the transcriptional thresholds by α: θx = α · θ∗x.
We verify that at exponential growth, the scaling {a = α · a∗, Kγ = α ·K∗

γ ,

θx = α · θ∗x} preserves the model’s behaviour:

(i) Or in other words that the consumption of a by translation c · γ(a) is indepen-
dent of the storage capacity α:

a = α · a∗ ⇒ c · γmax

K∗
γ

a∗
+ 1

= c · γmax

α ·K∗
γ

a
+ 1

, (2)

where c =
∑

x cx is the concentration of ribosome-mRNA complexes and γmax

is the maximal translation rate per ribosome.

(ii) And that mRNA production rate for each gene x at exponential growth is

invariant to the storage capacity α:

a = α · a∗ ⇒ wx

θ∗x
a∗

+ 1

=
wx

α · θ∗x
a

+ 1

. (3)

Not all of the model behaviour is preserved though, since perfect preservation

would require rescaling the growth rate λ, too. However, our growth rate is an

emergent property of the model, resulting from the overall production of proteins,

and affects all intracellular species through dilution. In our analysis it therefore

would not make sense to modify this rate in the same way as the above parameters

that affect the coordination of different processes. The rate λ is shared by many

reactions involving all the species of the model. Therefore the effect scaling of λ

would propagate to every species’ degradation rate.

We now show that the species scaling expression a = αa∗ can also be considered
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as an emergent property of the system at steady state, provided that M � a:

da

dt
= ns · vcat − γ(a) · c− λ · a = 0 ⇒ c · γ(a) = ns · vcat − λ · a (4)

We also know that:

λ =
c · γ(a)
M

⇒ c · γ(a) = λ ·M (5)

From equations (4) and (5), we deduce that:

λ(a) =
ns · vcat
M + a

(6)

which implies that increasing the storage capacity α leads to a decrease in the

exponential growth rate.

Let us assume M � a and M � αa∗.
Because:

λ(a) =
ns · vcat
M + a

≈ ns · vcat
M + a∗

= λ(a∗) (7)

and Eq. (4) + Eq. (7) ⇒ a ≈ α · a∗ �

We note that M = 108 is large and 1 < a∗ < 10. As long as M � α · a∗ the

exponential growth rate remains unaffected, and so do the other model variables.

The fluxes of all reactions thus remain unchanged as long as M � α · a∗, along
with the steady state proteic composition and the exponential growth rate.

Note that the rescaled parameters are not strongly constrained by experimen-

tal measurements. Indeed, they were initially obtained by fitting the model on

experimentally observed cell physiological states in different growth conditions, at

stationary state [22]. Therefore, as long as modulating the storage capacity doesn’t

affect the model’s abilities to reproduce these measurements, the rescaled parame-

ters are equally constrained than they were in the absence of rescaling.

Remark:

In our analysis we assumed so far that a does not contribute to the mass. If

we assume otherwise, the total mass of the new cell model, call it MN , writes:

MN = M + a, where M =
∑

x nx · x + nr ·
∑

x cx is the mass of the cell model

in which a does not contribute to the mass. For such a model the impact of the

storage capacity α on the growth rate λN , see Eq. (6), becomes:

λN =
ns · vcat

MN + α · a∗ =
ns · vcat

M + 2 · α · a∗

Although this shall quantitatively change the impact of tuning the storage ca-

pacity, the qualitative conclusions of the analysis that we lead further will likely

remain unchanged.
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The cost of high storage capacity:

We denote the total amount of mRNA-Ribosome complexes by c =
∑

x cx. We

can consider the cost of storage in terms of the fraction of the resource a that,

rather than being used for biomass production is diluted through the increase in

cell volume

η(α) =
λ · a

λ · a+ γ · c ≈ α · a∗
M + α · a∗ . (8)

If one amolecule is to be invested at time t0 into biomass production its contribution

to growth is 1/M0, where M0 is the amount of resources a necessary to invest in

order to replicate the entire cell. If the same a molecule is to be invested at a later

time t1 > t0 and if the growth rate is positive, meaning that the mass of the cell at

t1 is M1 > M0, then the contribution of one a molecule to growth of the biomass

1/M1 decreases: 1/M1 < 1/M0. Consequently, the sooner after its production a

molecule a is invested into growth of the mass, the more it contributes to growth

rate, and the higher the storage capacity the longer is the time between production

and consumption of an a.

The cost of storage depends on the richness of the environment:

According to our model [22], the richer the medium, parameterised in the

model by the nutrient quality ns, the higher the concentration of metabolites a

available for translation. This is also observed experimentally by an increase of

the tRNA concentration [9], leading to an increase of the ribosomal translation

rate [3,7,24,18,15]. From Eq. (8) thus follows that higher a concentrations are

increasing the cost of a high storage capacity, also shown via simulations in Fig. 4.

Rich environments therefore impose evolutionary pressure on cells to have a low

storage capacity.

We have shown that storage capacity can be modulated over several orders of

magnitude without significantly affecting the exponential growth rate of our cell

model. Consequently, cells may tune their storage capacity within that range in

order to maximize their biomass production in fluctuating environments without

impairing their ability to produce biomass in absence of these fluctuations. We

show in the next section how variations in the storage capacity affect our cell model

biomass production upon environmental fluctuations.

5 Metabolite storage can allow faster adaptation to en-
vironmental fluctuations

Storage capacity affects growth during environmental transitions:

Cells adjust their resource allocation depending on which medium they grow

in. In bacteria for example, the ribosomal content increases as the medium gets

more favourable to growth [8]. These adjustments are necessary in order to adapt

biomass production in different growth conditions [19,22]. But the reallocation of

cellular resources to different functions is not instantaneous, as it is constrained
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Fig. 4. The model is simulated for increasing storage capacity α for three different environments (ns = 0.08,
0.20 and 0.5). We denote by λ0 the growth rate obtained when the storage capacity is α = 1 for any given
ns. The relative growth rate λ/λ0 is then the growth rate obtained for a given storage capacity α relative
to the growth rate when α = 1. The relative growth rate decreases as the storage capacity α increases. The
faster a cell grows, the more storage is detrimental to growth.

by the cellular mechanisms that sense and regulate the different processes, with

potential implications for the biomass production during environmental transitions

[6,4]. A common assumption is that, on evolutionary time scales, cells seek to

optimise their mean biomass production over time, which means that they also seek

to optimise the dynamics of the transition between different physiological states

such that the biomass production over time is maximised. We analyse the growth

rate during environmental transitions by considering environmental up-shifts. We

model the up-shifts by an instantaneous change in ns. This parameter is a proxy

for how many metabolic steps are necessary in order to convert the nutrients in

the environment into protein precursors or anabolic efficacy of the medium. The

biological interpretation of shifting the medium abruptly to a higher value of ns is

that nutrients that do not require a lot of metabolic processing (like amino acids)

before incorporation into biomass are suddenly made available for the cell. Our

simulations show that higher storage capacities results in smoother transitions from

one physiological state to another (Fig. 5). To understand this behaviour we next

look at the sensitivity of transcriptional regulation to levels of the resource a.

Sensitivity of transcriptional regulation decreases with storage:

We define the sensitivity of transcriptional regulation as

σx(a) =
dωx

da
,
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Fig. 5. λ0 denotes the growth rate of a model with storage capacity α = 1 in a medium quality ns = 0.12.
Before t = 0, the model is growing steadily for a medium quality ns = 0.12. At t = 0 the medium quality is
shifted from 0.12 to ns = 0.5. Different lines correspond to cell models with different storage capacities. The
black line denotes the behaviour of a (theoretical cell) adapting instantaneously its internal composition to
the new growth condition. Different dynamics of growth adaptations arise for different storage capacities:
increasing the storage capacity α results in smoother transition of the growth rate following an up-shift.
For high enough storage capacity, steady growth rate before the shift is severely impaired (red line), as
expected from figure 4.

and obtain

σx =
wx · α · θ∗x

(α · θ∗x + a)2
, x ∈ {t,m, r},

σq =
wq · α · θ∗q(
α · θ∗q + a

)2 · I(q).

As long as M � α · a∗ we know that a ≈ α · a∗, and so

σx ≈ wx · θ∗x
α · (θ∗x + a∗)2

, x ∈ {t,m, r},

σq ≈
wq · θ∗q

α · (θ∗q + a∗
)2 · I(q).

The sensitivity of transcriptional expression thus decreases with increasing storage

capacity. An intuitive explanation is that, although the storage capacity impacts

the steady state concentration of a, it does not affect its rate of production. Con-

sequently, the rate of accumulation or depletion of a relative to its current concen-

tration is decreasing, therefore making transcriptional regulation less sensitive to

fluctuations in a.
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High sensitivity of transcriptional regulation results in overshoot regu-

lation during environmental up-shifts:

We now look at the reallocation dynamics of the cell model during an up-shift.

We see that high sensitivity of transcriptional regulation, achieved by low values of

the storage capacity, results in a two-stage regulation:

(i) Net production of a increases as a result of an increase in ns, Fig. 6C. This is a

consequence of the linear increase of the production flux with nutrient quality,

ns · νcat, while consumption by ribosomal mRNA complexes is saturated, and

so the concentration of a increases, Fig. 6D. Consequently, reallocation of cel-

lular resources from metabolic enzymes to ribosomes occurs: see the increase

of ribosomal concentration and decrease of metabolic enzymes concentration,

Fig. 6A & B.

(ii) By the time the concentration of a decreases, ribosomal concentration rela-

tive to metabolic enzyme is already high enough, so it creates an imbalance

between production of a and consumption. The concentration of a decreases

significantly, which results in a reallocation of resources from ribosomes to

metabolic enzymes.

An interesting analogy is that for low storage capacity, during an up-shift, the tran-

scriptional regulation behaves like a bang-bang control [20]: most of the resources

available go to ribosomal production (relative to that of the exponential growth)

which leads to an excess in ribosomes requiring to allocate most of the resources

available to metabolic enzymes. This behaviour is made possible because:

• Reallocation of internal resources to different cellular functions is not instan-

taneous. Indeed, allocation arises from competition between different mRNAs

for ribosomes. Since mRNAs have non-zero lifetimes, rewiring mRNA produc-

tion to one cellular function does not result in a direct update of the mRNA

repartitioning to different cellular functions. This motivates the use by liv-

ing systems of post-transcriptional regulation mechanisms that are able to act

directly at the translation level rather than only tuning transcription.

• Protein production is not instantaneous either. The feedback coming from

transcriptional regulation of ribosomal or metabolic enzyme expression on a

concentration takes time and can thus cause the overshoot in regulation.

Trade-offs between biomass production during transitions and during

exponential growth:

Let B(t0, T, α) be the biomass production between two time points t0 and T , for

a storage capacity α, and B0 the biomass at time t0, Then:

B(t0, T, α) = B0 · e
∫ T
t0

λ(α)·dt
.
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Fig. 6. Before t = 0, the model is growing steadily for a medium quality ns = 0.12. At t = 0 the medium
quality is shifted from 0.12 to ns = 0.5. Different lines correspond to cell models with different storage
capacities.. (A) Ribosome concentration relative to its concentration before the up-shift (B) Enzyme

concentration relative to its concentration before the up-shift (C) Flux of a concentration: da
dt

(D) log10
of a concentration relative to its concentration before the up-shift.

We define the relative cumulative growth rate δ as:

δ =
ln(B(t0, T, α))

ln(B(t0, T, 1))
=

∫ T
t0
λ(α) · dt∫ T

t0
λ(1) · dt

. (9)

The relative cumulative growth rate measures how much the mean growth rate

with storage capacity α deviates from the growth rate with the reference parameter

(α = 1), between two time points t0 and T . Note that the two are related through

B(t0, T, 1)
δ = B(t0, T, α).

In Fig. 7 we see the trade-off between smoother transitions during an up-shift and

the detrimental impact of increased storage on the exponential growth rate, i.e. the

growth rate once the cells have reached their physiological state corresponding to the

ns after the shift. As long as M � a, it is favourable to increase the storage capacity

in order to maximise biomass production during the up-shifts. When the storage

capacity gets too high, the exponential growth rate starts decreasing sharply, hence
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annihilating the gains coming from higher biomass production during the up-shift.

Cells thus may tune their storage capacity as a result of this trade-off.
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Fig. 7. Diamonds correspond to different up-shift experiments from ns = 0.12 to ns = 0.5 for increasing the
storage capacity α from 1 to 1010. The relative exponential growth rate is the ratio of the growth rate of
the cell model when ns = 0.5 for one given value of the storage capacity α over the growth rate of the cell
model when ns = 0.5 and α = 1. The relative cumulative growth rate defined in Equation (9) is computed
for t0 = −20 minutes and T = 100 or T = 1000 minutes. Increasing the storage capacity α results in
decrease of the relative exponential growth rate. The benefits from a smoother transition coming from an
increased stock of metabolites result in a maximized relative cumulative growth rate at intermediary storage
capacities.

6 The evolutionary pressure to store resources depends
on environmental dynamics

Sharper environmental shifts favour high storage:

So far, we have considered only one up-shift intensity. We now consider several

shift intensities: ns,1 − ns,0 where ns,0 and ns,1 are respectively the quality of the

medium before and after the shift. In Fig. 8, we see that the more intense the

up-shifts, the more the maximal storage capacity increases.

Frequent environmental fluctuations favour high storage:

We now consider fluctuating environments and define the frequency of an

environmental shift by τ = T−1. For high frequencies, growth during transitions

gains importance compared to exponential steady state growth. Consequently,

the optimal storage capacity, i.e. the one that maximises cumulative growth, thus

increases with the frequency of environmental change, Fig. 9.
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Fig. 8. The cumulative growth rate for one given storage capacity α relative to that of when α = 1

is maximized for greater storage capacities when the up-shifts are sharper.
∫ T
t0

λ(α) · dt/ ∫ T
t0

λ(1) · dt is

evaluated for t0 = −20 and T = 300 minutes. The model is shifted from ns = 0.12 to ns = 0.30, ns = 0.50
and ns = 0.80.

Experimentally observed E. coli ATP concentrations fall close to the

predicted storage capacity maximizing biomass production:

Living cells such as E. coli use ATP as their main energy currency. ATP is

one of the main protein precursor as it is necessary in order not only to assemble

molecules into amino acids, which compose proteins, but also for elongating proteins

during translation. In slow growing E. coli cells, the average ATP concentration

is 1.54 × 10−3 mol.L−1 [23]. Under slow growth conditions, the volume of an E.

coli cell is approximatively 1 × 10−15 L [21]. The number of amino acids, whether

they are or not constitutive of proteins, in a slow growing E. coli cell is 5.6 ×
108 [3]. The mass in the cell model is 108 amino acids. Consequently, there are
1.54× 10−3 · 1× 10−15 ·NA

5.6
≈ 1.7 × 105 ATP molecules per cell model mass in

a slow growing E. coli cell; where NA = 6.02 × 1023 is the Avogadro constant.

In E. coli, the average ATP cost per amino acid is approximatively 25 ATP.aa−1

[16]. The number of ATP per cell model mass, in amino acid cost equivalent, is

therefore
1.7× 105

25
≈ 7 × 103. Strikingly, this number falls close to the range of

protein precursor a = α · a∗ which maximizes biomass production in fluctuating

environments, see fig. 8 and fig. 9, i.e. 104 ·a∗ < α ·a∗ < 106 ·a∗, where a∗ ≈ 1 under

slow growing conditions. Note that a∗ is the quantity of the protein precursor when

the storage capacity is: α = 1.

7 Discussion

We used a recent cellular growth model to investigate how the level of resource stor-

age can impact cellular growth and thus impose fitness costs or benefits on cells. We

G. Terradot et al. / Electronic Notes in Theoretical Computer Science 335 (2018) 91–112108



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

log
10

(α)

R
e
la

ti
v
e
 C

u
m

u
la

ti
v
e
 G

ro
w

th
 R

a
te

 

 

τ = 300
−1

 [min−1]

τ = 600
−1

 [min−1]

τ = 2000
−1

 [min−1]

Maximal Biomass Production

Fig. 9. The cumulative growth rate for one given storage capacity α relative to that of when α = 1 is
maximized for lower storage capacities when the frequency τ of up-shift occurrences decreases. The more
frequent the up-shifts, the higher the optimal storage capacity that maximises biomass production.

find first that there is a large window of concentrations for the universal precursor (a

conflation of all the various energy and carbon needs of the cell) in which the growth

rate is essentially unchanged at steady state. This opens up a significant possibility

for selective pressure to drive the cells to a judicious choice of storage level and thus

extract the benefits during shifts in nutrient availability and quality. Indeed, we

find that constant environments distinctly favour low levels of resource storage (no

additional fitness can be obtained by storing), whereas fluctuating environments

clearly favour high levels of resource storage (additional fitness can be obtained by

storing with little detrimental effect to stationary growth). Furthermore the cost of

storage appears to increase the more the environment is favourable to growth. This

motivates the use of regulatory systems that tune the storage capacity depending

on the growth condition. Indeed, it has been shown in E. coli that proteins in-

volved in glycogen synthesis (the main storage molecule in E. coli) are up regulated

in poor growth conditions [10]. Our conclusions are drawn from a specific model

of cellular growth. In a recent study that investigated cellular adaptation during

environmental transitions [12] the model ignored transcription. This means that

the rate of protein production is instantaneously adapted to the proteins precursor

concentration. Such model implies shorter timescales for the adaptation of protein

production, which can be expected to reduce the negative impact of low storage

during transitions and may thus change the conclusions drawn in this paper. It

would be interesting to investigate storage effects in this simpler model to see if

they are still present to an extent. Be that as it may, this highlights the importance

to account for all major timescales that underpin cellular adaptation when studying

evolutionary trade-offs in fluctuating environments.

Our analysis suggests that cells face actual trade-offs in the maintenance of re-

source storage. Quantitative models such as the one we considered here can be used
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to reverse-engineer the ecology of cellular species—much of which we only know in

laboratory conditions—using existing data about metabolic resource concentrations

[2]. Furthermore, although our analysis was performed on a model for unicellular

growth, the mechanisms described may be applicable to any system growing in an

environment where resources are fluctuating and scarce. Therefore, similar argu-

ments could give a mechanistic ground to the observed trade-offs between growth

capacity and low resource tolerance for plants in the Arizona Desert [1].

References

[1] Angert A. L., P. Chesson, T. E. Huxman, D. L. Venable, Functional tradeoffs determine species
coexistence via the storage effect., PNAS 106 11641–11645 (2009).

[2] Bennett B. D., S. J. van Dien, E. H. Kimball, M. Gao, R. Osterhout, J. D. Rabinowitz, Absolute
metabolite concentrations and implied enzyme active site occupancy in Escherichia coli, Nature
Chemical Biology 5 593–599 (2009).

[3] Bremer H. and P. Dennis Modulation of chemical composition and other parameters of the cell by
growth rate., EcoSal Plus (2008).

[4] Brunschede H., H. Bremer and T. L. Dove Establishment of exponential growth after a nutritional
shift-up in Escherichia coli B/r: Accumulation of deoxyribonucleic acid, ribonucleic acid, and protein.,
Journal of Bacteriology 129 1020–1033 (1977).

[5] Chesson P., Multispecies Competition in Variable Environments, Theoretical Population Biology 45
(1994), 227–276.

[6] Cooper S., Cell division and DNA replication following a shift to a richer medium., Journal of Molecular
Biology 43 1–11 (1969).

[7] Dalbow D. G. and R. Young, Synthesis time of beta-galactosidase in Escherichia coli B/r as a function
of growth rate, Biochemical Journal 1 13–20 (1975).

[8] Dennis P., and H. Bremer, Macromolecular Composition During Steady-State Growth of Escherichia
coli B/r, Journal of Bacteriology 119 (1974), 270–281.

[9] Dong H., C. G. Kurland, L. Nilsson, Co-variation of tRNA abundance and codon usage in Escherichia
coli at different growth rates., Journal of Molecular Biology 260 649–663 (1996).

[10] Edwards A. N., P. Babitzke, M. Cashel, M. I. Camacho, J. A. Fields, D. Georgellis, J. W. Mercante, L.
M. Patterson-Fortin, K. Potrykus, T. Romeo, S. A. Thompson, D. Vinella, C. A. Vakulskas, Circuitry
linking the Csr and stringent response global regulatory systems., Molecular Microbiology 80 1561–1580
(1984).

[11] Gardner T., S. Cantor, C. R., Collins J. J.,Construction of a genetic toggle switch in Escherichia coli,
Nature 403 339–342 (2000).
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Appendices

A Model of the toggle-switch

We briefly describe here a model of the toggle-switch which we simulated in order

to obtain Fig. 3. It is based on a toggle-switch model first published in [11].

Proteins A and B are produced at rates fA and fB:

B
fA−→ A+B (r1)

A
fB−−→ B +A (r2)

The rates of proteins A and B production write:

fA = αA · HB = αA · 1(
KB

[B]

)βB

+ 1

fB = αB · HA = αB · 1(
KA

[A]

)βA

+ 1

αA and αB are the maximal production rates of proteins A and B. The produc-

tion rate of each protein is modulated by HA and HB. They are Hill function and

model the repressions exerted by:

(i) protein A on protein B expression

(ii) protein B on protein A expression
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Proteins A and B are degraded at rate dA and dB:

A
dA−→ ∅ (r3)

B
dB−−→ ∅ (r4)

We set the initial conditions to [A](t = 0) = 0 and [B](t = 0) = 20. The

parameters we used for the simulations of the non rescaled model are: dA = 1;

dB = 1; KA = 1; KB = 1; αA = 15.6; αB = 3.12; βA = 2.5; βB = 1. In order

to rescale by 3 the stationary state concentration of the protein A, we rescale the

parameters dA and KA such that: dA = 1/3 and KA = 3. For further details on

this model, refer to [11].

B Parameters of the cell model

Default values were used unless otherwise stated. Adapted from [22]. Parameters

that have � left of their name have been obtained in [22] by fitting the model to

data from [19]. We denote by aa the protein precursors, Amino acids or a in the

growth model.

Parameter name Description Default value Unit

s Amount of external nutrient 104 [molecules]

dm mRNA-degradation rate 0.1 [min−1]

ns Nutrient efficiency 0.5 none

nr Ribosome length 7459 [aa/protein]

nx, x ∈ {t,m, q} Length of non-ribosomal proteins 300 [aa/protein]

γmax max. Translation elongation rate 1260 [molecules.min−1]

Kγ Translation elongation threshold 7 [molecules]

vt Max. nutrient import rate 726 [molecules.min−1]

Kt Nutrient import threshold 1000 [molecules]

vm Max. enzymatic rate 5800 [molecules.min−1]

Km Enzymatic threshold 1000 [molecules]

wr � Max. ribosome transcription rate 930 [molecules.min−1]

we = wt = wm � Max. enzyme transcription rate 4.14 [molecules.min−1]

wq � Max. q-transcription rate 948.93 [molecules.min−1]

θr Ribosome transcription threshold 426.87 [molecules]

θnr � Non-ribosomal transcription threshold 4.38 [molecules]

Kq � q-autoinhibition threshold 152219 [molecules]

hq q-autoinhibition Hill coefficient 4 none

kb mRNA-ribosome binding rate 1 [molecules−1.min−1]

ku mRNA-ribosome unbinding rate 1 [min−1]

M Total cell mass 108 [aa]

kcm � Chloramphenicol-binding rate 0.00599 [μM−1.min−1]
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