, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean, sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, vol.47, pp.1118-1123

B. Barquera, The sodium pumping NADH: quinone oxidoreductase (Na1-NQR), a unique redox-driven ion pump, J Bioenerg Biomembr, vol.46, pp.289-298, 2014.

W. Ben-hania, R. Ghodbane, A. Postec, C. Brochier-armanet, M. Hamdi et al., Cultivation of the first mesophilic representative ("mesotoga") within the order Thermotogales, Syst Appl Microbiol, vol.34, pp.581-585, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00748961

W. Ben-hania, R. Godbane, A. Postec, M. Hamdi, B. Ollivier et al., Defluviitoga tunisiensis gen. nov., sp. nov., a thermophilic bacterium isolated from a mesothermic and anaerobic whey digester, Int J Syst Evol Microbiol, vol.62, pp.1377-1382, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00739989

W. Ben-hania, A. Postec, T. A?-ullo, A. Ranchou-peyruse, G. Erauso et al., Mesotoga infera sp. nov., a novel mesophilic member of the order Thermotogales, isolated from an underground gas storage in France, Int J Syst Evol Microbiol, vol.63, pp.3003-3008, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00972251

W. Ben-hania, K. Fadhlaoui, C. Brochier-armanet, C. Persillon, and A. Postec, Draft genome sequence of Mesotoga strain PhosAC3, a mesophilic member of the bacterial order Thermotogales, isolated from a digestor treating phosphogypsum in Tunisia, Stand Genomic Sci, vol.10, p.12, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01452069

V. Bhandari and R. S. Gupta, Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations, Antonie van Leeuw, vol.105, pp.143-168, 2014.

E. Biegel and V. Uller, Bacterial Na1-translocating ferredoxin: NAD1 oxidoreductase, Proc Natl Acad Sci U S A, vol.107, pp.18138-18142, 2010.

E. Biegel, S. Schmidt, J. M. Gonz-alez, and V. Uller, Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes, Cell Mol Life Sci, vol.68, pp.613-634, 2011.

W. Buckel and R. K. Thauer, Energy conservation via electron bifurcating ferredoxin reduction and proton/Na1 translocating ferredoxin oxidation, Biochim Biophys Acta, vol.1827, pp.94-113, 2013.

M. Cappelletti, D. Zannoni, A. Postec, and B. Ollivier, Members of the order Thermotogales: from microbiology to hydrogen production, Microbial BioEnergy: Hydrogen Production, pp.197-224, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01027589

R. Cord-ruwish, A quick method for the determination of dissolved and precipitated sulfides in culture of sulfate reducing bacteria, J Microbiol Methods, vol.4, pp.33-36, 1985.

R. Cord-ruwish, B. Ollivier, and J. L. Garcia, Fructose degradation by Desulfovibrio sp. in pure culture and in coculture with Methanospirillum hungatei, Curr. Microbiol, vol.13, pp.285-289, 1986.

A. Criscuolo, G. , and S. , BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments, BMC Evol Biol, vol.10, p.210, 2010.

D. Pippo, J. L. Nesbo, C. L. Dahle, H. Doolittle, W. F. Birkland et al., Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid, Int J Syst Evol Microbiol, vol.59, pp.2991-3000, 2009.

M. L. Fardeau, B. Ollivier, B. K. Patel, M. Magot, P. Thomas et al., Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well, Int J Syst Evol Microbiol, vol.47, pp.1013-1019, 1997.

A. Fievet, A. Ducret, T. Mignot, O. Valette, L. Robert et al., Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough, Front Microbiol, vol.8, pp.1-11, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01452066

M. Gouy, S. Guindon, and O. Gascuel, SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building, Mol Biol Evol, vol.27, pp.221-224, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511794

S. Guindon, J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

M. Hayashi, Y. Nakayama, and T. Unemoto, Recent progress in the Na1-translocating NADH-quinone reductase from the marine Vibrio alginolyticus, Biochim Biophys Acta, vol.1505, pp.37-44, 2001.

R. Huber, M. ;. Hannig, S. Falkow, and E. Rosenberg, Thermotogales. In The Prokaryotes. Dworkin, pp.899-922, 2006.

R. Huber, T. A. Langworthy, H. K?-onig, M. Thomm, C. R. Woese et al., Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 908C, Arch Microbiol, vol.144, pp.324-333, 1986.

T. Itoh, M. Onishi, S. Kato, T. Iino, M. Sakamoto et al., Athalassotoga saccharophila gen. nov. sp. nov. isolated from an acidic terrestrial hot spring of Japan, and proposal of Mesoaciditogales ord. nov., Mesoaciditogaceae fam. nov. in the phylum Thermotogae, Int J Syst Evol Microbiol, vol.66, pp.1045-1051, 2016.

H. S. Jayasinghearachchi and B. Lal, Oceanotoga teriensis gen. nov., sp. nov., a thermophilic, bacterium isolated from off-shore oil-producing wells, Int J Syst Evol Microbiol, vol.61, pp.554-560, 2011.

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol Biol Evol, vol.30, pp.772-780, 2013.

J. K. Kristjansson, P. Sch?-onheit, and R. K. Thauer, Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate, Arch. Microbiol, vol.131, pp.278-282, 1982.

L. R. Krumholz and M. P. Bryant, Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methanobrevibacter as electron acceptor systems, Arch Microbiol, vol.143, pp.313-318, 1986.

S. Q. Le and O. Gascuel, An improved general amino acid replacement matrix, Mol Biol Evol, vol.25, pp.1307-1320, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324106

N. M?-uller, B. M. Griffin, U. Stingl, and B. Schink, Dominant sugar utilizers in sediment of Lake Constance depend on syntrophic cooperation with methanogenic partner organisms, Environ Microbiol, vol.10, pp.1501-1511, 2008.

G. Muyzer and A. J. Stams, The ecology and biotechnology of sulphate-reducing bacteria, Nat Rev Microbiol, vol.6, pp.441-454, 2008.

C. L. Nesbø, M. Dlutek, O. Zhaxybayeva, and W. F. Doolittle, Evidence for existence of "mesotogas", members of the order Thermotogales adapted to low-temperature environments, Appl Environ Microbiol, vol.72, pp.5061-5068, 2006.

C. L. Nesbø, R. Kumaraswamy, M. Dlutek, W. F. Doolittle, and J. Foght, Searching for mesophilic Thermotogales bacteria: "mesotogas" in the wild, Appl Environ Microbiol, vol.76, pp.4896-4900, 2010.

C. L. Nesbø, D. M. Bradnan, A. Adebusuyi, M. Dlutek, A. K. Petrus et al., Mesotoga prima gen. nov., sp. nov., the first described mesophilic species of the Thermotogales, Extremophiles, vol.16, pp.387-393, 2012.

A. Reysenbach, Y. Liu, A. R. Lindgren, I. D. Wagner, C. D. Sislak et al., Mesoaciditoga lauensis gen. nov., sp. nov., a moderately thermoacidophilic member of the order Thermotogales from a deepsea hydrothermal vent, Int J Syst Evol Microbiol, vol.63, pp.4724-4729, 2013.

J. A. Robinson and J. M. Tiedje, Competition between sulfate-reducing and methanogenic bacteria for H 2 under resting and growing conditions, Arch. Microbiol, vol.137, pp.26-32, 1984.

O. Schmidt, L. Hink, M. A. Horn, D. , and H. , Peat: home to novel syntrophic species that feed acetate-and hydrogen-scavenging methanogens, ISME J, vol.10, pp.1954-1966, 2016.

G. J. Schut, A. , and M. W. , The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production, J Bacteriol, vol.191, pp.4451-4457, 2009.

J. R. Sieber, H. M. Le, and M. J. Mcinerney, The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism, Environ Microbiol, vol.16, pp.177-188, 2014.

P. Singleton and D. Sainsbury, Dictionary of Microbiology and Molecular Biology, 2001.

A. J. Stams and C. M. Plugge, Electron transfer in syntrophic communities of anaerobic bacteria and archaea, Nat Rev Microbiol, vol.7, pp.568-577, 2009.

R. K. Thauer, K. Jungermann, and K. Decker, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol Rev, vol.41, pp.100-180, 1977.

F. Widdel, P. , and N. , Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov, Arch Microbiol, vol.129, pp.395-400, 1981.

O. Zhaxybayeva, K. S. Swithers, P. Lapierre, G. P. Fournier, D. M. Bickhart et al., On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales, Proc Natl Acad Sci U S A, vol.106, pp.5865-5870, 2009.

W. Zillig, I. Holz, H. Klenk, J. Trent, S. Wunderl et al., Pyrococcus woesei, sp. nov., an ultra-thermophilic marine archaebacterium, representing a novel order, Thermococcales. Syst Appl Microbiol, vol.9, pp.62-70, 1987.

T. Pseudothermotoga-lettingae, Kosmotoga olearia TBF 19.5.1 (YP_002940621), Thermotoga naphthophila RKU-10 (YP_003346384), Thermotoga maritima MSB8 (NP_228063), Fervidobacterium pennivorans DSM 9078 (YP_005471998), Fervidobacterium nodosum Rt17-B1 (YP_001411073), 2581.

S. Table, List of the 2775 prokaryotic proteomes used in the phylogeny analyses