Z. P. Bazant and B. H. Oh, Efficient numerical integration on the surface of a sphere, Z. Angew. Math. Mech, vol.66, pp.37-49, 1986.

D. Besdo and J. Ihlemann, Properties of rubber like materials under large deformations explained by self-organizing linkage patterns, Int. J. Plast, vol.19, pp.1001-1018, 2003.

K. Bose and A. Dorfmann, Computational aspects of a pseudo-elastic constitutive model for muscle properties in a soft-bodied arthropod, Int. J. Non-Linear Mech, vol.44, pp.42-50, 2009.

S. Cantournet, R. Desmorat, and J. Besson, Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model, Int. J. Solids Struct, vol.46, pp.2255-2264, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00379072

G. Chagnon, E. Verron, L. Gornet, G. Marckmann, C. et al., On the relevance of continuum damage mechanics as applied to the Mullins effect: theory, experiments and numerical implementation, J. Mech. Phys. Solids, vol.52, pp.1627-1650, 2004.

G. Chagnon, E. Verron, G. Marckmann, G. , and L. , Development of new constitutive equations for mullins effect in rubber using the network alteration theory, Int. J. Solids Struct, vol.43, pp.6817-6831, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01006742

R. Dargazany and M. Itskov, A network evolution model for the anisotropic Mullins effect in carbon black filled rubbers, Int. J. Solids Struct, vol.46, pp.2967-2977, 2009.

J. Diani, M. Brieu, and J. M. Vacherand, A damage directional constitutive model for the Mullins effect with permanent set and induced anisotropy, Eur. J. Mech. A/Solids, vol.25, pp.483-496, 2006.

J. Diani, M. Brieu, G. , and P. , Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material, Int. J. Solids Struct, vol.43, pp.3044-3056, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00070902

A. Dorfmann and F. Q. Pancheri, A constitutive model for the Mullins effect with changes in material symmetry, Int. J. Nonlinear Mech, vol.47, pp.874-887, 2012.

S. Federico, A. Grillo, S. Imatani, G. Giaquinta, and W. Herzog, An energetic approach to the analysis of anisotropic hyperelastic materials, Int. J. Eng. Sci, vol.46, pp.164-181, 2008.

S. Göktepe and C. Miehe, A micro-macro approach to rubber-like materials. Part III: The micro-sphere model of anisotropic Mullins-type damage, J. Mech. Phys. Solids, vol.53, pp.2259-2283, 2005.

S. Govindjee and J. C. Simo, Mullins' effect and the strain amplitude dependence of the storage modulus, Int. J. Solids. Structures, vol.29, pp.1737-1751, 1992.

L. A. Gracia, E. Peña, J. M. Royo, J. L. Pelegay, C. et al., A comparison between pseudo-elastic and damage models for modelling the Mullins effect in industrial rubber components, Mech. Res. Comm, vol.36, pp.769-776, 2009.

Z. Y. Guo, X. Q. Peng, and B. Moran, A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus, J. Mech. Phys. Solids, vol.54, pp.1952-1971, 2006.

D. E. Hanson, M. Hawley, R. Houlton, K. Chitanvis, P. Rae et al., Stress softening experiments in silica-filled polydimethylsiloxane provide insight into a mechanism for the Mullins effect, Polymer, vol.46, pp.10989-10995, 2005.

J. A. Harwood, L. Mullins, and A. R. Payne, Stress softening in natural rubber vulcanizates. Part 2. stress softeningeffects in pure gum and filler loaded rubbers, J. Appl. Polym. Sci, vol.9, pp.3011-3021, 1965.

G. A. Holzapfel and T. C. Gasser, A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications, Comput. Methods Appl. Mech. Engrg, vol.190, pp.4379-4403, 2001.

G. A. Holzapfel, T. C. Gasser, and R. W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast, vol.61, pp.1-48, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01297725

M. Itskov, E. Haberstroh, A. E. Ehret, and M. C. Vohringer, Experimental observation of the deformation induced anisotropy of the Mullins effect in rubber, KGK-Kautschuk Gummi Kunststoffe, vol.59, issue.3, pp.93-96, 2006.

M. Itskov, A. Ehret, R. Kazakeviciute-makovska, W. , and G. , A thermodynamically consistent phenomenological model of the anisotropic Mullins effect, ZAMM-J. Appl. Math. Mech, vol.90, pp.370-386, 2010.

M. Kaliske, A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains, Comput. Methods Appl. Mech. Engrg, vol.185, pp.225-243, 2000.

M. Kroon and G. A. Holzapfel, A new constitutive model for multilayered collagenous tissues, J. Biomech, vol.41, pp.2766-2771, 2008.

F. Laraba-abbes, P. Ienny, P. , and R. , A new Taylor-made methodology for the mechanical behavior analysisof rubber like materials: II. Application of the hyperelastic behavior characterization of a carbon-black filled natural rubber vulcanizate, Polymer, vol.44, pp.821-840, 2003.

G. Machado, G. Chagnon, and D. Favier, Analysis of the isotropic models of the Mullins effect based on filled silicone rubber experimental results, Mech. Mater, vol.42, pp.841-851, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01974135

G. Machado, D. Favier, and G. Chagnon, Determination of membrane stress-strain full fields of bulge tests from SDIC measurements. Theory, validation and experimental results on a silicone elastomer, Exp. Mech, vol.52, pp.865-880, 2012.

G. Machado, G. Chagnon, and D. Favier, Induced anisotropy by the mullins effect in filled silicone rubber, Mech. Mater, vol.50, pp.70-80, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01974831

G. Marckmann and E. Verron, Comparison of hyperelastic models for rubber-like materials, Rubber Chem. Technol, vol.79, pp.835-858, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01004680

G. Marckmann, E. Verron, L. Gornet, G. Chagnon, P. Charrier et al., A theory of network alteration for the Mullins effect, J. Mech. Phys. Solids, vol.50, pp.2011-2028, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01004954

Y. Merckel, J. Diani, S. Roux, and M. Brieu, A simple framework for full-network hyperelasticity and anisotropic damage, J. Mech. Phys. Solids, vol.59, pp.75-88, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00602466

Y. Merckel, M. Brieu, J. Diani, C. , and J. , A Mullins softening criterion for general loading conditions, J. Mech. Phys. Solids, vol.60, pp.1257-1264, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00696158

L. Meunier, G. Chagnon, D. Favier, L. Orgéas, and P. Vacher, Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber, Polym. Test, vol.27, pp.765-777, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00328231

C. Miehe and J. Keck, Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. experiments, modelling and algorithmicimplementation, J. Mech. Phys. Solids, vol.48, pp.323-365, 2000.

C. Miehe, S. Göktepe, and F. Lulei, A micro-macro approach to rubber-like materials-part i: the nonaffine-micro-sphere model of rubber elasticity, J. Mech. Phys. Solids, vol.52, pp.2617-2660, 2004.

M. Mooney, A theory of large elastic deformation, J. Appl. Phys, vol.11, pp.582-592, 1940.

A. H. Muhr, J. Gough, G. , and I. H. , Experimental determination of model for liquid silicone rubber: Hyperelasticity and Mullins effect, Proceedings of the First European Conference on Constitutive Models for Rubber, pp.181-187, 1999.

R. W. Ogden, Non-linear Elastic Deformations, 1997.

R. W. Ogden, Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue, Biomechanics of soft tissue in cardiovascular system. CISM Courses and lecture Series, vol.441, 2003.

B. H. Park and G. R. Hamed, Anisotropy in gum and black filled SBR and NR vulcanizates due to large deformation, Korea Polym. J, vol.8, pp.268-275, 2000.

H. Pawelski, Softening behavior of elastomeric media after loading in changing directions, Constitutive models for rubber, pp.27-34, 2001.

E. Peña, J. A. Peña, and M. Doblar, On the Mullins effect and hysteresis of fibered biological materials: A comparison between continuous and discontinuous damage models, Int. J. Solids Struct, vol.46, p.17271735, 2009.

M. H. Shariff, An anisotropic model of the Mullins effect, J. Eng. Math, vol.56, pp.415-435, 2006.

W. Sun and S. M. , Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues, Biomech Model Mechanobiol, 2005.

P. D. Wu and E. Van-der-giessen, On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers, J. Mech. Phys. Solids, vol.41, pp.427-456, 1993.

A. E. Zuñiga and M. F. Beatty, A new phenomenological model for stress-softening in elastomers, Z. Angew. Math. Phys, vol.53, pp.794-814, 2002.