Anisotropic Mullins stress softening of a deformed silicone holey plate

Abstract : Rubber like materials parts are designed using finite element code in which more and more precise and robust constitutive equations are implemented. In general, constitutive equations developed in literature to represent the anisotropy induced by the Mullins effect present analytical forms that are not adapted to finite element implementation. The present paper deals with the development of a constitutive equation that represents the anisotropy of the Mullins effect using only strain invariants. The efficiency of the modeling is first compared to classical homogeneous experimental tests on a filled silicone rubber. Second, the model is tested on a complex structure. In this aim, a silicone holey plate is molded and tested in tension, its local strain fields are evaluated by means of digital image correlation. The experimental results are compared to the simulations from the constitutive equation implemented in a finite element code. Global measurements (i.e. force and displacement) and local strain fields are successfully compared to experimental measurements to validate the model.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01974917
Contributor : Grégory Chagnon <>
Submitted on : Wednesday, January 9, 2019 - 10:05:12 AM
Last modification on : Thursday, February 14, 2019 - 10:42:06 AM

File

rebouah-v5.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01974917, version 1

Collections

Citation

Marie Rebouah, Guilherme Machado, Grégory Chagnon, Denis Favier. Anisotropic Mullins stress softening of a deformed silicone holey plate. Mechanics Research Communications, Elsevier, 2013, 49, pp.36-43. ⟨hal-01974917⟩

Share

Metrics

Record views

25

Files downloads

34