J. D. Humphrey and C. A. Taylor, Intracranial and abdominal aortic aneurysms: Similarities, differences, and need for a new class of computational models, Annu Rev Biomed Eng, vol.10, pp.221-267, 2008.

T. E. Carew, R. N. Vaishnav, and D. J. Patel, Compressibility of the arterial wall, Circ Res, vol.23, pp.61-68, 1968.

C. M. He and M. R. Roach, The composition and mechanical properties of abdominal aortic aneurysms, JV a s cS u r, vol.20, pp.6-13, 1994.

M. L. Raghavan and D. A. Vorp, Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: Identification of a finite strain constitutive model and evaluation of its applicability, JB i o m e c, vol.33, pp.475-482, 2000.

M. J. Thubrikar, M. Labrosse, F. Robicsek, J. Al-soudi, and B. Fowler, Mechanical properties of abdominal aortic aneurysm wall, J Med Eng Tech, vol.25, pp.133-142, 2001.

J. Xiong, S. M. Wang, W. Zhou, G. Wu, and J. , Measurement and analysis of ultimate mechanical properties, stress-strain curve fit, and elastic modulus formula of human abdominal aortic aneurysm and nonaneurysmal abdominal aorta, JV ascSur, vol.48, pp.189-195, 2008.

V. Geest, J. P. Sacks, M. S. Vorp, and D. A. , The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta, JB i o m e c, vol.39, pp.1324-1334, 2006.

J. Rodriguez, C. Ruiz, M. Doblaré, and G. A. Holzapfel, Mechanical stresses in abdominal aortic aneurysms: Influence of diameter, asymmetry, and material anisotropy, JB i o m e c h Eng, vol.130, pp.1-10, 2008.

C. A. Basciano and C. Kleinstreuer, Invariant-based anisotropic constitutive models of the healthy and aneurysmal abdominal aortic wall, vol.131, pp.1-11, 2009.

S. Doll and K. Schweizerhof, On the development of volumetric strain energy functions, J Appl Mech, vol.67, pp.17-21, 2000.

G. A. Holzapfel, T. C. Gasser, and R. W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J Elasticity, vol.61, pp.1-48, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01297725

J. C. Simo, A framework for finite strain elastoplasticity based on maximum plasticdissipation and the multiplicative decomposition: Part I. Continuum formulation, Comput Methods Appl Mech Eng, vol.66, pp.199-219, 1988.

M. Itskov and N. Aksel, Elastic constants and their admissible values for incompressible and slightly compressible anisotropic materials, Acta Mech, vol.157, pp.81-96, 2002.

C. M. Scotti, J. Jimenez, S. C. Muluk, . Finol, and . Ea, Wall stress and flow dynamics in abdominal aortic aneurysms: Finite element analysis vs. fluid-structure interaction, Comput Met Biomech Biomed Eng, vol.11, pp.301-323, 2008.

M. Xenos, S. H. Rambhia, Y. Alemu, S. Einav, N. Labropoulos et al., Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling, Ann Biomed Eng, vol.38, pp.3323-3337, 2010.

V. Geest, J. P. Schmidt, D. E. Sacks, M. S. Vorp, and D. A. , The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms, Ann Biomed Eng, vol.36, pp.921-953, 2008.

P. Rissland, Y. Alemu, S. Einav, J. Ricotta, and D. Bluestein, Abdominal aortic aneurysm risk of rupture: Patient-specific fsi simulations using anisotropic model, JB i o m e c h Eng, vol.131, pp.1-10, 2009.

M. L. Raghavan, M. W. Webster, and D. A. Vorp, Ex vivo biomechanical behavior of abdominal aortic aneurysm: Assessment using a new mathematical model, Ann Biomed Eng, vol.24, pp.573-82, 1996.

F. Peyraut, C. Renaud, N. Labeb, and Z. Q. Feng, Modélisation des tissus biologiques en hyperélasticitéa n i s o t r o p e-´ etude théorique et approché eléments finis, CRMécCRMéc, vol.337, pp.101-106, 2009.

M. F. Fillinger, S. P. Marra, M. L. Raghavan, and F. E. Kennedy, Prediction of rupture risk in abdominal aortic aneurysm during observation: Wall stress versus diameter, JV a s c Surg, vol.37, pp.724-732, 2003.