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Analysis of the isotropic models of the Mullins effect based on filled silicone
rubber experimental results

G. Machado, G. Chagnon*, D. Favier
Université de Grenoble/CNRS, Laboratoire 3S-R, Cedex 9, 38041 Grenoble, France.

Abstract

The Mullins effect of rubber like material is classically defined as the stress softening during initial loading
cycles. This effect is not accounted when the mechanical properties of material are modeled by a simple
hyperelastic strain-energy function. In order to capture the stress softening it is necessary to define a set
of supplementary variables as well a dissipation function, which evolves with the deformation history. In
this paper we first describe experimental results that illustrate stress softening in particle-reinforced silicone
rubber for uniaxial, planar and equibiaxial traction. The results allow to analyze the stress softening for the
three different load cases. First, with respect to the choice of a stress-softening measure, the energy loss was
evaluated by comparing the stored elastic energy for the first and the second loadings. The results point out
that the virgin energy and the first invariant parameters are the best choice. Nevertheless, the maximum
principal elongation, classically used in Mullins effect modeling, is not able to describe the different load
cases. Furthermore, the ability of different class of models to describe filled silicone rubber was studied.
The results show that models with a non-proportional and non-homothetical second load paths seem to be
more efficient.
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1. Introduction

Like many filled rubber-like materials, as well as soft biological tissues and other biomaterials, filled
silicone rubber exhibit highly non-linear mechanical behavior. This non-linearity is commonly characterized
by large strain levels under static conditions, a nonlinear stress-strain response and strain rate dependence.
Finally, under cyclic loading conditions, hysteresis and stress-softening behaviors are observed on both filled
and unfilled elastomers. For the last half century all these cyclic phenomena were evidenced and modelled
to support the most widely engineering applications. However, their microscopic mechanisms (breaking of
weak chains, breaking of links, desabsorption of chains, etc.) explanation remains non-unanimous.

Hysteresis is rather related to the dissipative nature of material, i.e., related with viscoelasticity (Bergstrom
and Boyce, 2000) and viscoplasticity (Miehe and Keck, 2000) behaviors. It is characterized as the difference
between the loading and unloading paths during a cycle. On the other hand the stress-softening phenomenon,
also called Mullins effect (Mullins, 1969), can be described as a stress-softening phenomenon of the material
after a first loading. It can be idealized as an instantaneous and irreversible softening of the stress-strain
curve, due to rearrangements in the microstructure of the material that occurs whenever the load increases
beyond its prior all-time maximum value. At times when the load is less than a prior maximum, nonlinear
elastic behavior prevails. One time the previous maximum stretch is reached the loading path turns up and
follows the primary curve again up to a new maximum.
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Through the years, the Mullins effect has experimentally been observed in different deformation states
and numerous models have been proposed, but there is non-unanimous opinion on the choice of the variable
to describe the evolution of the Mullins effect. Many different criteria have been chosen during the last fifty
years, the most used remains the strain energy density or the maximum principal elongation. Within this
context, under the assumption of isotropy, the aims of this work is to analyze which are the most suitable
modelling for Mullins effect for different loading cases. In this way, a filled silicone rubber is studied under
various mechanical loadings, where the Mullins effect becomes evident. Then, the determination of the best
criterion to describe the evolution of stress softening and the kind of model able to describe it for every
loading cases are evaluated. Hence, the different type of modelling are summarized in 2. Material preparation
procedures are described in Section 3, testing procedures and strain field measurements techniques based
on optical methods are described in Section 4. Experimental results are then presented, in Section 5. An
analyze of the strain measure criteria and the best way to model Mullins effect is finally presented in Section
6.

2. Mullins effect modelling

There exist a large number of Mullins effect constitutive equations, with different kind of isotropic or
anisotropic modelling hypothesis. More and more modelling tackles the anisotropy of the Mullins effect (see
for example Ehret and Itskov (2009), Diani et al. (2006) and Miehe and Goktepe (2005)). In this paper, we
focus on isotropic approaches of the Mullins effect to analyze what are the best ways of modelling. Whatever
is the modelling, a deformation measure parameter is used to control Mullins effect evolution and its choice
is critical.

2.1. Choice of the modelling

A classical approach to describe Mullins effect is to use damage mechanic theory. The strain energy
density of a virgin material Wy (F) submitted to the deformation gradient F can be modified incorporating
continuum damage parameter d in order to take into account the stress softening. The classical form is
given by

WIF) = (1 - d)Wy(F). (1)

All proposed models vary from each other by the definition of the damage criteria and the form of the damage
evolution function. The definition can involve any microstructural chain damage and microvoid formations
both associated with physical phenomena like breaking of chains and /or links, desabsorption of chains, etc. A
common approach assumes that damage is a function of a discontinuous quantity like the maximum applied
stretch or the maximal energy density with respect to the primary load path. Nevertheless, as reported
by Chagnon et al. (2004), these models assume that the stress ratio between two different secondary load
curves are related by a constant multiplicative factor:

P 1-—d(=))
Pl 1—d(xi) (2)

where s denotes the secondary load curves numbered i = 1,...,3 and j = 2,...,4 (i < j) for the presented
experimental data.

Pseudo elasticity models are based on a different approach. Ogden and Roxburgh (1999) present an
additive function to describe the second loading curves, this permits to have two distinguished functions to
describe the first and the second loading curves. In this case some conditions must be imposed to ensure
the continuity of the strain-stress behavior. Now, no more proportionality is imposed between the second
loading curves and the evolution function for the second loading curves is described thanks to W, measure.
This permits to have a model able to characterize the different loading cases. This approach has been very
employed in the past few years (see for example Dorfmann and Ogden (2004) and Horgan et al. (2004)).

The double network theory is different from damage mechanics as the multiplicative function used for
describing Mullins effect is not constant on the second loading curves. It can no longer be considered as a
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Table 1: Definition of damage criteria for some representative models

Variable Description Reference

V2Wo(F) Simo (1987), Miehe and Keck (2000),
Septanika and Ernst (1998)

Wo(F) Ogden and Roxburgh (1999),
Laraba-Abbes et al. (2003), Miehe (1995)

Amax Maximum largest principal stretch Laiarinandrasana et al. (2003)

VI1/3—1 I =trace(C) = trace(B) Chagnon et al. (2004),
Qi and Boyce (2004)

g€ e=1(C1-1) Lion (1996)

VvB:B B = FF” Zuiiiga and Beatty (2002)

Vere e=1(I-B7) Krishnaswamy and Beatty (2000)

Pz Maximal principal stress Johnson and Beatty (1993)

C, B, ¢ and e are respectively the Right Cauchy-Green,Left Cauchy-Green,
Piola and Fuler-Almansi strain tensors. I is the metric tensor.

damage function as the value of the function is evolving on second loading curves and it comes back to a
value of one on the first loading curve whereas the material has already be stretched. DeSouza Neto et al.
(1994), based on the idea of Gurtin and Francis (1981) proposed a damage master curve, that describes the
evolution of the network, that is magnified to the considered maximum previous strain level.

A physical approach, proposed by Marckmann et al. (2002) is based on the position of the strain hardening
when the material reaches it maximum previous deformation level. They assume that the macro-molecular
chain network is evolving with the maximum deformation, they assume that the number of active monomers
is constant. This hypothesis was relaxed by Chagnon et al. (2006) who considered that some chains can
become hanging, that means that the number of active monomers is a decreasing function of the deformation.
In another way, Qi and Boyce (2004) developed a double network model also based on evolution of chain
elongation deformation measure. This permit to have independent second loading curves.

As shown, there exists a large kind of models (all existent models have not been presented here) but it
seems that the choice of an energy deformation measure is quite important. This choice ensures an ability of
the model to describe the different load cases, moreover the different modelling have different consequences
on the strain-stress curves.

2.2. The history parameter choice

The choice of the Mullins effect evolution criterion is fundamental for the description of different loading
cases. As pointed out by Diani et al. (2009), many criteria are exhibited by different authors. The Table
1 summarizes different choices of the past years. Usually, the choice of the measure is not justified, but is
able to represent the experimental curves. For an uniaxial representation, the choice of the parameter is
not essential, as all can describe the stress softening. The Mullins effect evolution function is then built in
function of this parameter. Nevertheless, in a tridimensional representation, the choice becomes very crucial
as it rules the position of the second loading curves in the different deformation modes. In the next sections
the experimental procedures and results are provided to enhance this discussion.



3. Preparation of the Silicone Specimens

The samples used in the experiments were made of a filled silicone rubber called Rhodorsil RT'V3428
supplied as two liquid components: the uncured silicone and the curing agent. The final material is produced
by a polyaddition, curing at room temperature. The liquid mixture is molded by injection to obtain a sheet
with constant thickness. Although the experiments are performed separately and the strain states are
different, data from all of the individual experiments is often used as a set. This means that the specimens
used for each of the experiments must be made using the same protocol of elaboration, in order to obtain
specimens with reproducible mechanical properties, as follow: (i) mixing the components with a 10/1 mass
ratio, (ii) putting the mixture under vacuum for 20 minutes in order to eliminate undesirable entrapped
air bubbles, (iii) sheet molding injection, (iv) putting mold inside an oven at 70 °C for 4 hours in order
to accelerate the curing process and assure a sufficient cross-linking density; (v) sheet demolding after 1
hour exposed at ambient temperature. Finally, the external surface of the molded plate was coated with a
stochastic silicone paint pattern (Meunier et al., 2008). Made of small speckles, the pattern is necessary for
the digital image correlation (DIC) and stereo digital image correlation (SDIC) field measurements. Note
that the quality of the coated pattern (size, density and grey contrast level) is a critical point to obtain a
good estimation of the strain field measurement.

4. Testing procedures and strain field measurements techniques

4.1. In-plane tests

In plane quasi-static experiments were conducted on a MTS 4M universal testing machine with an Entran
ELPM-T2+250N load cell. The images were recorded at 0.5 Hz with a Jai TM-4200GE CCD camera using
a reduced scan of 2048 x 1000 pizels. Figure 1 presents the experimental setup. First, simple tensile tests

Figure 1: In-plane experimental setup. (a) silicone specimen; (b) clamps; (c) load cell; (d) omni light; and (¢) CCD camera.

were performed on rectangular samples having an initial gauge length [y = 40 mm, width wy = 13 mm and a
thickness eg = 2 mm. Since the experiment was not intended to fail the specimen, there was no need to use
a dumbbell shaped specimen commonly used to prevent specimen failure nearby the clamps. But knowing
that the effects of clamps create an indeterminate state of stress and strain in the region surrounding the
clamp, due to the process of gripping, the initial gauge length was adopted as being less than the real
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Figure 2: Test specimen dimensions (a) uniaxial tensile specimen (b) planar tensile specimen.

physical size of the samples. Figure 2(a) presents the tensile test specimen. Second, the pure shear strain
state was approached by performing planar shear tensile test (see Figure 2(b)). The initial height Iy, the
constant width wy and the thickness ey of samples were 8 mm, 70 mm and 2 mm, respectively. These
dimensions have as objective to create an experiment where the specimen is perfectly constrained in the
lateral direction such that all specimen thinning occurs in the thickness direction.

The DIC technique, like a non-contact method, is often used to characterize rubber-like materials, see for
example Meunier et al. (2008) and Sasso et al. (2008). In each testing time step an image of the deformation
of samples was recorded using a CCD camera. Using the DIC, it is possible to reconstruct the surface of the
deformed samples and determinate the full-field surface displacements. An accuracy on the order of 102
pixels or better for in-plane displacement components and point-to-point strain accuracy of 10~ in-plane
can be obtained. The DIC method is preferred because there is no change in stiffness resulting from the
presence of a attached sensor (classical extensiometry) and for being insensitive to ambient vibrations and
rigid body motions (speckle pattern interferometry). Moreover the method is able to deal with high strain
levels, what is a very desirable feature given the high strain level experienced by the tested material. Also
the DIC allows demonstrating and measuring an heterogeneous deformation field. See Sutton (2008) for
further explanation about digital image correlation method.

4.2. Out-plane tests

A bulge test was also conducted in order to determinate a equibiaxial state. This test, also called
"balloon” test, consists of a thin disk specimen, of initial diameter dy = 200 mm with eg = 2 mm of
thickness, constrained between two clamping flanges. This test machine, performed at the same way in
Meunier et al. (2008), consists of a air piston connected to the bottom circumferential clamp. The internal
pressure is measured with a pressure sensor Foxboro 0-500 mbar. For these tests, out-of-plane displacements
measurements were needed, therefore a Dantec Q-400 Stereo Digital Image Correlation (SDIC) system was
used to acquire and correlate the images. Figure 3 presents the experimental setup. Since a large out
plane displacement is experienced by the silicone sample, a good focal distance is absolutely necessary.
Nevertheless, a high spatial resolution is needed to permit an accurate measurement. Using the stereo-
correlation it is possible to reconstruct the deformed sample surface geometry as well as determinate the
displacement and strain fields. Because rigid body motion has no effect on the measurements, a high level
of strain has been achieved in this kind of experiment. The Figure 4 shows the strain level curves for the
maximal pressure value of 18 KPa in the center of the membrane. The curvature on the top of the bulge is
computed, using a post-treatment routine.



Figure 3:
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Figure 4: First principal strain (Green-Lagrange measure) in the center of the membrane for the maximal pressure value of 18
KPa.
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Figure 5: Time evolution of the normalized stretch for a creep test performed at constant load 20 N recorded after a monotonic
tensile resulting in A; = 2.160.

5. Experimental results

Different tests are realized to evaluate the Mullins effect in different loading cases. First, time dependence
of the material is studied and then the stress-softening is analyzed.

5.1. Time dependent response

A creep tensile test was performed, where a constant monotonic load of 20 N was applied resulting in
a initial stretch of \; = 2.160. It can be observed in Figure 5 that the material response tends towards
an equilibrium state, which cannot be reached within laboratory time scale. However the stretch increased
by less than 1% within the observed time range. In a second time, a tensile specimen has been subjected
to a load/unload sequence at different elongation rates A = 2.5 x 1073 s7! to 1.25 s~! in order to verify
the rate-dependence influence. No noticeable difference between stress-strain responses was observed at the
considered strain rate range. Consequently the RTV3428 behavior can be assumed independent of the rate
of deformation for the observed ranges.

5.2. Uniaxial tension test

During the test, using an elongation rate of A=1.60x10"2 s~L, the nominal stress tensor P (First Piola—
Kirchhoff stress tensor) is assumed to be homogeneous within the gauge region as well as the deformation
gradient tensor F. Since the current thickness is not measured, the material is assumed to be incompressible,
i.e., det (F) = 1 for convenience. In the central zone, the deformation gradient, considering that the direction
1 is the loading one, is given by:

F=\ei®E)) + A% (e; ® Es + e3 ® E3) (3)
and the nominal stress tensor is:
P=P(e; ®E;) (4)

where (E1,E2,E3) and (eq, ez, e3) are the initial and deformed orthonormal basis respectively, here iden-
tical.
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Figure 6: Cyclic loading-unloading tensile test with increasing maximum stress: 0.2, 0.4, 0.6 and 0.8 MPa at A=1.60x10"2s1,

A cyclic loading test was realized, the results are presented in Figure 6. Different phenomena are
highlighted, first a large Mullins effect appears by comparing the two first loading at each strain level,
but with very few residual elongation. Moreover, a little hysteresis after the first cycle (difference between
loading and unloading during the second cycle) is observed.

5.3. Plane strain tensile test

Also, the strain state during the test was supposed to be homogeneous, by assuming the direction 1 is
the loading one and direction 2 is the breadth of the specimen direction, the deformation gradient tensor
was expressed as:

F=)\(e;®E)) + (e2®Es) + A\ ! (e3 ® E3) (5)
where the stress tensor is
P =P (e1 ®E;) + Py (e2 ® Ey) (6)

A cyclic planar loading test was realized, the results are presented in Figure 7. Planar tensile response,
likewise uniaxial traction, presents the same phenomena. Here, the residual stretch shows to be more
evident. The maximum principal stretches experienced by the planar specimens are smaller if compared
with uniaxial traction specimens. This limitation lies in the fact that the planar traction specimens must to
be constrained in the lateral direction without slipping.

5.4. Equibiaxial tension state approached by the bulge test

Due to the axial-symmetry of the experimental configuration the equibiaxiality of the stress and strain
is obtained on the top the inflated sample. The deformation gradient tensor in a local coordinate system is

F:)\t(e1®E1+e2®E2)+)\t_2(e3®E3) (7)

where \; is the elongation in the tangential direction of the specimen measured by SDIC. Finally, with all
assumptions above, the stress tensor is given by

P=P;(e1E; +es®Ey) + P33(e3 @ E3). (8)
8
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Once thickness dimension is much smaller than the other two planar dimensions (dg > eg), the stress is also
assumed to be negligible along the thickness. Another consideration comes from the fact that the curvature
of the inflated sample was presumed to be the same along all directions at the disk center.The component
Py; can be calculated from knowledge of curvature radius r, the tangential elongation A\; and the pressure
p recorded during the test:

T
P11:P22:75 At P33 = 0. (9)
€0

The results for the central area are presented in Figure 8 for a cyclic loading. The response are qualitatively
similar to uniaxial loadings with hysteresis and Mullins effect.

6. Discussion

On the one hand, by use of experimental data, we propose to analyze the consequence of the choice of
a stress-softening measure. Like, often described, by considering that the main part of the Mullins effect is
represented by the difference between the first and the second loading paths, the energy loss is evaluated by
comparing the stored elastic energy for the first and the second loadings. The evolution of the ratio of these
two quantities is plotted according to all the Mullins effect measure parameters of Table 1, for the three
loading cases: uniaxial and equibiaxial extensions and planar tension. The results are presented in Figure 9.
It can be noticed that none of the parameters present a perfect correlation for all loading cases. Although,
for the tested strain range, it seems that the virgin energy (Wy) and the first invariant (I;) parameters are
the best choice. The maximal principal stress (P,,q.) can be acceptable for low strains levels. What clearly
appears is that the maximum principal elongation (Apax), usually used in Mullins effect modelling, is not
able to describe the different loading cases. All the other parameters derived from the trace operator of a
strain measure are not more efficient. All these measures become less and less efficient at large deformation.
It emphasizes the fact that the Mullins effect should be described by W, or Iy parameter. All this means
that the use of a non-efficient parameter implies the construction of the second loading modelling on wrong
bases. Whatever is the model, the evolution function used to describe the stress-softening will be fitted on
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a non-adequate parameter. Many Mullins effect modelling have a large number of parameters, this permits
to have a good fit, but if the wrong deformation criterion is used, the physics of the phenomenon is lost.

On the other hand, some modelling hypothesis are discussed. A damage modelling approach imposes to
these ratios to be constant whatever is the maximum deformation parameter. Figure 10 presents the ratios
between the different second loading curves (plotted according to the principal elongation). The beginning
of the curves varied very quickly, but this is due to experimental errors which are more significative at low
strain levels. It clearly appears that no damage model can correctly represent the Mullins effect of a material
that has a similar behavior than the RTV3428 silicone. A choice must be done, but the beginning of second
loading curves and strain hardening cannot be described correctly at the same time using these models. The
proportionality between the second loading curves prevents from describing large strain hardening, then it
can only be applied to material that have a weak influence of Mullins effect. But this discards the imposition
of proportionality between second loading curves, like proposed by Beatty and Krishnaswamy (2000) and
Zutiga and Beatty (2002). But their proposition is written thanks to a strain measure that does not seem
to be very efficient to characterize all loading cases. This was improved by Zumiga (2005) by changing the
strain measure to an energy measure. An interesting analysis and criticism of this model is proposed by
Kazakeviciute-Makovska (2007).

DeSouza Neto et al. (1994) proposed a master second loading curve to describe Mullins effect, the curve
is magnified to join the stress-free state to the maximum deformation. Figure 11 presents a normalization of
the strain-stress curve for the three simple tests for the maximum strain and the normalized strain energy. It
clearly appears that all the curves are not superimposed, that means that the idea of a single master curve is
not adequate. The form of the second loading curve is varying a lot, according to the maximum deformation.
The strain hardening is very different and is not appearing at the same in a second loading curve. This
phenomenon is also more important for Natural Rubber because of strain induced crystallization.

All these remarks emphasize the fact that an efficient Mullins effect modelling, by an isotropic approach,
must not use a formalism where the second loading curves are proportional or homothetical. The modelling
should be able to describe different form of strain-hardening according to the maximum previous deformation
level. Moreover governing Mullins effect parameter should be built thanks to different loading cases; a simple
uniaxial test can drive to abnormal conclusion. We suggest to use the elastic energy or the first strain
invariant. The physical or pseudo-elastic approaches seems to be the best way to tackle correctly Mullins

10



—=&— uniaxial traction —4— uniaxial traction
——&— planar traction ——&— planar traction

—=— equibiaxial traction —=— equibiaxial traction

0.9
0.8 |

0.7

0.9 |

0.8 |

Strain energy ratio (second load / primary path )
Strain energy ratio (second load / primary path )

0.7

I I

—4— uniaxial traction —=4— uniaxial traction
—=&— planar traction —=a&— planar traction

—+=— equibiaxial traction —s=— equibiaxial traction

0.9 | 0.9 |

0.8 | 0.8 |

Strain energy ratio (second load / primary path )
Strain energy ratio (second load / primary path )

0.7 0.7

1.0 15 20 25 0. 0.2 0.4 ‘ . 0.8 1.0 1.2
Amax Pm

o
=&
o

—=&— uniaxial traction —=4— uniaxial traction

—=— planar traction ——&— planar traction

—s+&— equibiaxial traction —+&— equibiaxial traction

0.9 |
0.8 |

0.8 |

Strain energy ratio (second load / primary path )
Strain energy ratio (second load / primary path )

07 U T 1 07 T T T T T 1
0.0 0.2 0.4 0.6 3 4 6 v d
Wo st(8:8)
1.0 1.0
—&— uniaxial traction —=&— uniaxial traction

= ——<=— planar traction = —<=— planar traction

® k]

g —s=— equibiaxial traction : —s=— equibiaxial traction

s &

E E

5 09 5 0.9 |

= 3

3 = 3

° °

§ ]

508 508

B i

3 3

o} T

& 5

= e

g Y

o 07 T T T T T T 05 07 T I T T T 1
0 5 10 15 20 25 30 0 1 2 3 4 5 6

ee srt(ee)

Figure 9: Energy loss between the primary path and the second load for the different mechanical loadings with respect to (a)
the first strain invariant I1; (b) the second strain invariant I2; (¢) maximal principal stretch Amax; (d) maximal principal stress
Prnaz; (€) strain energy density Wo; (f) Left Cauchy-Green strain measure; (g) Piola strain measure; (h) Euler-Almansi strain
measure. 11



0.8 _ 1.0 _

0.9
0.6 = ~.
a | ~.
© Psi()\i) /'/ é N
o 1 o 08 \\
=3 o &‘% \
P %
f_ﬁ 04 7 ﬁ ] \
4] & 07 ’
| )
£ 8
Z 02 =
PN E 06| P2/ P1
| ---- P3/P2
o IR AR S R R S R (R S S SN SN et P4/P3
00 T ) T T T L T ! 05 T 5 T t T k 1
1.2 1.6 20 24 1.2 1.6 20 24
N N
. 1.0
04 | P LT TR P
/'/ h N
&
0.3 ~
g 5
% A 4
& 02 8
= o
< > o
£ 3
g . =
0.1 2
§ P2/P1
| --—- P3/P2
------- P4/ P3
0.0 } T T T ¥ T 1 ¥ T ¥ T ¥ 1
1.0 12 14 1.6 1.8 1.0 1.2 14 1.6
N A
. 10_
\-/>"
1.0 PER
/ I S
| | .
08 = -
7 &
T o ,:
e 5 08/
2 06 3 i
0 =
& ¢
T 04| 2 1
€ 3
2 | )
©
02 § 0.6 P2/ P1
-—-- P3/P2
------- P4/ P3
00 I T t T t T ; T ; : T t T d
1.0 1.2 14 1.6 1.8 1.0 12 14
N PN

Figure 10: Second loads ratio. Rows correspond, respectively, to uniaxial planar and equibiaxial traction. In the left column
dot lines represent the primary path and continuous lines are the second loads. The right column shows the ratio between
second loads.

12



1.0
cl ]
| i
A 02 /‘f 'I'
7o
08 | wowsbuns c3 st
7.0 7
SEYY S A S
1 AP
'
@ 0.6 _| o
= PRl
7] | 7 /,’
T 04| 7 .
g -7 ,/'/
8 e ok i . »/‘/
o 1 S e
02 ,.'/'/,/
00 L T T T f T 1
0.0 0.2 0.4 0.6 0.8 1.0
Generalized Strain
1.0 _
cl A
4
(Gl 5
08 aiiaa. 3 ;7
7 s
beein oA 7
] Z I
v /, r '¢/
g 06 T
N -/
— L
& 2
oz
E 47t
® 04| e
J /
T /'//'/
(O] o
V.
Vs
0.2 | j
Y
0.0 § T L T L T T 3 1
0.0 0.2 0.4 0.6 0.8 1.0
Gereralized Strain
1.0 _
4
| cl 7
= wdeie G s
/
08 icacctccss 3 7
7
SR A 4
7
@ 0.6 _| 7
2 7
] 7
B -
T 04| AL
o] g
5 o
O] et
02| P
e
/.’
e
74
i/
OO k T T X I v T T ! 1
0.0 0.2 0.4 0.6 0.8 1.0

Generalized Strain

Generalized Stress

Gereralized Stress

Generalized Stress

cl 7
7
| il §
= v
o
0.8 -3 s/
Vd ,/
B I A 7 2 . /'/
e
P 7/
0.6 _| pZ Ll
- = ‘ ./
4 27 /'/
o~ k¥ - ,/'
L ’ 7
04 | s T
//,"’, //./.
1 e e
s P
/7 -
0.2 | {'.‘./,
/,’/
2
I
0.0 T ¥ T J T T J 1
0.0 0.2 0.4 0.6 0.8 1.0
Generalized Energy
1.0
cl
T T=rEETeZ
08 --u---- c3
| = cA
0.6 | i
e ',/'
g
0 ,/
P
/,;/
0.4 | Ao
W
- /‘0
02 /4
/,
0.0 T T L T ) T ¥ T ! 1
0.0 0.2 0.4 0.6 0.8 1.0
Gereralized Eneray
1.0
of a5 ,/,,/
s 62 - //
L 3 P /’/'
| I 4 /_/'
./4
0.64 b ,/'/
L z, //./
J o4 o~
Py -
04| LS T
7. s
7° ././
temm gt
iy
7
0.2 | /,//
7
1!
0.0 ! T ! T T T ! T ! 1
0.0 0.2 0.4 0.6 0.8 1.0

Generalized Enerav

Figure 11: Normalized second stress loading curves with respect the maximum strain (left column) and the normalized energy
of deformation (right column). Rows correspond, respectively, to uniaxial planar and equibiaxial traction.
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effect evolution functions to be able to well describe all second loading curves.

7. Conclusion

In the present paper, limitation of isotropic models of the Mullins effect have been tackled thanks to
experimental tests. In this way, filled silicone rubber has been characterized. The reproducibility and
accuracy of measurements were evaluated through several successive tests. Results have shown that our
protocol to manufacture the silicone specimens and our experimental methodology work well and provide
a precise experimental characterization of softening phenomena. Uniaxial, equibiaxial and planar tensions
have been realized, this permits to compare first and second loading curves in different strain modes. Energy
losses are compared and analyzed. It clearly appears that the strain energy measure (W) is the best choice
and in a lesser the first strain invariant (I7).

The analysis of experimental data proved that proportionality between second loading curves is not a
good way to model the strain-stress curves. There are two main ways to well describe the Mullins effect.
The first one, by using a non-constant multiplicative function on second loading curves or by using different
non-proportional functions, this respectively corresponds to double-network and physical approaches.

The governing parameters and description function forms have been analyzed under isotropic assumption.
The main extension of this study is to, now, take into account the influence of the loading direction of the
stress-softening.
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