R. W. Ogden, Non-Linear elastic deformation, 1984.

S. C. Cowin and J. D. Humphrey, Cardiovascular soft tissue mechanics, 2000.

G. A. Holzapfel, Nonlinear solid mechanics. A continuum approach for engineering, 2000.

L. A. Taber, Nonlinear theory of elasticity, 2004.

G. A. Holzapfel and R. W. Ogden, Mechanics of biological tissue, 2006.

E. Marieb and K. Hoehn, Human Anatomy & Physiology, 2010.

J. D. Humphrey, Continuum biomechanics of soft biological tissues, Proc. R. Soc. Lond. A, vol.459, pp.3-46, 2003.

P. Kalita and R. Schaefer, Mechanical models of artery walls, Arch Comput Methods Eng, vol.15, pp.1-36, 2008.

J. E. Bischoff, E. M. Arruda, and K. Grosh, A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue, Biomech Model Mechanobiol, vol.3, pp.56-65, 2004.

T. P. Prevost, A. Balakrishnan, S. Suresh, and S. Socrate, Biomechanics of brain tissue, Acta Biomater, vol.7, pp.83-95, 2011.

E. Peña, P. Martins, T. Mascarenhasd, R. M. Jorge, A. Ferreira et al., Mechanical characterization of the softening behavior of human vaginal tissue, J. Mech. Behav. Biomed, vol.4, pp.275-283, 2011.

E. Maher, A. Creane, C. Lally, and D. J. Kelly, An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue, J. Mech. Behav. Biomed, pp.9-19, 2012.

J. Ohayon, A. M. Gharib, A. Garcia, J. Heroux, S. K. Yazdani et al., Is arterial wall-strain stiffening an additional process responsible for atherosclerosis in coronary bifurcations?: an in vivo study based on dynamic CT and MRI, Am J Physiol Heart Circ Physiol, vol.301, pp.1097-106, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00846366

G. Chagnon, M. Rebouah, and D. Favier, Hyperelastic energy densities for soft biological tissues: a review, J. Elast, vol.120, pp.129-160, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01480510

G. F. Smith and R. S. Rivlin, The anisotropic tensors, Quarterly of Applied Mathematics, vol.15, pp.309-314, 1957.

J. Boehler, A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy, ZAMM-J. Appl. Math. Mech, vol.59, pp.157-167, 1979.

A. J. Spencer, Theory of Invariants, Continuum Physics, 1971.

G. A. Holzapfel, M. Stadler, and T. C. Gasser, Changes in the mechanical environment of stenotic arteries during interactionwith stents: computational assessment of parametric stent design, J. Biomech Eng, vol.127, pp.166-180, 2005.

J. L. Ericksen and R. S. Rivlin, Large elastic deformations of homogeneous anisotropic materials, Arch. Rational. Mech. Anal, vol.3, p.281301, 1954.

J. C. Criscione, A. S. Douglas, and W. C. Hunter, Physically based strain invariants set for materials exhibiting transversely isotropic behavior, J. Mech. Phys. Solids, vol.49, pp.871-891, 2001.

M. Itskov and N. Aksel, A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function, Int. J. Solids Struct, vol.41, pp.3833-3848, 2004.

J. Murphy, Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants, Eur. J. Mech. A Solids, vol.42, pp.90-96, 2013.

G. Limbert and M. Taylor, On the constitutive modeling of biological soft connective tissues. a general theoretical framework and explicit forms of the tensors of elasticity for strongly anisotropic continuum fiber-reinforced composites at finite strain, Int. J. Solids Struct, vol.39, pp.2343-2358, 2002.

J. Lu, X. Zhou, and M. L. Raghavan, Computational method of inverse elastostatics for anisotropic hyperelastic solids, Int. J. Numer. Meth. Engng, vol.69, pp.1239-1261, 2007.

M. Kroon and G. A. Holzapfel, A new constitutive model for multilayered collagenous tissues, J. Biomech, vol.41, pp.2766-2771, 2008.

E. Peña, J. A. Peña, and M. Doblaré, On the Mullins effect and hysteresis of fibered biological materials: A comparison between continuous and discontinuous damage models, Int. J. Solids Struct, vol.46, pp.1727-1735, 2009.

C. Sansour, On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy, Eur. J. Mech. A/Solids, vol.27, p.2839, 2008.

J. Helfenstein, M. Jabareen, E. Mazza, and S. Govindjee, On non-physical response in models for fiber-reinforced hyperelastic materials, Int. J. Solids Struct, vol.47, pp.2056-2061, 2010.

M. Toungara, G. Chagnon, and C. Geindreau, Numerical analysis of the wall stress in abdominal aortic aneurysm: influence of the material model near-incompressibility, J. Mech. Med. Biol, vol.12, pp.1-19, 2012.

J. R. Walton and J. P. Wilber, Sufficient conditions for strong ellipticity for a class of anisotropic materials, Int. J. Non-linear Mech, vol.38, pp.441-455, 2003.

H. C. Simpson and S. J. Spector, On copositive matrices and strong ellipticity for isotropic elastic materials, Arch. Rational Mech. Anal, vol.84, pp.55-68, 1983.

L. Zee and E. Sternberg, Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids, Arch. Ration. Mech. Anal, vol.83, pp.53-90, 1983.

J. Merodio and R. W. Ogden, Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation, Arch. Mech, vol.54, pp.525-552, 2002.

J. Merodio and R. W. Ogden, Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation, Int. J. Solids Struct, vol.30, pp.4707-4727, 2003.

O. Lopez-pamies and M. I. Idiart, Fiber-reinforced hyperelastic solids: a realizable homogenization constitutive theory, J Eng Math, vol.68, pp.57-83, 2010.

A. Mielke, Necessary and sufficient conditions for polyconvexity of isotropic functions, J. Complex Analysis, vol.12, pp.291-314, 2005.

J. Schröder and P. Neff, Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions, Int. J. Solids Struct, vol.40, pp.401-445, 2003.

J. Schröder and P. Neff, Poly-, quasi-and rank-one convexity in applied mechanics, CISM International Centre for Mechanical Sciences, vol.516

J. M. Ball, Convexity conditions and existence theorems in non-linear elasticity, Archives for rational Mechanics and Analysis, vol.63, pp.557-611, 1977.

J. M. Ball, Constitutive equalities and existence theorems in elasticity, Ch. Symposium on Non-well posed problems and logarithmic convexity, vol.316, 1977.

M. C. Boyce and E. M. Arruda, Constitutive models of rubber elasticity: a review, vol.73, pp.504-523, 2000.

V. Vahapoglu and S. Karadeniz, Constitutive equations for isotropic rubber-like materials using phenomenological approach: a bibliography, vol.79, pp.489-499, 1930.

H. Demiray, H. W. Weizsacker, K. Pascale, and H. Erbay, A stress strain relation for a rat abdominal aorta, J. Biomech, vol.21, pp.369-374, 1988.

M. Holmes and V. C. Mow, The non-linear characteristics of soft gels and hydrated connective tissues in ultrafiltration, J. Biomech, vol.23, pp.1145-1156, 1990.

M. Nierenberger, Y. Rémond, and S. Ahzi, A new multiscale model for the mechanical behavior of vein walls, J. Mech. Behav. Biomed, vol.23, pp.32-43, 2013.

H. Chen, X. Zhao, X. Lu, and G. Kassab, Nonlinear micromechanics of soft tissues, Int J. Non-Linear Mech, vol.56, pp.79-85, 2013.

P. J. Flory, Statistical mechanics of chain molecules, 1969.

A. Kloczkowski, Application of statistical mechanics to the analysis of various physicalproperties of elastomeric networks-a review, Polymer, vol.43, pp.1503-1525, 2002.

M. F. Beatty, An average-stretch full-network model for rubber elasticity, J. Elas, vol.70, pp.65-86, 2004.
DOI : 10.1007/1-4020-2308-1_7

O. Kratky and G. Porod, Röntgenuntersuchungen gelöster fadenmoleküle, Recueil Trav. Chim, vol.68, pp.1106-1122, 1949.
DOI : 10.1007/bf01141535

A. D. Freed, D. R. Einstein, and I. Vesely, Invariant formulation for dispersed transverse isotropy in aortic heart valves, Biomechan. Model. Mechanobiol, vol.4, pp.100-117, 2005.
DOI : 10.1007/s10237-005-0069-8

Y. Lanir, Structure-strength relations in mammalian tendon, Biophys, vol.24, pp.541-554, 1978.
DOI : 10.1016/s0006-3495(78)85400-9

URL : https://doi.org/10.1016/s0006-3495(78)85400-9

J. Kastelic, I. Palley, and E. Baer, A structural mechanical model for tendon crimping, J. Biomech, vol.13, p.887, 1980.
DOI : 10.1016/0021-9290(80)90177-3

G. A. Holzapfel, T. C. Gasser, and R. W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast, vol.61, pp.1-48, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01297725

S. Baek, R. L. Gleason, K. R. Rajagopal, and J. D. Humphrey, Theory of small on large: potential utility in computations of fluid-solid interactions in arteries, Comput. Methods Appl. Mech. Engrg, vol.196, pp.3070-3078, 2007.

I. Masson, P. Boutouyrie, S. Laurent, J. D. Humphrey, and M. Zidi, Characterization of arterial wall mechanical behavior and stresses from human clinical data, J. Biomech, vol.41, pp.2618-2627, 2008.
DOI : 10.1016/j.jbiomech.2008.06.022

URL : https://hal.archives-ouvertes.fr/hal-00332640

T. C. Gasser and G. A. Holzapfel, A rate-independent elastoplastic constitutive model for biological fiberreinforcedcomposites at finite strains: continuum basis, algorithmic formulationand finite element implementation, Comput. Mech, vol.29, pp.340-360, 2002.
DOI : 10.1007/s00466-002-0347-6

X. Zhao, M. L. Raghavan, and J. Lu, Identifying heterogeneous anisotropic properties in cerebral aneurysms: a point wise approach, Biomech. Model. Mechanobiol, vol.10, pp.177-189, 2011.
DOI : 10.1007/s10237-010-0225-7

URL : http://europepmc.org/articles/pmc4260822?pdf=render

P. Tong and Y. C. Fung, The stress-strain relationship for the skin, J. Biomech, vol.9, pp.649-657, 1976.
DOI : 10.1016/0021-9290(76)90107-x

Y. C. Fung, K. Fronek, and P. Patitucci, Pseudoelasticity of arteries and the choice of its mathematical expression, Am. Phys/ Soc, vol.237, pp.620-631, 1979.

C. J. Chuong and Y. C. Fung, Three-dimensional stress distribution in arteries, J. Biomech. Engrg, vol.105, issue.3, pp.268-274, 1983.
DOI : 10.1115/1.3138417

J. D. Humphrey, Mechanics of arterial wall: Review and directions, Critical Reviews in Biomed. Engr, vol.23, pp.1-162, 1995.
DOI : 10.1615/critrevbiomedeng.v23.i1-2.10

J. M. Guccione, A. Salahieh, S. M. Moonly, J. Kortsmit, A. Wallace et al., Myosplint decreases wall stress without depressing function in the failing heart: a finite element model study, Ann. Thorac. Surg, vol.76, pp.1171-1180, 2003.

R. N. Vaishnav, J. T. Young, and D. J. Patel, Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment, Circ. Res, vol.32, pp.577-583, 1973.

K. Rajagopal, C. Bridges, and K. R. , Towards an understanding of the mechanics underlying aortic dissection, Biomechan Model Mechanobiol, vol.6, pp.345-359, 2007.

J. D. Humphrey, Cardiovascular solid mechanics. Cells, Tissues and Organs, 2002.
DOI : 10.1007/978-0-387-21576-1

M. P. Nash and P. J. Hunter, Computational mechanics of the heart: from tissue structure to ventricular function, J Elasticity, vol.61, pp.113-141, 2000.

J. P. Wilber and J. R. Walton, The convexity properties of a class of constitutive models for biological soft tissues, Math. Mech. Solids, vol.7, pp.217-235, 2002.

S. Federico, A. Grillo, S. Imatani, G. Giaquinta, and W. Herzog, An energetic approach to the analysis of anisotropic hyperelastic materials, Int. J. Eng. Sci, vol.46, pp.164-181, 2008.

R. S. Rivlin and D. W. Saunders, Large elastic deformations of isotropic materials-VII. Experiments on the deformation of rubber, Philos. Trans. R. Soc, vol.243, pp.251-288, 1951.

M. Kaliske, A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains, Comput. Methods Appl. Mech. Engrg, vol.185, pp.225-243, 2000.

N. Triantafyllidis and R. C. Abeyaratne, Instability of a finitely deformed fiber-reinforced elastic material, J. Appl. Mech, vol.50, pp.149-156, 1983.

M. Destrade, M. D. Gilchrist, D. A. Prikazchikov, and G. Saccomandi, Surface instability of sheared soft tissues, J. Biomech. Eng, vol.130
URL : https://hal.archives-ouvertes.fr/hal-00341430

X. Ning, Q. Zhu, Y. Lanir, and S. S. Margulies, A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation, J. Biomech. Eng, vol.128, pp.925-933, 2006.

O. Rohrle and A. J. Pullan, Three-dimensional finite element modelling of muscle forces during mastication, J. Biomech, vol.40, pp.3363-3372, 2007.

V. Alastrué, M. A. Martinez, M. Doblaré, and A. Menzel, On the use of the bingham statistical distribution in microsphere-based constitutive models for arterial tissue, Mech. Res. Comm, vol.37, pp.700-706, 2010.

L. W. Brown and L. M. Smith, A simple transversely isotropic hyperelastic constitutive model suitable for finite element analysis of fiber reinforced elastomers, J. Eng. Mater. Technol, vol.133, pp.1-13, 2011.

M. Ruter and E. Stein, Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity, Comput. Methods Appl. Mech. Engrg, vol.190, pp.519-541, 2000.

C. O. Horgan and G. Saccomandi, A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids, J. Mech. Phys. Solids, vol.53, pp.1985-2015, 2005.

J. D. Humphrey, R. K. Strumph, and F. C. Yin, Determination of a constitutive relation for passive myocardium. I. a new functional form, ASME J. Biomech. Engrg, vol.15, pp.1413-1418, 1990.

S. Jemiolo and J. J. Telega, Transversely isotropic materials undergoing large deformations and application to modelling soft tissues, Mech. Res. Commun, vol.28, pp.397-404, 2001.

C. A. Basciano and C. Kleinstreuer, Invariant-based anisotropic constitutive models of the healthy and aneurysmal abdominal aortic wall, J. Biomech. Eng. ASME, vol.131, pp.1-11, 2009.

J. D. Humphrey and F. C. Yin, On constitutive relations and finite deformations of passive cardiac tissue: I. a pseudo strain-energy approach, ASME J. Biomech. Engrg, vol.109, pp.298-304, 1987.

G. A. Holzapfel, G. Sommer, C. T. Gasser, and P. Regitnig, Determination of the layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modelling, Am. J. Physiol. Heart Circ. Physiol, vol.289, pp.2048-2058, 2005.

J. A. Weiss, B. N. Maker, and S. Govindjee, Finite implementation of incompressible, transversely isotropic hyperelasticity, Comput. Methods Appl. Mech. Engrg, vol.135, pp.107-128, 1996.

P. Ciarletta, I. Izzo, S. Micera, and F. Tendick, Stiffening by fiber reinforcement in soft materials: A hyperelastic theory at large strains and its application, J. Mech. Biomed. Mater, vol.4, pp.1359-1368, 2011.

P. M. Pinsky, D. Van-der-heide, and D. Chernyak, Computational modeling of mechanical anisotropy in the cornea and sclera, J Cataract Refract Surg, vol.31, pp.136-145, 2005.

A. N. Natali, P. G. Pavan, E. L. Carniel, and C. Dorow, A transversally isotropic elasto-damage constitutive model for the periodontal ligament, Comput. Method Biomech, vol.6, pp.329-336, 2003.

E. Peña, B. Calvo, M. A. Martinez, P. Martins, T. Mascarenhas et al., Experimental study and constitutive modeling of the viscoelastic mechanical properties of the human prolapsed vaginal tissue, Biomech. Model. Mechanobiol, vol.9, pp.35-44, 2010.

T. C. Gasser, R. W. Ogden, and G. A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface, vol.3, pp.15-35, 2006.

K. May-newman, C. Lam, and F. C. Yin, A hyperelastic constitutive law for aortic valve tissue, J. Biomech. Eng, vol.131, pp.1-7, 2009.

E. Peña, Prediction of the softening and damage effects with permanent set in fibrous biological materials, J. Mech. Phys. Solids, vol.59, pp.1808-1822, 2011.

I. Masson, C. Fassot, and M. Zidi, Finite dynamic deformations of a hyperelastic, anisotropic, incompressible and prestressed tube. Applications to in vivo arteries, Eur. J. Mech. A/Solids, vol.29, pp.523-529, 2010.

A. Valencia and F. Baeza, Numerical simulation of fluidstructure interaction in stenotic arteries considering two layer nonlinear anisotropic structural model, Int. Com. Heat Mass Transf, vol.36, pp.137-142, 2009.

M. Qian, D. M. Wells, A. Jones, and A. Becker, Finite element modelling of cell wall properties for onion epidermis using a fibre-reinforced hyperelastic model, J. Struct. Biol, vol.172, pp.300-304, 2010.

G. Chagnon, V. Gaudin, D. Favier, L. Orgeas, and P. Cinquin, An osmotically inflatable seal to treat endoleaks of type 1, J. Mech. Med. Biol, vol.12, p.1250070, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01974834

A. Pandolfi and F. Maganiello, A model for the human cornea: constitutive formulation and numerical analysis, Biomechan. Model. Mechanobiol, vol.5, pp.237-246, 2006.

T. Kloppel and W. A. Wall, A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes, Biomech Model Mechanobiol, vol.10, pp.445-459, 2011.

V. Prot, R. Haaverstad, and B. Skallerud, Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution, Biomech. Model. Mechanobiol, vol.8, pp.43-55, 2009.

O. Trabelsi, A. Pérez-del-palomar, J. L. Lopez-villalobos, A. Ginel, and M. Doblaré, Experimental characterization and constitutive modeling of the mechanical behavior of the human trachea, Med. Eng. Phys, vol.32, pp.76-82, 2010.

M. Malvè, A. Pérez-del-palomar, O. Trabelsi, J. L. Lopez-villalobos, A. Ginel et al., Modeling of the fluid structure interaction of a human trachea under different ventilation conditions, Int. Comm. Heat Mass Transf, vol.38, pp.10-15, 2011.

E. Lanchares, B. Calvo, J. A. Cristobal, and M. Doblaré, Finite element simulation of arcuates for astigmatism correction, J. Biomech, vol.41, pp.797-805, 2008.

T. D. Nguyen and B. L. Boyce, An inverse finite element method for determining the anisotropic properties of the cornea, Biomech. Model. Mechanobiol, vol.10, pp.323-337, 2011.

I. Karsaj, C. Sansour, and J. Soric, The modelling of fibre reorientation in soft tissue, Biomech. Model. Mechanobiol, vol.8, pp.359-370, 2009.

B. Hernandez, E. Peña, G. Pascual, M. Rodriguez, B. Calvo et al., Mechanical and histological characterization of the abdominal muscle. a previous step to modelling hernia surgery, J. Mech. Biomed. Mater, vol.4, pp.392-404, 2011.

A. L. Dorfmann, W. A. Woods, and B. A. Trimmer, Muscle performance in a soft-bodied terrestrial crawler: constitutive modeling of strain-rate dependency, J. R. Soc., Interface, vol.5, pp.349-362, 2008.

G. Limbert and J. Middleton, A transversely isotropic viscohyperelastic material application to the modeling of biolgical soft connective tissues, Int. J. Solids Struct, vol.41, pp.4237-4260, 2004.

B. Calvo, E. Peña, P. Martins, T. Mascarenhas, M. Doblaré et al., On modelling damage process in vaginal tissue, J. Biomech, vol.42, pp.642-651, 2009.

R. W. Ogden and G. Saccomandi, Introducing mesoscopic information into constitutive equations for arterial walls, Biomechan Model Mechanobiol, vol.6, p.333344, 2007.

B. Markert, W. Ehlers, and N. Karajan, A general polyconvex strain-energy function for fiber-reinforced materials, Proc. Appl. Math. Mech, vol.5, pp.245-246, 2005.

H. Demirkoparan and T. Pence, Swelling of an internally pressurized nonlinearly elastic tube with fiber reinforcing, Int. J. Solids Struct, vol.44, pp.4009-4029, 2007.

H. Demirkoparan, T. J. , and A. Wineman, On dissolution and reassembly of filamentary reinforcing networks in hyperelastic materials, Proc. R. Soc. A, vol.465, pp.867-894, 2009.

D. Lurding, Y. Basar, and U. Hanskotter, Application of transversely isotropic materials to multi-layer shell elements undergoing finite rotations and large strains, Int. J. Solids Struct, vol.38, pp.9493-9503, 2001.

S. Reese, T. Raible, and P. Wriggers, Finite element modelling of orthotropic material behaviour in pneumatic membranes, Int. J. Solids Struct, vol.38, pp.9525-9544, 2001.

G. A. Holzapfel and R. W. Ogden, Constitutive modelling of passive myocardium: a structurally based framework for material characterization, Phil. Trans. R. Soc. A, vol.367, pp.3445-75, 2009.

N. T. Hollingsworth and D. R. Wagner, Modeling shear behavior of the annulus fibrosus, J. Mech. Biomed. Mater, vol.4, pp.1103-1114, 2011.

A. J. Spencer, Continuum theory of the mechanics of fibre-reinforced composites, 1984.

M. Itskov, A. E. Ehret, and D. Mavrilas, A polyconvex anisotropic strain energy function for soft collagenous tissues, Biomech Model Mechanbiol, vol.5, p.1726, 2006.

A. E. Ehret and M. Itskov, A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues, J. Mater. Sci, vol.42, pp.8853-8863, 2007.

A. N. Natali, E. L. Carniel, and H. Gregersen, Biomechanical behaviour of oesophageal tissues: Material and structural configuration, experimental data and constitutive analysis, Med. Eng. & Phys, vol.31, pp.1056-1062, 2009.

N. L. Nerurkar, R. L. Mauck, and D. M. Elliott, Modeling interlamellar interactions in angle-ply biologic laminates for annulus fibrosus tissue engineering, Biomech Model Mechan, vol.10, pp.973-984, 2011.

S. Göktepe, S. N. Acharya, J. Wong, and E. Kuhl, Computational modeling of passive myocardium, Int. J. Numer. Meth. Biomed. Engng, vol.27, p.112, 2011.

X. Peng, Z. Guo, T. Du, and W. R. Yu, A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation, Composites: Part B, vol.52, pp.275-281, 2013.

M. Rebouah and G. Chagnon, Permanent set and stress softening constitutive equation applied to rubber like materials and soft tissues, Acta Mech, vol.225, pp.1685-1698, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00963802

X. Q. Peng, Z. Y. Guo, and B. Roman, An anisotropic hyperelastic constitutive model with fiber-matrix shear interaction for the human annulus fibrosus, J. Appl. Mech. Trans ASME, vol.73, pp.815-824, 2006.

Z. Y. Guo, X. Q. Peng, and B. Moran, Large deformation response of a hyperelastic fibre reinforced composite: Theoretical model and numerical validation, Composites Part A, vol.38, p.18421851, 2007.

Z. Y. Guo, X. Q. Peng, and B. Moran, Mechanical response of neo-hookean fiber reinforced incompressible nonlinearly elastic solids, Int. J. Solids Struct, vol.44, pp.1949-1969, 2007.

Z. Y. Guo, X. Q. Peng, and B. Moran, A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus, J. Mech. Phys. Solids, vol.54, pp.1952-1971, 2006.

F. C. Caner, Z. Guo, B. Moran, Z. P. Bazant, and I. Carol, Hyperelastic anisotropic microplane constitutive model for annulus fibrosus, Transactions of the ASME, vol.129, pp.1-10, 2007.

J. F. Rodriguez, C. Ruiz, M. Doblaré, and G. A. Holzapfel, Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy, J. Biomech. Eng, vol.130

J. B. Caulfield and J. S. Janicki, Structure and function of myocardial fibrillar collagen. Technology and Health Care, vol.5, pp.95-113, 1997.

C. Bourdarias, S. Gerbi, and J. Ohayon, A pseudo active kinematic constraint for a biological living soft tissue: An effect of the collagen network, Math. Comput. Model, vol.49, pp.2170-2181, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00343369

C. Bourdarias, S. Gerbi, and J. Ohayon, A three dimensional finite element method for biological active soft tissue-Formulation in cylindrical polar coordinates. Mathematical Modelling and Numerical Analysis, vol.2, pp.725-739, 2003.

G. A. Holzapfel, Nonlinear Solid Mechanics, A Continuum Approach For Engineering, 2001.

K. , On implicit constitutive theories, Appl. Math, vol.48, pp.279-319, 2003.

A. D. Freed and D. R. Einstein, An implicit elastic theory for lung parenchyma, Int. J. Eng. Sci, vol.62, pp.31-47, 2013.

Y. Feng, R. J. Okamoto, R. Namani, G. M. Genin, and P. V. Bayly, Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter, J. Mech. Beh. Biomed. Mater, vol.23, pp.117-132, 2013.

N. Harb, N. Labed, M. Domaszewski, and F. Peyraut, A new parameter identification method of soft biological tissue combining genetic algorithm with analytical optimization, Comput. Methods Appl. Mech. Engrg, vol.200, pp.208-215, 2011.

C. A. Schulze-bauer and G. A. Holzapfel, Determination of constitutive equations for human arteries from clinicaldata, J. Biomechanics, vol.36, pp.165-169, 2003.

M. Carboni, G. W. Desch, and H. W. Weizsacker, Passive mechanical properties of porcine left circumflex artery and its mathematical description, Med. Eng. Phys, vol.29, pp.8-16, 2007.

R. P. Vito and S. A. Dixon, Blood vessel constitutive models, Annu. Rev. Biomed. Eng, vol.5, pp.413-439, 1995.

B. Galle, H. Ouyang, R. Shi, and E. Nauman, A transversely isotropic constitutive model of excised guinea pig spinal cord white matter, J. Biomech, vol.43, pp.2839-2843, 2010.

G. A. Holzapfel, T. C. Gasser, and M. Stadler, A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis, Eur. J. Mech. A/Solids, vol.21, pp.441-463, 2002.

V. Quaglini, P. Vena, and R. Contro, A discrete-time approach to the formulation of constitutive models for viscoelastic soft tissues, Biomech Model Mechan, vol.3, pp.85-97, 2004.

H. W. Haslach, Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue, Biomech. Model. Mechanobio, vol.3, pp.172-189, 2005.

G. Limbert and J. Middleton, A constitutive model of the posterior cruciate ligament, Med. Eng. Phys, vol.28, pp.99-113, 2006.